
Entropy as a Service: A Lightweight Random
Number Generator for Decentralized IoT

Applications
Ikram Ullah

University of Twente
Enschede, The Netherlands

i.ullah@utwente.nl

Nirvana Meratnia
University of Twente

Enschede, The Netherlands
n.meratnia@utwente.nl

Paul J. M. Havinga
University of Twente

Enschede, The Netherlands
p.j.m.havinga@utwente.nl

Abstract—Cryptographic Pseudorandom Number Generators
(CPRNG) play a very crucial role in Internet of Things (IoT)
security. Cryptographic protocols require random numbers for
nonces, salts, and key generation. However, developing secure and
lightweight CPRNG is strenuous. Insecure source of randomness
can evolve in vulnerabilities and can jeopardize security mech-
anisms. As the number of IoT devices are expected to exceed
over billions, the demand for distributed CPRNG increases.
Manually configuring random numbers in large numbers of IoT
devices is practically challenging and insecure. In this paper,
we propose a cryptographically secure pseudorandom number
generator based on sensor data as source of randomness. The
appealing characteristic of a sensor data based random number
generator is that sensor can possibly generate infinite data. Thus,
having longer period and perhaps higher entropy. We also present
proof-of-concept of potential usage of sensor data as a source of
randomness. Furthermore, the mechanism is evaluated with the
NIST statistical suite.

Index Terms—Internet of Things, security, random number
generator

I. Introduction

The Internet of Things (IoT) is massively adopted by many
industries for vast number of applications. In the last decade
the number of IoT devices increased exponentially [1] and
it is expected to increase even more. For instance in smart
logistics, where pallets are embedded with smart sensors for
analytical purposes (detect, predict, and prevent various events
related to logistics). In smart logistics there is a complex chain
of stakeholders, for which security and confidentiality are key
issues. So the data generated by these smart sensors should
be secure. Managing these sensors centrally is exceptionally
challenging, so the need for distributed security mechanism
increases [2]. In distributed mechanism every device is capable
of generating their own random numbers without the need of
any central party or manual configuration.

Sensor data can also be used for security purposes. For in-
stance, intrusion detection [3] and random number generators
[4] [5]. Random numbers are used as nonces in authentication
protocols to avoid replay and reflection attacks. They can
also be used to pad messages before their encryption or to
combine with a password to prevent dictionary attacks [6]. Key

establishment protocols can use random numbers to generate
session keys [6] [7].

Important constituents for any randomization are the source,
quality, and unpredictability of randomness [5]. Weak random
number generators can be exploited [8] [9] [10]. Generating
truly random numbers, which generally are based on non-
deterministic physical phenomena are hard and rather slow [6]
[11]. Therefore, pseudorandom numbers are generated instead.
Generating pseudorandom numbers is comparatively faster.
Various randomness sources as mentioned in [12] are used in
real world applications, such as CPU temperature, positions
of mouse movements, and physical features of the electric
circuits. However, various existing sources of randomness have
many limitations, such as limited generation rate, lack of
randomness of data, requires an external device, and failures
are difficult to detect [13]. In IoT, high entropy random
numbers are hard to achieve due to lack of resources [14] [15].
Entropy in information theory is the measure of randomness
of a random variable or outcome of a random process. Entropy
of a discrete random variable (X) with probability p is defined
as

H(X) = −
∑
x∈X

p(x) log p(x)

where x represents sample from X. Joint entropy H(X,Y)
of random variables X,Y is given as

H(X,Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

To attain high-quality random numbers, a high-entropy
random source is necessary [16]. Therefore, in this paper we
propose the usage of sensor data as the source of randomness.
The ultimate goal of this research is to transform sensor data
into high-quality source of randomness. We have demonstrated
that it is possible to generate random sequences from sensor
data. We have also compared the NIST statistical test [17]
results of our mechanism with the lmRNG [18]. Based on
our analysis, our proposed seed extraction methodology has
shown dominance over lmRNG [18] in 5 out of 12 passed



tests. The novelty of our approach is that, each sensor can
independently generate random numbers without any need of
manually embedding and configuring random numbers. Which
is important in decentralized IoT environments.

II. Our Contributions

The main contributions of this paper are as follows:
• We propose a novel and practical mechanism to extract

random seeds from sensor data. The extracted seeds pass
NIST statistical tests.

