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Abstract—Machine learning research today is dominated by a
technocentric perspective and in many cases disconnected from
the users of the technology. The machine teaching paradigm in-
stead shifts the focus from machine learning experts towards the
domain experts and users of machine learning technology. This
shift opens up for new perspectives on the current use of machine
learning as well as new usage areas to explore. In this study,
we apply and map existing machine teaching principles onto
a contextual machine teaching implementation in a commuting
setting. The aim is to highlight areas in machine teaching theory
that requires more attention. The main contribution of this work
is an increased focus on available features, the features space and
the potential to transfer some of the domain expert’s explanatory
powers to the machine learning system.

Index Terms—Machine learning, Machine Teaching, Human
in the loop

I. INTRODUCTION

Contemporary Machine Learning (ML) research is currently
dominated by a technocentric perspective that primarily solves
and addresses technical and functional goals but risks not
placing enough focus on serving human values and ethical
principles [1]. As an alternative, moving the agency towards
domain experts and end users is an emerging and promising
development in the field [2], [3]. A move in this direction can
help democratize the knowledge and thus mitigate some of
the risks of the problematic knowledge concentration of this
disruptive technology [4]-[6]. An agency move in the direction
of non-machine learning experts also offers the possibility
to find and explore novel application areas that build on
subjective knowledge production.

In Machine Teaching (MT) [7], [8], a human domain expert
acts as a teacher in relation to a machine-based learner and
consequently, domain knowledge becomes a natural part of
the resulting deployment of an ML system. Previous studies
mainly involve theoretical examples [8]-[11] in the area of MT
and the majority of the concrete studies are in the medical [12],
[13] and robotics field [14]-[16]. Also, to our knowledge,
no studies currently exist that explore MT in a personal
knowledge domain that includes contextual data. Focusing
an MT approach in this direction could open up for a new
type of individualization and personalization in areas such

This work was partially financed by the Knowledge Foundation through
the Internet of Things and People research profile.

Per Linde
Internet of Things and People Research Center
School of Arts and Communication
Malmé University
Malmo, Sweden
per.linde @mau.se

as Personal Informatics, Assistive Technology, and Intelligent
Personal Assistants.

Simard et al. [7] see and treat MT as a discipline separate
from traditional machine learning and have developed princi-
ples intended to be useful for MT implementations.

Our study is guided by a desire to understand what aspects
of the MT paradigm [7] are the most important when it is
applied on a contextual application in a personal knowledge
domain. In this study we focus on answering the following
sub-questions using a prototype we have developed for a
commuting context:

1) What are the consequences, both in relation to the appli-
cation and the MT paradigm, of applying the principles
developed by Simard et al.?

2) What does a personal knowledge domain imply for the
MT paradigm?

3) What does context dependence imply for the MT
paradigm?

To answer the questions, we used the principles developed
by Simard et al. [7] as an analytic lens, a way of understanding
the area and potentially strengthen the MT paradigm, in
conjunction with a user study. The study spanned eight weeks,
involved eight participants and one meeting every week.

In the remaining part of the work, we present the project
background, outline our framing, our selection of MT princi-
ples and the methodological approach we applied. Thereafter
we describe our prototype and the study setup. In the analysis
and discussion, we relate MT principles to our prototype and
identify areas where our work suggests that more research
can bring the area forward. We end with a conclusion section
where we elaborate on additional perspectives that needs
further research.

II. RELATED WORK

Machine teaching differs from Active Learning (AL) [17]
and Interactive Machine Learning (IML) [18] in that the
teacher knows that, at some point in time, the extent of the
knowledge they want to transfer to the learner [7]. The focus
in MT is on that predictions made by the machine learner has
to be interpretable, for the teacher, in relation to the performed
teaching. If the system is constructed with a specific domain
in focus, the role of the ML expert can be reduced so a
domain expert can own the process of refining the model’s



knowledge. The benefit of IML/MT systems in relation to
more traditional ML systems “’is observable in situations where
the precise design objectives of the user are unclear and/or
data labels cannot be obtained a priori” [19]. MT and IML
systems often facilitate short iteration loops where the model
can be incrementally updated in small steps. Simard et al.
states the role of the teacher as the person responsible for
transferring knowledge using a teaching tool to the machine
learner, in order to produce a model that can approximate a
concept. Central to the teaching is the process when the teacher
selects and labels examples that the teacher believes represents
a concept.

