
LoRaquatica: Studying Range and Location
Estimation using LoRa and IoT in Aquatic Sensing

Marko Radeta
ITI/LARSyS, University of Madeira

Wave Lab, Tigerwhale
Funchal, Portugal

marko.radeta@m-iti.org

Miguel Ribeiro
ITI/LARSyS, Tecnico - U.Lisbon

Lisbon, Portugal
jose.miguel.ribeiro@tecnico.ulisboa.pt

Dinarte Vasconcelos
ITI/LARSyS, Tecnico - U.Lisbon

Lisbon, Portugal
dinarte.vasconcelos@tecnico.ulisboa.pt

Hildegardo Noronha
ITI/LARSyS, Tecnico - U.Lisbon

Lisbon, Portugal
hildnoronha@gmail.com

Nuno Jardim Nunes
ITI/LARSyS, Tecnico - U.Lisbon

Lisbon, Portugal
nunojnunes@tecnico.ulisboa.pt

Abstract—While ubiquitous computing remains vastly applied
in urban environments, their applications in ocean environment
remain scarce due to the limitations in range and cost of current
radio technology. This hinders environmental telemetry in the
oceans and other remote areas. In this study, we explore the
usage of IoT and Long Range Radio Communication (LoRa) in
ocean environments. We study the maximum distance for LoRa
and a potential location estimation based on the same technology
using the passive RSSI analysis. Using three coastal based nodes
and a node mounted on a sea vessel, we report a maximum range
of 83.6km. We also achieve a location error within a radius
of 3.4km (4% of maximum distance) in the sea. These results
support marine biologist expeditions, allowing them to use low-
cost, long-lasting and easy to deploy solutions for tracking marine
objects and species in open ocean, providing them data in near-
real-time. We discuss the findings from used models, outlining
limitations, and providing a scenario for future ubiquitous IoT
applications for tracking sea objects.

Index Terms—location services, sensor networks, embedded
systems, LoRa, IoT, sea Vessels, environmental telemetry

I. INTRODUCTION

Interest for ocean exploration has been growing evermore
during the last years, both in terms of natural resource
scavenging, as well as in its protection and conservation.
While most of the oceans remain greatly unexplored, current
applications of technology in aquatic settings allow sea vessels
to accomplish numerous tasks. For instance, present tools on
market such as sonars1 facilitate the detection of fish and other
marine taxa using sound waves and Wi-Fi for communication to
a mobile application. Moreover, emergency position indicating
radio beacons [Joo, Lee, Lee, Sin, Lee, and KimJoo et al.2008]
(EPIRB) using 406 MHz radio in combination with GPS,
facilitate the rescue of those in need. Nevertheless, marine
biologists are of crucial importance regarding oceanic studies.
As they explore marine species, they focus on understanding
the impact of human activities on their natural habitat. However,
they often find themselves limited by the high costs of current

1https://deepersonar.com

existing technologies. These existing devices indeed, can collect
valuable parameters which are crucial for studying the marine
flora and fauna, their habitats and ecosystems. However, all
of these technologies have a high cost, facing challenges and
risks when applied in harsh ocean settings. These challenges
include dealing with poor signal propagation, salt corrosion,
water and pressure proofing, battery autonomy, etc, even though
some devices can use renewable energies, such as solar panels,
wind turbines, or Wave Energy Converters (WEC). [Rynne
and Von EllenriederRynne and Von Ellenrieder2008]. Another
big challenge is obtaining the geolocation of the collected
data. Traditionally, geolocation is acquired using satellite-based
systems, which is then stored locally with other relevant data.
However, satellite-based location systems are both expensive
and energy consuming, and the data can only be retrieved
later, when marine biologists recapture the taxa [Cermeño,
Quílez-Badia, Ospina-Alvarez, and BlockCermeño et al.2015].

A. Application Scenario

In most cases, marine biologists study species by gathering
data from animal tags either by: (i) physically recovering
the tag, or by (ii) using radio (usually VHF) and satellite
communication (typically GPS). The former solution is long
with repetitive tasks which require the recapture of the animals
taking months or even years to locate again. As opposed to
land animals, marine animals do not have as many physical
constraints, and the ability to dive makes it very difficult
to relocate them, increasing fuel costs. On other hand, the
latter solution is an improvement, using radio signals for
the tag recovery, providing a rough estimate of direction and
range from a receiving antenna. It still requires the tags to be
physically recovered to obtain back the data. Satellites also
provide both remote data recovery and accurate geolocation,
however, by using the GPS, the battery autonomy of bio loggers
is short and the data transfer fees are high (e.g. ARGUS). Our
study explores LoRa as a low-cost and long range solution
for real-time remote environmental telemetry and location



estimation for future scientists, while also studying the longest
LoRa range.

