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Abstract—Vehicular Fog Computing is a promising paradigm
to exploit the computational resources on vehicles for providing
computing services. Meanwhile, the unique mobility patterns
of vehicles at the urban signalized intersection can be used to
improve the performance of Vehicular Fog. In this paper, we
present an offloading scheme tailored to the signalized intersec-
tion, by taking the vehicles’ mobility pattern at the intersection.
Our offloading scheme addresses the conditions of deadlines and
the cost of replications. Predicting mobility is a key factor in
further calculating the connection time and the link bandwidth
for finding appropriate service vehicles at intersections. The
scheme achieves maximum offloading success rate under given
deadline constraints and budgets. Our evaluation uses realistic
traffic data generated by traffic simulator SUMO. The results
are compared with a few benchmarks given multiple parameters.
The proposed scheme can achieve a satisfactory offloading success
rate compared with the best-case offloading scenario.

Index Terms—Connected Vehicles, Fog Computing, Task Of-
floading, Signalized Intersection

I. INTRODUCTION

In recent years, the car manufacturing industry is mov-
ing toward the trend of connected vehicles. Compared with
traditional vehicles, connected cars are equipped with On-
BoardUnit (OBU) for wireless communication and embedded
computers for computational purposes. Meanwhile, the de-
velopment and deployment of Intelligent Transportation Sys-
tem (ITS) cooperated with connected vehicular technologies
enables many new applications such as safety assistance,
road navigation, and self-driving, etc. Those applications often
require various on-vehicle sensors; for example, GPS, radar,
dashcam, and will inevitably generate an enormous amount
of data waiting to be processed. As research [1] points out,
the scale of this vehicular data volume is usually in the order
of terabytes per driving hour and still keeps growing rapidly.
However, current OBUs usually do not have adequate comping
power to deal with such a large amount of data. To address the
issue of increasing computing demand of connected vehicles
and other mobile devices, new computing paradigms such
as Fog Computing and Mobile Edge Computing (MEC) are
proposed as a possible solution.

Within the context of connected cars and vehicular network,
the general idea of Vehicular Fog Computing (VFC) [2]
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and Vehicular MEC [3] is that when one vehicle generates
a task that cannot be processed by itself due to lacking
enough computing power, the task will be offloaded to another
computation platform. The difference between Fog and MEC
in terms of which computation entity is responsible to handle
the task. In MEC, the tasks generated by vehicles are offloaded
to the Edge servers connected with the base stations through
a Vehicle to Infrastructure (V2I) manner. Those base stations
are deployed alongside the Road Side Units (RSU). And the
tasks could be either processed by edge servers themselves or
be further offloaded to the remote Cloud data center via the
backbone network. In VFC, the tasks will be offload to other
vehicles who currently have available computing resources
directly through Vehicle to Vehicle (V2V) communication.
Our research is based on the Fog Computing paradigm where
vehicles offload their computing tasks to other vehicles without
the help of RSU and Edge servers.

In this research, we consider the urban signalized intersec-
tions as ideal places for hosting Vehicular Fog Computing.
Our interest is based on two major reasons. Firstly, the high
mobility of vehicles will inevitably introduce great difficulties
for wireless communication and connectivity. But vehicles
may stop at intersections for short periods of time due to
red lights, which creates a more stable environment for wire-
less communication and connectivity. Secondly, intersections
usually have high vehicle density compared to other road
segments. The concentration of vehicles will provide a good
resource pool for the vehicles to share computing tasks.

However, utilizing a signalized intersection to enhance the
performance of task offloading is a non-trivial task due to
a few reasons. First, we consider the case that computing
tasks have to be constrained by deadlines [5] [4] [6]. To
increase the possibility that an offloaded task will finish on
time, replications of the same task will be used. But the
number of replicated tasks should be limited due to budget
constraints. Second, the vehicle mobility at intersections is
largely impacted by signal control and the arrival time to the
intersection. Predicting the connection time that would allow
a vehicle to finish an offloaded task and return the results has
to count all the potential moving directions. But no existing
work has found on modeling the mobility.