Simard et al. [7] propose the following principles for the

domain specific language and the process of MT.

o The language should be universal over a domain and easy
to learn. If they have the required domain knowledge, this
results in the domain expert being interchangeable. The
ML method becomes exchangeable, given that the MT
language is independent of the ML method used.

o The teaching tool should be implemented it is feature
complete, implying that there are enough features for the
teacher to separate all the desired target concepts. Feature
completeness is seen as a responsibility of the tool, not
the teacher.

According to Simard et al. [7] the teaching process places
demands on the sampling distribution, training distribution,
and the deployment distribution. The sampling distribution,
from which the examples are selected, must be rich and
diverse so that the teacher can select a training distribution
that generalize well on the deployment distribution.

III. METHODOLOGY

To explore and challenge contextual MT we applied the
principles developed by Simard et al. [7] as an analytical
lens on a prototype. We chose Participatory Design [20] as
a frame for the research, as it allows for adaptations during
the study in order to handle new insights. We recruited eight
participants for a study that lasted eight weeks. The evaluation
is an application grounded evaluation with real humans and
real tasks [21].

A. Research setting

We selected commuting as our application area since it
is accessible and easy to relate to. Commute patterns are
individual and predictions are contextually dependent. We built
a prototype giving a commuter control over the transfer of
their commute pattern to the ML model. The MT interface of
the prototype can be seen in Fig. 1 and the prediction part in
Fig. 2.

We used the capabilities of modern mobile phones to collect
contextual features [22], such as time, activity and location,
used as context cues in order to make journey predictions and
collect training data. The model is deployed without any initial
data about the user’s commute pattern and thus cold started
in order to be trained using the teaching interface (Fig 1). In
this work, we distinguish between different usage modes: in

960 V40318 960

Skanependlaren

Skanependlaren

{E Teaching ’ Orkelljunga busstn ::: Malmé C
A elow by selecting
p s "TEACH
y 106
— 156:35 17:21 oo SKExpr10
Malmé C 1 Ystads station
107
Inside this distance from start station: 15:41 17:25 oo 511
om 500m 900m co 106
® 16:05 17:51 SKExpr10
Time: 15:18 +- 3 hours ~
@ 16:35 18:21 “Y?‘s SKExpr10

Weekday:  Weekends v

. 07

@ 16:38 18:25 min 511
) A &KE

@© 17.05 1851 1%

@ 17:38 1925 9/ 511

106

O Got prediction
( oK

Fig. 1. Teaching interface.

Activity: On foot ~

TEACH

SkExpr10
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context teaching, out of context teaching, in context predicting
and out of context predicting (We did not implement out of
context prediction at this stage). In context teaching implies
that at least one feature from the context cue is used. Out
of context teaching implies that none of the features maps
to the user’s current context cue and therefor all desired
features have to be manually selected. In context, prediction
implies that all the features in the context cue are sent to
the ML model so a prediction can be made and out of
context prediction imply that parts of the context cue are
simulated. The contextual features we selected as relevant for
this prototype were location, day of week, time of day and
the commuter’s current activity (walking, still, running and in
vehicle). A prediction is done when the app is started and the
contextual features are sent to the trained model. The resulting
prediction is then used to collect and present information about
upcoming departures for the predicted journey (Fig. 2).