• We propose slight modification in existing cryptographic
pseudorandom number generator, namely TinyRNG [19],
to make it more efficient and use it as cryptographic
pseudorandom number generator.

III. Preliminaries

In this section, we provide a short introduction to Ham-
ming distance, Fisher-Yates shuffle, randomness extraction,
and NIST test suite. Since, these terminologies are used in
the rest of the paper.

Hamming Distance: Hamming distance [20] between two
sequences x = (x1, x2...xn) and y = (y1, y2...yn) denoted by
dH(x, y), is the number of positions where the values xi and yi

vary.

dH(x, y) =

n∑
i=1

δ(xi, yi)

where

δ(xi, yi) =

{
0 xi = yi (1)
1 xi , yi (2)

If the two sequences are chosen at random (out of 2n equally
likely), then the Hamming distance is n/2, which demonstrates
that the two sequences are significantly different.

Fisher-Yates Shuffle: Fisher-Yates shuffling algorithm pro-
duces a uniformly random permutation of an input array in
linear time. It guarantees that each permutation is generated
with equal probability. Given a finite sequence, it generates
an unbiased pseudorandom permutation. Where every permu-
tation is equally likely. The algorithm randomly draws an
element from a sequence S of n elements, until no element
remains. Pseudocode of this process is shown below.

for i from n-1 downto 1 do

j ← random integer such that 0 ≤ j ≤ i

exchange S[j] and S[i]

}

Fisher-Yates shuffle is theoretically correct random permu-
tation algorithm and uses O(N) time and O(1) space.

Randomness Extractor: Generating truly random numbers
is computationally challenging. So, generally it is sufficient
to derive a single secret key, which can be used as key
for a pseudorandom function (generator) to generate further
pseudorandom keys [21]. One way to derive secret key is using
randomness extractor. Randomness extraction is a mechanism

to derive uniform key from non-uniform randomness sources
[21]. It distill unpredictability of source to indistinguishability
of output from uniform distribution. The derived key can
be used as an input to a pseudorandom number generator
(PRNG), which potentially generates large stream of pseu-
dorandom keys. Randomness extractor and Pseudorandom
functions are related in their applications. Thus, it is ben-
eficial to use the commonly used pseudorandom functions
for randomness extraction [21]. Pseudorandom functions are
convenient since they can also be used by other applications
(such as, key exchange protocol) for key derivation [21].
Block ciphers related pseudorandomness mode, such as cipher
block chaining message authentication code CBC-MAC is
demonstrated as randomness extractor in [21].

NIST Test Suite: NIST statistical tests [17] are performed
to ensure that the random numbers have has sufficient entropy.
NIST test suite consists of a set of statistical tests to evaluate
the randomness of a sequence. The output of these statistical
tests is given as P-values. A given sequence passes the test
when its P-value is greater than 0.01 [18].

IV. Related Work

Dinca & Hancke [1] proposed the concept of using IoT
devices to gather data on human behaviour for creating ran-
domness. They have used smartphone’s sensors data as a seed
for PRNG to generate secure encryption keys. Marghescu et
al. [22] described a set of random number generators (RNG)
within Android-based smartphones by utilizing different sen-
sors. Song et al. [16] analyzed the process of scheduling in-
formation of Android systems and discovered that the rules of
the PID calling order reflect the change of interruption times.
The authors showed that random numbers can be generated by
pre-processing the noise source information, quantization, and
coding. Hong & Liu [4] proposed a seeding technique based
on accelerometer data to generate seeds for random number
generator. Predictable patterns from data were removed by
calculating first-order derivative of data. Unpredictability was
increased using Fast Fourier Transform (FFT) and the output
was fetched into random number generator as seed. Krhovjak
et al. [5] studied the usage of embedded and hands-free
microphone and camera as sources of randomness. Based on
their analysis, hands-free microphone is more sensitive and
optical sensor noise is not suitable source of randomness.
Other sources of randomness proposed in the literature are
based on phone recording [7] and harvesting randomness
directly from the network routing metadata [23]. However
existing sources of randomness have various constraints for
instance, they are computationally costly, have short period,
generated very slowly, have high computation complexity, or
require dedicated hardware. Therefore, we are proposing a
decentralized seed derivation mechanism for IoT devices.

V. Proposed Pseudorandom Number Generator

We propose a lightweight approach to extract seed from
sensor data. In order to extract seed, the proposed approach is
applied to three different datasets. The datasets are collected



using motion sensors, sound sensors, and channel state infor-
mation. The randomness of the extracted seed is evaluated with
NIST test suite. Finally, we describe how the seed is fetched
into randomness extractor to generate cryptographic keys.