B. Research Questions and Contributions

While other studies focus on small distances, or city
environments, this study, explores the issues of using long range
radio (LoRa) in ocean environments, focusing on low altitudes
for data collection using sea vessels, where the curvature of
the Earth makes a great impact on communications range
[P. M. HallP. M. Hall1980]. We explore LoRa as a mean for
oceanic environmental telemetry as well as to approximate
location without the usage of high energy devices. To achieve
this, we focus on the following research questions:

[RQ1]. Which is the maximum LoRa distance in ocean
environments? We explore the maximum range of LoRa signal,
emitted from the sea vessel reaching the coastal nodes.

[RQ2]. How does the RSSI-based distance and location
estimation behaves in ocean setting? Using several distances
obtained from land and the nodes, we explore the feasibility
of a generic model to estimate the distance from sender to
receiver, applied in ocean setting.

The contribution of this study is therefore the maximum
range in ocean environments and location estimation techniques
using LoRa and low-cost Internet of Things (IoT).

II. RELATED WORK

In this IoT era, sensing and communicating is becoming
inexpensive, and is a favorable occasion to explore low-cost
sensing and location estimation. This opens an opportunity
to obtain geotagged environment data and empower regular
citizens to use these technologies, previously only available to
corporations or researchers. The areas of previous work that
primarily drive this research are: (1) long range radio data
communication; and (2) location estimation techniques without
satellite-assisted systems.

A following experiment, conducted by [Gogendeau, Murad,
Bernard, Kerzerho, and BonhommeauGogendeau et al.2018],
explored the different configurations of LoRa (spreading factor,
bandwidth, coding rate) in sea environments. Trying to obtain
the location of endpoints (using RSSI) which were fixed in
8 coastal locations. They claim a maximum location error of
100m at a maximum distance of 1.6km. Our study, builds upon
these findings, focusing in expanding the range much further.

A. Long Range Radio Communication

Most modern communication systems use either electricity
or electromagnetism as a way to carry information. Several
technologies exist with ranges that go from a few meters
(Infra-Red Transmitters, Bluetooth, Wi-Fi) to thousands of km
(Satellite), passing through those with a range of a few km
(Mobile Phones, TV and Radio). Usually, the longer the range,
the more restricted and expensive it becomes, greatly limiting
its usage in IoT low-cost solutions.

Many studies have used LoRa or similar technologies in
urban and other land environments [Fargas and PetersenFargas
and Petersen2017] where it behaves significantly different

than in the ocean environments [Guegan, Murad, Lebreton,
and BonhommeauGuegan et al.2017], [Gogendeau, Murad,
Bernard, Kerzerho, and BonhommeauGogendeau et al.2018]
which are the focus of our study. Furthermore, they only focus
on small distances (under 10 km), where in this paper, we
focus on large open areas. When dealing with geolocation
estimation, the Lora Alliance can provide solutions using LoRa
transceivers [CommitteeCommittee[n. d.]]. Their solutions can
use two different technologies to achieve the geolocation: (i)
One using the Received Signal Strength Indication (RSSI) for
a coarser geolocation (1 - 2 km) and; (ii) the other which uses
Time Difference of Arrival (TDoA) for a finer (20 - 200 m)
geolocation.

SmartParks2 is an example of an initiative which uses
LoRaWAN geolocation technology to help with nature study
and conservation. In a presentation3 during the The Things
Network (TTN) 2017 conference, Tim Van Dam4, explained
the usage of their system to cover, track and protect endangered
species in natural parks. Their biggest example is the Akagera
National Park with an area of 1 122 km2. Even though they
managed to keep their costs relatively low, the solution is still
based on large stationary gateways using additional expensive
hardware. There are several projects run by SmartParks that
use a similar system to protect wildlife, one of which tries to
protect the black rhinos from poachers in Tanzania.