We used one individually trained Neural Network (NN) for
each user as ML method. The choice of NN was primarily
made since the selection simplifies prototyping in that NN
handles raw input data and can handle multiple levels of
representation [23]. For the implementation of the neural
network, we used the framework of fast.ai [24] on a cloud
server. A real-time database (Firebase), a NodeJS server and
a Flask server was used for the machine learning pipeline
and synchronization. Prediction turn around time is on average
under one second and retraining time on average around 15
seconds. We used a network with two hidden layers that
we feed with the contextual feature values: latitude (double),
longitude (double), minute of day (integer minutes from mid-
night), weekday (integer one to seven) and activity (integer
that represents walking, still, running and in vehicle). Weekday
and activity are handled as categorical features and the other
as continuous.



To handle the cold start situation the commuter selects a
sub-space in the feature space consisting of feature ranges,
for example, a time-span and one or more days like weekend
using the teaching interface (Fig 1). We then generate syn-
thetic examples inside the selected feature sub-space. To find
reasonable prediction accuracy we performed a functionally
grounded evaluation [21] with data created for three personas.
We iterated to find an appropriate size of the network (200|100
neurons), number of epochs (7) and a reasonable number of
generated examples for a concept (40) to fulfill our prototype
needs. We used an automatic learning rate finder [25] imple-
mented in fast.ai to optimize the learning rate. The examples
we generate are spread randomly using a uniform distribution
over the feature sub-space that the user selects. For example,
if you set weekday to ”Any day” the examples are randomly
spread over the days of the week. If you select “Friday” all
examples have the value of 5 as training data. This is, of
course, a simplification of the machine learning problem at
hand but the goal at this stage was to build a working prototype
for this study. Once we got the prediction performance accept-
able, the back-end implementation (machine learning pipeline
and model configuration) was frozen. This was done so we
could get to a point where we could study and tweak our
contextual MT implementation separated from an invariable
machine learning back-end.

B. Recruiting participants for the study

For the participatory design phase, we recruited users
with a background in graphic design, interaction design, user
experience design, programming or agile development. Our
goal with this selection was the possibility to discuss and
elaborate aspects of MT during the study with users who
are accustomed to these types of discussions from both a
technical perspective as well as a usage perspective. To recruit
we mailed information about the project to some selected
student groups and companies. Ten persons showed interest
and we selected eight of them for the study. All the participants
were under the age of 40, four were female and four were
male. Six out of eight participants were university students
ranging from first-year bachelor to master’s level in the range
of between 20 and 30 years. One participant works in the
industry as primarily UX designer and product owner (age 36)
and one as a project manager (age 39). The two participants
at master’s level were international students. One requirement
when recruiting users was that the users had to commute and
own an Android phone. The users were rewarded with one
month of free commuting during the study.

C. Farticipatory generated data

The study was conducted during eight weeks with weekly
scripted recorded discussions with the participants. Initially,
one to one meetings were held with the students to get to
know them better. We then went to groups of two from a
similar field and ended with groups of three or four with
mixed competences. The intention with this was to create
an atmosphere of creative discussion climate and interesting

group constellations. The meetings started with a follow up
on previous week’s experiences where metrics and redesign
proposals were presented and discussed. In addition, the
following week’s focus and tasks were discussed. Initially,
the participants were introduced to the MT paradigm, and
during the study, they evaluated different teaching strategies
and gradually became accustomed to the paradigm and our
prototype. In the later sessions, the participants were able
to, in varying degrees, abstract the MT paradigm from the
commuting context and thus give input that can be generalized
to other domains. Using content analysis [26], interviews and
workshops were broken down into codes originating from the
MT vocabulary used by Simard et al. [7].

IV. ANALYSIS AND RESULT

In this section, we use the MT principles developed by
Simard et al. [7] to better understand our contextual prototype
and lift out aspects that come into focus. Those aspects in
focus are further elaborated on their own or in conjunction
with findings from our user study using the same prototype.
The prototypes capabilities was summarized as follows by one
study participant:

The first week we had this app I was quite im-
pressed. [...] So I had only taught it that on “Mon-
days at this time and place I would like to travel
from Malmé C to Svedala”. Then on Tuesday when
I opened the app it knew that this is the journey you
would like to take. So it can know things that you
didn’t teach in detail, but only approximately.