In this paper, we study the VFC offloading problem with the
consideration of deadlines and task replication with a limited
offloading budget at the signalized intersections. We proposed



a location prediction method that exploits the traffic signal
data alongside the current vehicle movement information to
forecast the future position of vehicles. Based on the method,
the distance between a task vehicle (TaV) and a candidate
service vehicle(SeV) can be calculated. The latter allows
further calculation of the condition and the data rate of the
wireless connection between the two vehicles. In the paper,
we formulate the problem as a deadline-aware offloading
problem which aims to select appropriate offloading SeVs to
achieve maximum offloading successful rate. The proposed
scheme is evaluated and compared with other benchmarks.
The results show that our scheme can achieve satisfactory
offloading successful rate under various settings.

The rest of the paper is organized as follows. Section II
reviews existing literature about various vehicular fog offload-
ing problems. In Section III, we present the system model for
the proposed offloading scenario at a signalized intersection,
followed by the problem formation and the location prediction
offloading scheme in section III. Experimental results are
presented in Section IV and Section V concludes the paper.

II. RELATED WORK

Vehicular task offloading has to consider vehicle computing
resources, wireless connectivity, task deadlines, budget, etc.
The general goal of the deadline constraint problem is to
minimize the number of offloading attempts that have the total
offloading latency that goes beyond the deadline. Both of [4]
and [5] focus on the deadline constraint problem where RSUs
get involved in data transmission between vehicles. [5] adopts
a Markov Decision Process (MDP) to determine which vehicle
should be chosen as the SeV according to their mobility
information and the computing power. Chen et al. improve
this offloading scheme in [4] by replacing MDP algorithm
with a Multi-Armed Bandit (MAB) based learning algorithm
to reduce the heavy computation load introduced by MDP.
Sun et al. also discussed a deadline constraint task offloading
problem in [6], and is the most relevant research compared
with our current study. Like [4], [6] also adopts a MAB
algorithm to solve the optimization problem. The difference is
that [6] focuses on a highway scenario, where the TaV directly
offloads its tasks to the SeVs that moving in the same direction
without the help of the RSUs. Similar to [6], the vehicle also
communicated in a directed V2V manner in this research. The
difference is that we assume the offloading happens at the
signalized intersection instead of the highway.

Our work differs from the existing works in terms of the
focus on the signalized intersections, which calls for different
and more sophisticated mobility modeling and prediction.
While our previous research has shown that VFC can be
host upon the vehicle crowd at the intersection with dynam-
ics and inter-correlation with the traffic signal [7] [8], here
we study the mobility patterns in relating to traffic signal
information for a deadline-ware offloading scheme. Predicting
the movement of an individual vehicle at an intersection is
quite different from a general vehicle mobility model. A few
recent works have used Long Short Term Memory (LSTM)

(a) Simple Intersection Scenario (b) Movements in Two Phase Signal
System

Fig. 1: Single Intersection

based algorithm in predicting the vehicle movement trajectory.
They can successfully be used for collision avoidance in self-
driving vehicle applications [10] [11]. However, it is difficult
for this approach to predict vehicle movements at a signalized
intersection due to the factor that the future movement of a
vehicle mainly depends on the traffic signal rather than its
historical movement trajectory.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce our system model and models
used in formulating the task offloading problem and the
problem itself.

A. System Model Overview

Without loss of generality, the vehicles can be divided into
two categories in the system model. The first category is
called task vehicles (TaVs) which have some tasks that can
not be handled by themselves thus need to be offload to
other vehicles. The second category is called Service Vehicles
(SeVs) which process the tasks generated by TaVs and return
the result to the TaVs. What’s more, The role of TaV and SeV
for each vehicle is interchangeable depending on whether the
vehicle has a task to offload or whether it has resources to
support others computing needs.