A. Random Seed Extraction from Sensor Data

Sensor data in the raw format (before processing) is highly
correlated therefore, we extract the least significant bits (LSB),
as these bits are more random and noisy. However, most
significant bits (MSB) of channel state information (CSI) are
used, since LSB of CSI are zeros. Furthermore, all computing
devices have a finite precision representation, in which the
integers are round-off. In the extraction of LSB, the bits are
not round-off to maintain randomness. Our proposed seed
extraction mechanism is shown in the Algorithm 1. The
mechanism consists of two main operations, steps and random
permutation. In steps operation, instead of extracting every
consecutive data point (LSB), we extract every ith (i steps)
data point (LSB), where i is the size of the step. The concept
of step is similar to the step in a f or loop in any programming
language. Thus, with step operation we can skip repetitive
data points and eliminate correlations among the data points.
The data points (LSB) extracted after steps operation is of
size length((Data)/(step size)). Then, the extracted data is
converted into binary format. Again, step operation is per-
formed on binary data. In random permutation operation, we
use Fisher-Yates to uniformly extract certain number of binary
bits. The number of bits to be extracted depend on the sizes
of steps performed. In other words, larger the sizes of steps,
fewer the number of bits can be extracted. For instance, smaller
sizes of steps are possible if 0.01∗length(Data) number of bits
are to be extracted. While larger sizes of steps are possible
if 0.001 ∗ length(Data) number of bits are to be extracted.
The output is expected to be uniformly distributed sequence
if 0.001 ∗ length(Data) number of bits are extracted.

B. Data Acquisition

1) Motion Sensor Dataset: We have setup a mock smart
logistics environment that resembles pallets as shown in
the Figure 1. The setup comprises of eight Promove [24]
nodes placed on a trolley. This dataset includes accelerometer,
compass, and high-g accelerometer. The trolley is locomoted
to accumulate data. We collected the data three times, for
approximately 10 minutes each time. To analyze different
patterns for comparison and evaluation purposes. The data is
collected with sampling rate of 500 Hz. Each type of sensor
data (i.e. accelerometer) is analyzed individually.

2) Sound Sensor Dataset: The sound data is collected with
a standalone microphone. In our analysis, sound data is stored
in WAV file format. WAV file format is not compressed or
manipulated. The sound data has the sampling frequency of
22000 Hz, pulse coded modulation (PCM) 32 bits, and the
noise is not filtered. Sound data, mainly depends on the type
of the device [5]. As different devices have different sensitivity.
Every source of sound is not suitable for randomness such as,
quiet room.

Algorithm 1: Derivation of Seed
Require: Data
Ensure: RandomS eed

for i = 1 to length(Data) , S tep Parameter do
S tepData← Data(i)

end for
for j = 1 to length(S tepData) do

LS BData← ExtractLS B(S tepData)
end for
for k = 1 to length(LS BData) do

BinaryData← DecimalToBinary(LS BData)
end for
for m = 1 to length(BinaryData) , S tep Parameter do

S tepBinaryData← BinaryData(m)
end for
RPS tepBinaryData←
KnuthS hu f f le(length(S tepBinaryData), 0.01 ∗
length(Data))
for n = 1 to length(RPS tepBinaryData) do

p = RPS tepBinaryData(n)
RandomS eed ← S tepBinaryData(p)

end for

Figure 1. The experimental setup which mimics smart pallet is used to collect
motion dataset.

3) Channel State Information (CSI) Dataset: Channel state
information (CSI) characterizes wireless signals propagation
from the transmitter to the receiver at certain carrier frequen-
cies [25]. Gigabyte Brix IoT (specifications shown in Table
I) is used as transceiver node. It is connected to an access
point (TP-LINK AC1750). The transmitter and receiver were
approximately 25cm away from each other. WiFi network is
used as connectivity. The CSI is collected over the received
signals from the access point to the node. The sampling rate
is the number of pings send from the node to the access point.
CSI values are complex, so we extract the real and imaginary
values individually, and then concatenate these values.