A. Teaching algorithm

Our MT algorithm (Algorithm 1) differs at some key points
from the process proposed by Simard et al.

o The user can teach a concept both in and out of the target
context (the two while loops). This means that you can,
for example, teach your complete commute pattern from
home by manually selecting all features in Fig. 1 or you
can, teach just before you take a transport by using the
context cue.

o When teaching, examples are not selected from a sam-
pling set but rather a sub-space in the feature space is
defined in the teaching interface (Fig. 1) as belonging to
a desired concept. The machine learning back-end then
generates synthetic examples within this sub-space.

o The user can only test towards a quality criterion when
in the target context, in this case, this means to evaluate
that the correct journey is predicted (the ’if-elseif-else’
statement).

o Missing features cannot be added so feature blindness
cannot be handled (the ’else-if” part) Fig. 1.

o If prediction errors occur due to inconsistent teaching, la-
beling errors, overlapping concepts or because the teacher
distrust the predictions, the only alternative is to delete
all training data and add all the desired concepts again
(the ’else’ part).



repeat
/[Teaching out of context

while concept is realizable do

if desired concepts added then

exit;
end
Add concept (generated examples) to training
set;

end
/[Fix prediction error (user in context)

if caused by concept not added then
/[Teaching in context

while concept is realizable do
if quality criteria is met (correct journey
predicted) then
exit;
end
Add concept (generated examples) to
training set;
Retrain;

end
Ise if caused by feature incompleteness or concept
intentionally not added then
‘ Search journey manually;
else
Delete training data (currently all examples in
training set);
end

until forever;
Algorithm 1: Contextual MT process

[¢]

B. Teaching strategies

During week two of the study, the participants were in-
structed to do out of context teaching only once at the begin-
ning of the week. During the third week, they did in context
teaching when the prediction made was wrong compared to
their intended journey. The prototype was reset prior to these
tests. During the following weeks, the participants decided
their own teaching strategies. Comment from one of the users
on in context teaching compared to previous weeks out of
context teaching:

It was a lot messier than last week. Eh.. harder to
add things and you were more stressed and not that
particular.. I had a lot less control over the things I
added compared to last week.

In out of context teaching, the users tended to teach
general concepts directly (using, for example, the selection
“weekdays” instead of individual days). During in context
teaching most participants changed some of the feature ranges
to make the teaching more general, especially regarding time
span, but only one made all teaching as general as possible.
All users found the predictions interpretable in relation to
what they had taught the artifact, even if the predictions as
such were wrong in relation to their current context. It was
harder to tell if the predictions were logical when they did in

context teaching since the users found it difficult to remember
if the whole concept had been taught or not. One of the
users had complex commute patterns and experienced feature
blindness (she works at two places and travels there depending
on conditions that cannot be represented using the available
features).

One user argued for why she, in theory, would prefer in
context teaching, even if she, in this case, preferred out of
context teaching:

In theory, I think I like in context teaching better
since it is real events that occur and I only save
them. But with the experience at the moment in the
app, it feels better to add those teachings once. But
that behavior could probably change if the app is
changed.

A comment on combining the teaching strategies:

Can’t you combine both? The first time you open the
app as a new user you get an out of context teaching
interface and add your most common journeys. And
then when you done, you could teach it via a fast-
teach-button, you get thumbs up/down in relation to
a prediction.

C. Prediction in and out of context

In our implementation, the commuter can only receive
predictions when in context. We are primarily interested if the
teacher finds the in context predictions interpretable in relation
to the performed teaching. The model’s prediction accuracy
becomes less interesting from a system level, as long as the
prediction is correct, or as one participant expressed it:

It’s more interesting for the developer, for you
maybe. But not really for the user. I mean I just
need the bus.