Recent studies use low-cost controllers to detect and classify
cetacean vocal calls [Radeta, Nunes, Vasconcelos, and NisiR-
adeta et al.2018]. Also, Nikita and colleges used Raspberry
Pi and Arduino UNO to build a simple ROV prototype
for a surveillance application [Pinjare, Chaitra, Shraavan,
Naveen, et al.Pinjare et al.2017]. The Parrticle Photon, an
Arduino based integrated IoT platform, has been successfully
used in biodiversity monitoring, and simple signal processing
[Vasconcelos, Nunes, Ribeiro, Prandi, and RogersVasconcelos
et al.2019].

B. Location Estimation Techniques without satellite-assistance

In general, several techniques can be used to estimate the
position of ubiquitous devices. These techniques commonly use
what has become a standard of GPS. However, GPS cannot be
used in some applications due to hardware, power or location
(e.g. indoor) constraints.

Distance Estimation based on RSSI - Several research
has been done by using the signal strength in the form of
RSSI [Elnahrawy, Li, and MartinElnahrawy et al.2004]. RSSI
represents the relationship between a transmited and a received
power, used to calculate the distance between a transmitter and
a receiver when most of the signal propagates in a line-of-sight.
It has the disadvantage of depending on the transmitted power,
thus not being applied to all hardware, however, it has the
advantage of being less costly and not requiring additional
hardware.

2https://www.smartparks.org/
3TimVanDamProtectingWildLi f eWithLoRaWAN
4https://www.wildlabs.net/users/tim-van-dam/



III. METHODOLOGY

We deployed 5 coastal based nodes (2 failed) and 2 sea
vessel nodes on the same vessel, for the duration of 3 days,
allowing us to test the range and location of the sea vessel.

A. System Apparatus

The system apparatus was based on 3 coastal nodes and 1
sea vessel node. Each node used a LoPy microcontroller, which
was placed into a casing. These LoPys were equipped with the
PySense expansion board granting us access to several sensors.
Three coastal nodes were deployed within an average distance
of 30km, at static locations facing the south of the Madeira
island, Portugal. Each node has been placed on top of a 3m
pole at an altitude higher than 50m from the sea level. Finally,
one node was mounted on top of the sea vessel, capturing
the GPS location using a PyTrack. We used the following
settings for LoRa: Region: EU868; Transmitted power: 14
dBm; Bandwidth: 125 KHz Spreading Factor: 7.

B. Sensory Input

From this apparatus, we gathered a total of 4 366 data points
starting at 18:00 hours and the following 40 hours, spanning to
3 days, including a vessel stationary period between the hour
14 to 24.

C. Location Estimation

We explored a basic location estimation using the RSSI.
Since the RSSI is in a logarithmic scale, we can either derive
the linear equation for the data by: 1) turning the RSSI into a
linear scale or 2) turning the distance into a logarithmic scale.
We used the first approach, using a common formula (eq. 1)
[Al AlawiAl Alawi2011] for calculating the RSSI:

RSSI =−(10×n)log10(d)−A (1)

and reversing it to get the distance: d = 10RSSI/10

These equations use the RSSI in dBm, and the distance d
in meters and have tunning parameters such as n, the signal
propagation constant and A being a reference received signal
strength in dBm (the RSSI value measured at 1m distance).
Figure 1 shows this geometrically, and the solution points are
defined as the following [Cota-Ruiz, Rosiles, Sifuentes, and
Rivas-PereaCota-Ruiz et al.2012]:
• d > r0 + r1→ no solutions - circles are separated.
• d < |r0 − r1| → no solutions - one circle is contained

within the other.
• d = 0 and r0 = r1→ the circles are coincident and there

are an infinite number of solutions.
Figure 1 (left) shows this geometrically, and the solution

points are defined as the following: a2 +h2 = r2
0 and b2 +h2 =

r2
1 Using d = a+b we can solve for a, and it can be readily

shown that this reduces to r0 when the two circles touch at
one point, i.e.: d = r0r1.

Solving for h by replacing a into the first equation, we get
h2 = r2

0−a2. Thus,

P2 =
P0 +a(P1−P0)

d
(2)

Figure 1. Left: Bilateration theory [Cota-Ruiz, Rosiles, Sifuentes, and Rivas-
PereaCota-Ruiz et al.2012]; Right: Bilateration example with the two solutions,
and an error of 1823 (excluding the solution located on land).