Fig. 1a shows a simple scenario of a signalized intersection.
The grey car is the TaV, while, all the other red cars are
potential SeVs. With a deadline constraint of a task, the TaV
has to select a group of SeVs with considerations over the
factors contributing to the completion latency of the task. In
addition, the number of the selected SeVs needs to confine to
a budget as it is often a consideration in real use. As such, for
all the SeVs currently located at this intersection, the selection
of the SeVs should be based on a prediction of their offloading
completion latency with the budget limit. Offloading comple-
tion latency (or, offloading latency) is influenced by two major
factors. One is task computing time, and the other is the data
transmission time over the wireless link. Sevs will broadcast
their computational information. A TaV thus learns and uses
it in its decision. The data transmission time is related to the
distance between TaV and SeV per the signal quality in urban
areas [9]. Since vehicle mobility is highly dynamic at the



intersection, predicting this distance is necessary for acquiring
data transmission time.

B. Traffic Model

Consider the scenario described in Fig. 1a, the approaching
traffic volumes from north, east, south, and west are QN , QE ,
QS , and QW respectfully. To simplify the model, we assume
all of the vehicles arriving at this intersection will choose to go
through. No turning movements will be made, as it is shown
in Fig. 1b. Here, the cycle length of the traffic light is Tc.
The green time of Phase 1 and Phase 2 are TP1

g and TP2
g

accordingly. Note that the red time for one phase is the green
time for the other phase, thus we can have TP1

g = TP2
r and

TP2
g = TP1

r . The yellow time is included in the green time
in our model, therefore the relationship between the red/green
time and the signal cycle length can be denoted as followed:

Tc = TP1
g + TP2

g = TP2
r + TP1

r (1)

The discrete-time domain for the offloading process can be
regarded as a set of time slots from start slot 0 to last slot T .
Thus, the whole time domain can be represented as a sequence{
0, 1, 2, ..., T

}
. When a vehicle i enters the intersection area

and connects with the VFC in the time domain, a tuple of
vehicle information will be generated. This tuple is denoted
as
(
Posi, ~si

)
. Here, Posi is the current position of the vehicle

i described in x-y coordinates. ~si is the current vehicle speed
vector. Traffic signal information is represented as a pair(
Pht, Dt

)
. Pht is the current phase at time slot t, and Dt

means how much time has passed after the current phase
begins.

C. Task Offloading Model

To model the offloading procedure at the intersection, we
first need to acquire a single offloading event. At time t, t ∈{
0, 1, 2, ..., T

}
, a TaV i arrives at the intersection and imme-

diately generates a task, denoted as a tuple
(
xt, yt, wt, bt, Lt

)
according to the definition by [4] and [6]. Here xt is the
size (in bits) of the task itself. yt is the size (in bits) of
the computing result of this task which generates by SeV
and needs to be returned back to TaV. wt is the computation
intensity of the task, which can be representedby the number
of CPU cycles that need to finish computing this task. bt

is the budget of this task. The more budget the task gets,
the more replications and better SeV the TaV can afford.
And Lt is the deadline for this task. The task arrival at the
TaV follows the Poisson Distribution with an interval 1/λ.
During time slot t, there will be a set of available SeVs at
the intersection for TaV to send its task replicas. We denote
this set of potential available SeVs as N t and the set of SeVs
which the TaV actually chooses is Vt. Once such a request is
proposed by a TaV, the number of task replications and the
number of chosen SeVs should never go beyond the budget
limitation. Each individual SeV v in Vt will receive a task
replica tuple

(
xt, yt, wt, bt, Lt

)
from TaV. For SeVs, we use

f tSeV to describe thecomputing resources that SeVs allocate

to the task at time slot t. This f t1SeV are varied from time to
time.

The offloading latency is denoted by dtv for offloading to v
at time slot t. This latency consists of three parts.