The users with simple commuting patterns, for example
to and from work and a few other non conflicting regular
activities, found that the predictions were interpretable. When
the teaching became complex or fragmented over time it was
harder to conclude, from the commuter’s perspective, if the
predictions were logical in relation to the previously performed
teaching.

Our study found that it is difficult to tell whether this was
due to the choice of ML method, the examples created by the
back-end, that the teacher was inconsistent in his/her teaching
or whether the teacher forgot if a concept was completely
taught. As one participant expressed it ”’I was more impressed
in the beginning, but after a while, I think it got confused by all
the teaching”. Another comment was “there should be a way
to check what it knows”. In our implementation, when there is
a mismatch between the expected predictions and the learned
concepts, the only option is to completely delete the training
distribution and reteach the complete commute concept. Our
approach works well for the participants in the study who had
simple commute patterns, so the complete commute pattern
could be retaught out of context quickly and easily within
a few minutes time or as an alternative retaught in context



for each journey concept that appears as a context cue. The
usual reaction from the participants is to reteach the intended
journey and check the prediction. This situation is important
because if the prediction is not corrected it is easy to mistrust
the app. In any case, the ability to visualize the teaching done
or probe predictions would be an important addition. As one
participant expressed this:

But from the teacher’s perspective when I teach him,

can you show me what I teach him? ... So I know I

am the teacher.

D. Cold start

In a personal knowledge domain, as we defined it in this
study, no labeled or unlabeled examples exists initially, only an
empty feature space limited by the available features and their
ranges. Similar cold start challenges will likely appear for MT
targeting the areas of Personal Informatics, Intelligent Personal
Assistants and Assistive Technology. In these areas, it will
likely be challenging to collect enough rich and diverse data
in the background so a teacher can search and select examples
representing all envisioned concepts. In context teaching and
evaluation, as our study indicates, in an iterative fashion is
then an interesting alternative approach. This does not rule
out using previously collected data or using models transferred
from similar domains or situations as a starting point.

E. Transfer concept to learner

The teacher’s complete commute patterns are, on a top
level, the concept they want to transfer to the learner. This
top concept is for our context broken down by the teacher
to mutually exclusive sub-concepts in a tree structure that,
depending on the teacher, could be, for example, on the lowest
level, ”Traveling from home to work” or "Going home from
Sara”. In our case, the teacher can readily express those
concepts in terms of the available features. This decomposition
and translation to feature ranges is, in our case, done using an
implicit schema in the teacher’s head and is not represented
or saved in the application. If the knowledge domain were
public or shared, many concepts would be part of the domain
specific vocabulary for that domain. In our personal case there
could be pre-created concept names like ”Going to work™ etc.
and/or a possibility to name mundane personal concepts. The
possibility to name and use concepts during teaching was not
requested by the study participants, but it stands out as a result
of this study that would be interesting to study further and as
an important part of a teaching language.

F. Teaching Language

In this study, we created a domain specific MT language
that can aspire to be universal across the commuting domain.
By using our language, a commuter can teach a learner his/her
commute patterns as long as an application is connected to a
relevant service from a transport provider.

Limitations in our language implementation stem from the
fact that our implementation is not feature complete and we
cannot add missing features. For our prototype, we adopted a

weaker alternative approach to feature completeness in that we
allow users to ignore existing features, to make it clear that, for
example, a journey prediction is only dependent on location
and not time, day and activity. To make this more explicit
for our study participants in order for, feature completeness
to be discussed in our study, we made this option clearer in
a later iteration of the prototype. All our study participants
found location, day of the week, and time to be relevant and
useful features but none of the participants found activity (still,
walking, running or in vehicle) to be a useful feature. The
teachers in our case have access to the complete feature space
and this gives them the possibility to teach a concept in any
part of this space. In comparison, the principles by Simard et
al. [7] only gives access to the feature space through existing
examples in the sampling distribution, this then has to be rich
and diverse in order to offer a possibility to teach all intended
concepts.