And finally, P3 = (x3,y3) in terms of P0 = (x0,y0),P1 =
(x1,y1) and P2 = (x2,y2), is:

x3 = x2 +−h(y1− y0)/d

y3 = y2−+h(x1− x0)/d
(3)

When the two circles do not intercept, we only know that the
solution is along the line perpendicular to P0P1 with its center
in the point P2. A relaxation can be made, to estimate that the
solutions satisfy the Ri j = q j−qk−Rik. Then averaging those
two solutions, a single solution would fall in the equivalent
of P2 when the circles do not intersect. The same principle
applies when one circle is contained inside the other.

Although a higher degree multilateration would usually result
in better solutions, in this case bilateration was chosen for 2
reasons: 1) the land-nodes are aligned in an almost straight line
with a small curvature in-land. This causes the multilateration
equations to near a singularity where it is highly unstable and
also tends to give false results inland. 2) the nodes’ RSSI values
are unstable and don’t provide coherent values throughout time,
which translates in oscillating calculated radius from each node.
Issue 2) further exaggerates issue 1) leading to the usage of a
more stable, although less accurate solution: bilateration.

IV. RESULTS

In this section, we present our results, namely the maximum
range obtained when sensing data from the sea (subsection
4.1), the distance estimation based on RSSI error using the
different data sources (subsection 4.2), location calculation and
errors from the bilateration (subsection 4.3), as well as the
environmental telemetry (subsection 4.4).

A. LoRa maximum distance

The maximum sustained distance captured by all 3 nodes
was of 54.9km away from the shore with a minimum RSSI of
-127. And the peak distance was captured by node Green with
a distance of 83.6km and an RSSI of -126. These results were
captured when the vessel was going away from the coast in a
straight line.

B. Distance Estimation from RSSI

We modeled the data using both the raw logarithmic RSSI
and distance values and applying the linear regression to them,
and we also transformed the RSSI into a linear scale.



Figure 2. RSSI evolution of the 3 receivers by colors over the trip different
distances for the same data point. Original RSSI as a dashed line and the
moving average as a solid line.

Due the presence of outliers we use the RANSAC (RANdom
SAmple Consensus) method [DerpanisDerpanis2010] iteratively
using the minimum number of observations and generating
candidate solutions where the maximum residual/threshold for a
data sample to be classified as an inlier was the MAD (Median
Absolute Deviation). This threshold is a robust measure of
how spread out a dataset is. It uses the variance and standard
deviation, also measuring spread, however they are more
affected by extremely high or low values and non normality.
[Leys, Ley, Klein, Bernard, and LicataLeys et al.2013].

In figure 2 we can see the variations of the different RSSI
signals corresponding to the same vessel location at the different
distances that the land nodes were located. While we can
observe a steady progression for the orange line, we also
notice many oscillations in the green and yellow even in the
smoothed signal, which affect modeling. These oscillations are
possibly resultant from the placement of the land nodesdue to
some mountains and land nearby hindering the line of sight
and the capture of the first signals.

Table I shows the residual errors comparison for the different
combinations of datasets and models created, combining them
in pairs for the different models. We observe that the oscillations
from the Green and Yellow receivers (figure 2) influence
the inter-dataset data modeling, as the errors increase. In the
LoRa context and this oceanic setting, the mean errors have
a relatively low impact on the system if we look at them as
a percentage of the maximum range of 83.6km and 54.9 km,
the average of the combined Orange && Yellow for instance
(Orange=1 578 m; Yellow=3 997 m; µ=2 788 m) represents
only 3.3% and 5% respectively of the maximum distances.

C. Modeling Location Estimation from IoT input

For the bilateration, we needed to choose two of the receivers,
and, as we noted in the previous section, the green receiver
has a large error which influences its model and any other
model that pairs with it. Hence, we decided to perform the
bilateration using only the estimated distance from the receivers
Orange and Yellow. The location estimation was modeled using
bilateration with an average RSSI of 4 points. The data in figure
3 shows the estimation errors. Due to the low resolution of
RSSI, it creates an aliasing effect which results in a grid-like

Figure 3. Location estimation from RSSI: GPS ground truth (green); location
estimation (yellow - the darker, the more overlapped points).