1) Task Uploading Transmission Delay: According to [9],
the transmission rate of a task from TaV to a selected SeV v
at time t can be denoted as:

r
(up)
t,v =Wlog2

(
1 +

PTA0(l
TS
t,v )
−2

σ2 + It,v

)
(2)

Here, W is the channel bandwidth and PT is the transmission
power of the TaV. A0 is the Line of Sight pass lost coefficient.
lTS
t,v is the Euclidean distance between TaV and the selected

SeV v. σ2 and It,v are the channel noise power and interfer-
ence power respectively. Since the data size of the task is xt ,
the task uploading transmission delay can be represented by:

d
(up)
t (t, v) =

xt

r
(up)
t,v

(3)

2) Task Computing Delay: Here we use ft,v to denote the
CPU frequency that the SeV v assign to each task it receives.
Therefore, the Task Computing Delay can be represented by:

d
(comp.)
t (t, v) =

xtwt

ft,v
(4)

3) Result Downloading Transmission Delay: The result
downloading process from selected SeV v to the TaV is
very similar to the task uploading process. Like 2, the result
downloading transmission rate can be represented by:

r
(down)
t”,v =Wlog2

(
1 +

PSA0(l
ST
t,v )
−2

σ2 + It,v

)
(5)

Here, t” is the time that SeV is ready to return the re-
sult back to the SeV, and t” = t + d

(up+comp.)
t where

d
(up+comp.)
t = d

(up)
t + d

(comp.)
t . lST

t,v is the distance between
SeV and TaV. Note that this distance is unknown to TaV before
the computing task is finished by targeted SeV. However,
this distance is vital for TaV to make a good offloading
decision. Thus we propose a distance prediction scheme based
on the traffic signal information as well as speed and moving
direction of TaV and SeV for estimating lST

t,v . The detailed
prediction scheme will be discussed in the following subsec-
tion. Once TaV acquires the distance lST

t,v , the relationship
between estimated result downloading transmission rate and
downloading delay can be represented as,

d
(down)
t (t”, v) =

yt

r
(down)
t”,v

(6)

Subsequently, by adding up the waiting time and all three
delays, we can get the total task offloading delay between TaV
and selected SeV v as

dtv = d
(up)
t (t, v) + d

(comp.)
t (t, v) + d

(down)
t (t, v) (7)

Since there is a deadline for each task offloading process, we
consider the offloading process successful when dtv < Lt. The
probability that the offloading process from TaV to selected



SeV v is successful is ptv = Pr
{
dtv < Lt

}
. Since v is the

member of the target SeVs group Vt, as long as one of the
SeVs is successful, the task can be considered as successfully
offloaded. If all of those offloading attempts can not reach
the deadline, the whole task offloading is regarded as failed.
Then the probability of successfully achieve at least one task
offloading attempts can be denoted as

P
(
Vt
)
= 1−

∏
v∈Vt

(
1− ptv

)
(8)

D. Problem Formulation

Here we consider queuing is not allowed in the proposed
offloading scenario. Our assumption is that once TaV offloads
a task replication to a chosen SeV vti at time period t, this
SeV vti will not be available for service, i.e., will not appear
in the set N t, until it finishes the current task. Based on this
assumption, we can conduct optimization in a single time slot.
This is to say that once a TaV comes to the intersection at time
t1, it will make a selfish offloading decision based on the
current potential service vehicle set N t without considering
potential the TaVs coming after it. Then the problem of
maximizing offloading success rate in a particular time period
t under the budget constraint b can be represented as follows

P1: max
v∈Vt

P
(
Vt
)
= max

v∈Vt

[
1−

∏
v∈Vt

(
1− ptv

)]
s.t. Vt ⊂ N t,

|Vt| ≤ bt,
|Vt| ≤ |N t|

(9)

To achieve the maximum offloading success rate for the task
generates at time slot t, we first calculate the offloading delay
dtv for all SeV in St. Then we use the brutal search to select
bt SeVs with lowest offloading delay and assign these SeVs
to the offloading decision set Vt. Meanwhile, total number of
the vehicles in the target SeVs group Vt is strictly constrained
by the budget b. If the |N t| < bt, the size of offloading
decision set |Vt| will be equal to |N t|. If there is no SeV
available for the TaV to choose at all or TaV and SeV totally
lose connection, we then assign a very large offloading delay,
say 65535 seconds, to the offloading task and consider this
offloading attempt a failure.