In relation to those principles, we have pre-created the
composed features weekdays and weekends so the user can
select them directly. In contrast to the principles developed
by Simard et al. [7] we do not give the users a possibility to
define, name and compose new features for example "Morn-
ings”, "Mornings on weekends at Helens’s place” or "Night”.
Instead, teaching must be carried out a number of times for
one concept instead of reusing created composed features.
Additional features suggested and discussed by our study
participants were personal calendar, travel time, preferred
means of transport and weather data.

V. DISCUSSION

In this section, we outline and compare our results and
analysis, with related MT theory and practice.

At the heart of MT lays the teacher’s domain knowledge
and consequently the capability to map an example with a
label representing a concept. In our case, when the app is
first started, no labeled or unlabeled examples exist and the
commuter has no knowledge of the ML method the learner’s
uses. In the work by Simard et al. [7], there are examples
representing the concepts to choose from in a sampling distri-
bution. In our case, the lack of examples is compensated by
the teacher using their domain knowledge to select a sub-space
in the feature space that represents a concept. Our approach is
a direct result of treating the domain as a personal knowledge
domain that uses a limited number of human interpretable
features and that no examples have been collected by the
user prior to the initial teaching of a concept. Our approach
emphasizes the construction of a learner that, in relation to the
concepts taught and the commuter’s current context, includes
an ML method that gives predictions that are interpretable.
This in order for the teacher to be able to, over time, create a
cognitive model over how to teach the model.

MT systems must take into account that the concepts and
the schemes that connect them are not stable over time in
relation to the teacher and in relation to the world. These
are challenges that we have not addressed in this work.
We did also not save any training data during use, making



use of this data could be one possible route, from an ML
perspective, to fine-tune the system and address concept- and
covariant- shift [27]. Combing a domain specific taxonomy
and a possibility to name mundane concept with the possibility
to rearrange concept data seems like a useful approach, from a
teacher’s perspective, to address dataset shift. This possibility
to rearrange, add and delete concept also opens up for a
domain expert to address their knowledge development and
shifting usage needs within the domain.

Traditional programming languages often aim to be oblivi-
ous about the usage domain and more specifically in relation
to the intended technical platform or type of problem it
can solve. In contrast, teaching languages are specific to the
usage domain and closely connected to the vocabulary of
that domain. Some features, like time and location, will be
represented and needed in many contextual teaching languages
given that they are used in many domains. Central to a teaching
language for any domain is the available features that the
language gives access to. Here, as Simard et al. [7] and our
work points out, it is central that features can be created,
added, removed, composed and that sub-spaces in the feature
space can be ignored. In our case, when the knowledge domain
is personal, the need for a flexible teaching language is central,
but will probably not cover all individual cases. From our case,
the weather situation could be relatively straight-forward to
add, at least for in context teaching and in context predictions,
but integration with a personal calendar is a complex feature
expansion that needs special attention.

VI. CONCLUSIONS

We set out to apply principles for MT [7] onto a prototype
with the goal of gaining a better practical understanding of the
MT paradigm in a contextually dependent setting. We found,
in relation to our first research question, that our selected MT
principles make it possible to separate and discuss MT as a
discipline in its own right and that a domain expert could
apply, teach, discuss and evaluate a learner independent of the
machine learning expert. In relation to our second research
question, we found that MT can be a fruitful and promising
approach to make machine learning useful in supporting
personal and individual needs, useful for example in the area
of intelligent personal assistants. Regarding the third research
question, we identified areas of the MT paradigm that needs
further research to be applicable in a contextually dependent
domain; in context teaching, teaching over time, possibilities
to probe the learner for learned concepts and interpretations
of predictions given. In terms of future research, we suggest
a direction and a focus on integrating the explanatory powers
of humans as a natural part in machine learning systems via
an MT approach with an aim towards building the systems we
want and not solely the one we can.
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