Figure 4. Estimated location errors (in meters) along the distance (as the
vessel got further away)

pattern of the location estimation with some estimations overlap
(represented by the transparency).

The location estimation resulted in the errors presented in
table II. We can observe that the minimal errors come from the
Orange and Orange and Yellow using the LS method, followed
by the Yellow. As expected from the previous section, any
combinations that involved the green receiver, resulted in large
errors, due to its model and noise.

Seeing the error in a relative perspective of the maximum
distance observed in section IV-A, when comparing to 83.6km
and 54.9km, for instance the Orange and Yellow models
have average error (Orange=5 657; Yellow=6 207, µ=5 932),
which represents 7% and 10.8% respectively of the maximum
distances possible we achieve.

Figure 3 shows the estimated locations in comparison to the
GPS ground truth. While many points are very close to the
GPS line, we can also see the deviations that occur along the
way, due to the inconsistency of the Yellow, in comparison to
the Orange. In figure 4 we can see the progression of the error
over the data points, where with the bigger the distance, the
bigger the error becomes. This comes from oscillations in the
lower end of the RSSI range, which being logarithmic, small
oscillations produce larges distance in the estimation. This
error could be diminished by obtaining more points for each
location, instead of just the four used in the moving average
due to the sea vessel being in constant movement.



V. DISCUSSION

A. Research Findings

1) Maximum Distance using LoRa: During this study, we
achieved a maximum range of 83.6km while using LoRa
overseas. This range linked a land endpoint (at an altitude
of 281m) to a boat’s endpoint in the middle of the ocean. This
is above the manufacturers’ range of 10 to 40 km but bellow
a record that used a helium balloon to rise the endpoint up
to 38 km of altitude before transmitting a packet to 702 km
away with a transmit power similar to ours5. The maximum
simultaneous range from all the land endpoints to the boat
endpoint was of 54.9 km (at altitudes ranging from 57 m to
281 m), within predicted ranges, achieved using LoPy devices
coupled with a 1/4 length 868MHz LoRa monopoles. No high-
end and expensive gateways or antennas were used in the setup.
We can all but speculate that the achieved higher ranges were
due to any combination of the bellow as well as any other
unforeseen factor:
- Having perfect line-of-sight without obstacles or reflections.
The land points were mounted facing the sea, with no obstacles;
- The altitude of the land endpoint vs the ocean endpoint. The
longest range was achieved from the highest endpoint (83.6km
range from 281m high) and there is a trend of declining range
with the altitude (63.8km range from 185m high and 54.9 km
range from 57m high). At 281 m high, the distance to the
equator, in direct line of sight, is about 60km, which is the
majority of whole range, meaning that the signal still has to
travel 23km over the horizon to get to the 83.6km range.
- An improved build quality that was achieved over time. The
LoRa technology was patented in 2008 and has had time to
mature and improve since then.

2) Distance Estimation with LoRa: One of our focus on this
study was to use a low tech, low energy solution to find location.
This ruled out the power hungry satellite based technology and
the expensive ToF based technologies. We were left out with
multilateration or multiangulation based technologies. We do

5https://www.thethingsnetwork.org/article/ground-breaking-world-record-
lorawan-packet-received-at-702-km-436-miles-distance

not have a low-cost way to find the angle, but do for range,
we used multilateration with RSSI values, to find the distance
between the nodes. Since the RSSI is inherently sensitive to the
environment, even after post-processing, some noise remained,
as can be seen in figure 2. Despite that, our results show an
average distance error (compared to the GPS ground truth)
for the individual models that ranges from 1 359m (with a
standard deviation of 1 183 m) up to 5 749 m (with a standard
deviation of 4 754 m) which represents 3.5% to 7% of the
maximum range measured. The results also show individual
errors points with a minimum error of 1 m (that are very close
to the estimated regression line) and a maximum error of 25
070 m from a very noisy endpoint. Excluding this endpoint, the
maximum error is less than 10km. By combining the dataset
from two endpoints, we managed to slightly improve the worst
endpoint range estimation at the cost of the other endpoints.
This evidentiates how sensitive the model is to noise, but it also
suggests that solutions such as a higher number of endpoints
or a moving average, do reduce the error.