E. Distance Prediction Scheme

The most important factor affecting the task uploading and
result downloading transmission rate is the distance between
SeV and TaV as it is shown in equations 2 and 5. The larger the
distance between TaV and SeV the lower the transmission rate
it will be. When the TaV tries to select the most appropriate
set of SeVs Vt from N t at time point t, computing the
equation 2 is straight forward since the TaV will get position
information of all SeVs which are currently located at the
intersection. However, computing equation 5 may not be as
straight forward as it looks, since the result downloading
procedure will happen in the future and the position of both
SeV and TaV might already be changed. Due to the existence

of traffic signal, the future location of a vehicle i can not
be simply estimated by the displacement plus the current
position like newPos = d

(up+comp.)
t · ~s + oldPos. Rather,

the vehicle i may encounter a full stop because of the red
light, or it may stop for a while then continues to move when
red light turns green. Thus, when the vehicle is encountering a
green light, this vehicle will be predicted as continuing move
forward. The vehicle’s future movement when encountering a
red light depends on the remaining red time. If the vehicle is
encountering a red light with longer remaining red time, the
vehicle will have a full stop. In addition. If the remaining red
time is relatively short, the vehicle will continue to move after
red light turns green.

The detail of the vehicle location prediction algorithm is
shown in Algorithm 1. In this algorithm, oldPos is the
position coordinate of the vehicle at this time point. ~s is the
average moving speed vector of the vehicle. isGreen(~s, t) is a
function to query whether the vehicle is encountering a green
light or not at certain timepoint, and RedLeft(t) is a function
to query how much red time is left when vehicle encountering
a red light. This location prediction algorithm will be applied
to both of the SeV and TaV to calculate the estimated distance
between a SeV-TaV pair after the SeV finishing computing the
offloading task.

Algorithm 1: Vehcile Location Prediction

Input: oldPos,~s, d(up+comp.)
t , t

if Vehicle i is leaving this intersection then
newPos = d

(up+comp.)
t · ~s+ oldPos;

else
if isGreen(t) then

newPos = d
(up+comp.)
t · ~s+ oldPos;

else
if d(up+comp.)

t < RedLeft(t) then
newPos = oldPos;

else
newPos =
(d

(up+comp.)
t −RedLeft(t)) · ~s+ oldPos;

end
end

end
return new-pos;

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate our offloading scheme under
various task-related and traffic-related configurations against
offloading latency and success rate as we previously defined
in equations 7 and 8 respectively. The traffic simulation en-
vironment SUMO [12] is applied to generate realistic vehicle
mobility at an intersection for the evaluation. We also built a
customized Python-based time-slotted simulator program for
simulating the whole Vehicular Fog task offloading process.

A. Simulation Settings

Our simulation uses one typical four direction intersection
with an area of 200 x 200 meters. For simplicity, we assume



(a) Average Offloading Delay (b) Probability of Success

Fig. 2: Performance Under Different Task Arrival Intervals

(a) Average Offloading Delay (b) Probability of Success

Fig. 3: Performance Under Different Task and Result Sizes

all four approaches have the same traffic input volume 360
veh/hour. Green time for both North-South direction and East-
West direction is 36 seconds, thus the signal cycle length is
72 seconds. As for the TaV and SeV setting, we assume the
task arrival interval 1/λ is 5 seconds. The size of the task x is
20 Mbits and the size of the computing result y is 10 Mbits.
The computation intensity of w is 1000 CPU cycles per bit
of the given task. Task deadline L is randomly chosen from
the range 10 seconds to 25 seconds. The offloading budget
of b is 2 copies per task. And the CPU frequency that SeV
can allocate to the assigning task is randomly selected from
the range of 1GHz to 5GHz. For the communication part, we
assume all vehicles, be it a SeV or TaV, have the same wireless
transmission power PT = PS = 0.1W and the same bandwidth
W = 10MHz. The Line of Sight pass lost coefficient A0 = -
17.8dBm. Channel noise power σ2 is 10−13W and the average
interference I is 6 ∗ 10−9W. Our proposed offloading scheme
is compared with three benchmarks as follows:

(1) Oracle: The Oracle has the knowledge about the exact
position of a select TaV-SeV offloading pair at any given time.
So when it makes the offloading decision, it can always find
a set of the SeVs with minimum offloading delay.

(2) Random: The random offloading scheme will randomly
select SeVs which currently located at the intersection to
offload the task.

(3) Best Frequency: Best Frequency offloading scheme will
choose SeVs with the best CPU frequency without considering
the mobility pattern of SeVs and TaV.

The Performance is evaluated in terms of the offloading
delay and success ratio, following the related work [5] [6].

(a) Average Offloading Delay (b) Probability of Success

Fig. 4: Performance Under Different Budgets

(a) Average Offloading Delay (b) Probability of Success

Fig. 5: Performance Under Different Signal Settings

B. Performance Evaluation

We first compare the performance of our offloading scheme
(noted as LP in the figures) with other benchmarks under
different task arrival interval in Fig. 2. The shorter the interval
is, the more frequent the task will arrive at the intersection.
This creates a problem of TaV running out of available SeVs,
since the previous tasks are still executed in the SeVs when
the next several tasks arrive. The figure shows when the
task arrival interval decrease, the average offloading delay
will increase and the offloading success rate will deteriorate.
Our proposed offloading scheme performs nearly identical
with Oracle scheme and outperforms both Random and Best
Frequency scheme.

Next, we investigate the influence of different task input
size and result output size. In our experiment, we assume the
size of the computing result is half of the size of the input
task. The sizes of the task and result have a direct influence
on the offloading delay. Thus, in Fig. 3, the larger the size of
the task and result, the more delay and less success rate it will
become. Still, our offloading scheme can maintain satisfactory
performance and behave better than the Random and Best
frequency scheme.

Then we conduct the experiment to test the impact of the
budget on offloading. According to equation 9, it seems that if
a task has an abundant budget, more replicas can be made thus
the offloading will have a lower failure probability. However,
our simulation results presented in Fig. 4 appear to contradict
this assumption. The higher budget actually leads to heavier
offloading delay and less success rate. This is because the
higher budget will result in larger computation overhead and
occupied more available SeVs and leave the following TaVs
with less SeVs to choose. As a consequence, the offloading



(a) Average Offloading Delay (b) Probability of Success

Fig. 6: Performance Under Different Traffic Volumes

success rate will be dragged down by this overhead introduced
by a redundant budget.

In Fig. 5, we present the results of the offloading perfor-
mance under different traffic signal settings. Here we keep the
cycle length the same at 72 seconds and changing the green
time assign to the two phases. We start from evenly spilled
the time cycle as 36 seconds for each phase and gradually
increase the green time for phase 1 and reduce the green
time for phase two. Changing the signal plan doesn’t seem to
have much impact on offloading the success rate of Random
and Best frequency scheme, but it does slightly improve the
offloading success rate of the Oracle and Location Prediction
Scheme. When cycle length is fixed and all four approaches
have the traffic input volume, evenly split the signal will
improve the traffic flow movement for all directions. But
this also means there will be less full-stop SeVs and TaVs
at intersections. If the green time of a certain approach is
reduced, the overall time that vehicles spend on waiting for
red light will increase and introduce more stopped vehicles to
the intersections. This situation is more favorable to Oracle
and the location prediction offloading scheme since both of
them cantake advantage of the stopped vehicles.

Last, we test our offloading schemes with different traffic
volumes. Intuitively, more traffic volume at the intersection
means the more potential SeV options for TaV to choose, and
the higher chance that TaV will find a set of SeVs with lower
delay and higher offloading success rate. The simulation result
in Fig. 6 confirms this understanding.

V. CONCLUSION

In this paper, we studied the deadline-aware offloading
problem in vehicular fog environment with a focus on the

signalized intersection scenario. The deadlines and the cost
of duplicate service are the main constraints. Predicting the
unique mobility patterns generated by vehicles at the urban
intersection is the major contributing factor in solving the
problem. Our proposed offloading scheme can help TaV to
make a decent offloading decision and achieve a satisfactory
offloading success rate with adequate offloading delay.
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