3) Location Estimation using Bilateration: In our case
we were forced to use bilateration. As we explained in
chapter 3, the two reasons are: 1) the land endpoints are
aligned in an almost straight line with a small curvature in-
land. And 2) the nodes’ RSSI values are unstable and don’t
provide coherent values through the time, resulting in different
estimated distances for each node. We can fix 1) in the future by
better placing or adding more nodes making a better geometry.
As for 2), would require a more expensive setup or better
hardware. Using the post processed RSSI range values and
bilateration from two land endpoints, we calculated the boat
endpoint’s location. We then compared those values to GPS
derived values to understand the accuracy and quality of our
results as seen in figure II. The geolocation error ranges from
an average of 5 657m for the model that uses just the orange
endpoint to an average geolocation error of 21 531 when using
the very noisy green model. For individual points in the dataset,
the results have a minimum geolocation error of 218 m and a
maximum geolocation error of 33 461m, again, for the green
model. If we exclude the green model, the maximum error

Table I
ERROR COMPARISON (IN METERS) FOR THE DIFFERENT MODELS USED AFTER LINEARIZING THE RSSI

Modeled Data
Sources Dataset Nr

samples
Error LS Error

RANSAC

µ σ min max µ σ min max

Individual Model
Orange 251 1 359 1 183 1 7 156 1 359 1 183 1 7 156
Yellow 221 3 595 2 135 115 9 542 3 616 2 591 7 10 635
Green 363 5 749 4 754 3 25 070 5 718 4 861 61 25 820

Orange & Yellow Orange 251 1 578 1 361 6 7 635 1 578 1 361 6 7 635
Yellow 221 3 997 2 553 25 11 300 3 997 2 553 25 11 300

Yellow & Green Yellow 251 9 722 4 218 2 023 19 526 14 566 5 633 110 25 247
Green 363 8 979 4 785 8 19 718 7 143 5 110 25 23 876

Orange & Green Orange 251 7 793 4 660 151 19 703 9 169 6 270 39 24 258
Green 363 7 288 3 937 76 16 963 6 514 4 935 8 23 106



Table II
COMPARISON OF LOCATION ESTIMATION ERRORS (IN METERS) FOR THE

DIFFERENT MODELS USED FOR BILATERATION

LS RANSAC

µ σ µ σ

Ora. 3 432 2 013 3 432 2 013
Yel. 6 213 3 696 7 513 4 356
Green 21 313 3 812 22 046 3 848
Orange && Yellow 4 067 2 170 4 067 2 170
Yellow && Green 12 324 2 422 20 279 2 422
Orange && Green 16 343 3 724 21 650 5 989
Orange && Yellow && Green 10 631 2 399 4 550 1 206

is around 15km. Since our bilateration derives, directly, from
the distance estimated using RSSI, all the improvements and
pitfalls are shared. Although in absolute values these may seem
large, in open ocean, with an average error of around 3.4km,
it is possible to locate objects with the naked eye, thus this
location estimation proving to be useful in such scenarios.
Improvements may be done to remove the outliers from the
dataset when testing against the models, reducing the error in
30-40%, however, as in real scenarios, we would not know in
advance which values were outliers.

B. Contributions
We contribute with nearly 84km of LoRa maximum distance

and a location error of 3.4km (4 % of maximum distance)
for the long range tests. Nevertheless, other short range
studies (max 2km) claim an accuracy of 100m (5% of
distance) [Guegan, Murad, Lebreton, and BonhommeauGuegan
et al.2017]. When using the real-time location of marine
species, 3.4km is adequate when studying migration flows.
Our main focus in this study was to use an IoT low cost
and energy efficient LoRa solution that could be used in sea
environments, to aid the research and conservation of marine
life. We explored LoRa, how it behaves over the ocean and the
extraction of geolocation of nodes using the RSSI that comes
at no cost in any kind of radio communication. We delivered
LoRa packets at a maximum distance of 83.6km, much more
than the manufacturer claimed range (40km for Pycom LoPy4)
as well as most literature.

We also modeled a bilateration and RSSI based geolocation
that, even though is far from the accuracy of the modern
satellite based technology, is low-cost both in terms of
hardware/software as in terms of energy usage. The geolocation
had an average error of approximately 5% of the maximum
range, or, about 3.4 km. This error is adequate for study of
migration patterns, the general location of animals and other
situations where a pin-point location is not needed.
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