VI. Performance Evaluation & Discussion

Extensive analysis of the proposed seed extraction mech-
anism is performed. For each type of dataset, different steps
sizes are analyzed till we found the optimal steps sizes that
ensure sufficient seed entropy. Optimal steps sizes might be
different for different datasets. As shown in the Figure 2, for
our datasets step size 90 mostly give optimal probability to



TABLE I
Hardware Specifications Gigabyte Brix IoT

Component Specifications
RAM 1x HyperX 8GB DRR3L-SO DIMM 1866 MHz
Processor Intel Apollo Lake N34500
Hard drive Transcend MTS800 SSD 128 GB (M.2 2280)
Graphics card None
Wireless adapter Intel N Ultimate Wi-Fi Link 5300
Size 165x105x27mm
Operating System Ubuntu 14.04.4

pass NIST test. While for the binary data the optimal step size
is 40. Our proposed seed derivation mechanism successfully
extracted random seeds from all the three datasets mentioned
above. The proportion of passed tests of the extracted seeds
of size 0.001 ∗ length(Data) is approximately 90%. We have
observed that if smaller steps are performed and large number
of bits are extracted, then it is highly probable that most of the
NIST statistical tests will fail. Otherwise, if larger steps are
performed and fewer bits are extracted, then there is very high
probability (approximately 0.9) that the extracted seed will
pass NIST statistical tests. We have tested our proposed seed
extraction on the above mentioned three different data sources.
Table II and III shows the results of the NIST statistical tests
applied to the random bits sequence generated by our proposed
seed extraction mechanism. 12 out of 15 tests are passed which
demonstrates that the seed generated by our seed extraction
mechanism is random. The NIST statistical tests passed by
our seed extraction mechanism are compared with the similar
tests passed by lmRNG [18]. Table IV shows the comparison of
our proposed seed extraction mechanism described in section
V-A with lmRNG [18]. The P-values of our mechanism is for
sample of 20000 bits, while the P-values of lmRNG [18] is for
sample of 1000000 bits. In this comparison, our methodology
demonstrated dominance in certain tests. Since, in lmRNG [18]
only P-values for 1000000 bits is given, so we do not know
how much the lmRNG [18] P-values will change for sample
of 20000 bits. Furthermore, we have used Hamming distance
to compare the seeds generated by two different neighbouring
sensors while both being in the same context, as shown in
the Figure 1. As expected, the hamming distance was 50 for
sequences of 100 bits. Which illustrates that the two seed are
very different from each other.

A. PRNG

Similar to TinyRNG [19], we propose CBC-MAC as ran-
domness extractor and use the same block cipher as the
CPRNG. The CPRNG encrypts a counter using key generated
by randomness extractor. Also, the extracted randomness is
used to re-seed the key of the CPRNG. However, we suggest
three possible changes in TinyRNG [19] that might improve it.
First, in TinyRNG [19] two CBC-MAC are required, because
of their source of randomness, while in our case we only need
one CBC-MAC. Second, unlike TinyRNG [19] where the key
for CPRNG is supposed to be provided at programming time
and updated by reseeding, in our case we recommend to use

Figure 2. The probability to pass NIST test is minimal for step size below
90. While for step size above 90, the probability increases.

TABLE II
NIST Statistical Tests for the Three Datasets for Various Step Sizes and

Random Permutations.

Tests Passed Tests not Applicable
Approximate entropy Random excursions
Block frequency Random excursions variant
Cumulative sums Universal
FFT
Frequency
Linear complexity
Longest run
Non-overlapping template
Overlapping template
Rank
Runs
Serial

TABLE III
NIST Statistical Tests P-Values for Sequence of 20000 Bits Seed.

Statistical Test Distribution of P-Values
Approximate Entropy (block length 10 bits) 0.151871
Block frequency (block length 10 bits) 0.328051
Cumulative sums (Forward) 0.278876
Cumulative sums (Reverse) 0.176714
FFT 0.363646
Frequency 0.149162
Linear complexity 0.532336
Longest run 0.506970
Non-overlapping template
template = 000110111 0.616752
template = 001001101 0.410845
template = 001011011 0.846972
template = 101111100 0.810269
template = 110111000 0.495427
template = 111010100 0.893308
template = 111101100 0.459074
Overlapping template 0.421596
Rank 0.181162
Runs 0.909460
Serial Test (block length 16) 0.383318
Serial Test (block length 16) 0.502142



TABLE IV
NIST statistical Tests P-Values of Our Proposed Seed Extraction

Mechanism (20000 Bits) is Compared with P-Values of lmRNG [18] (1000000
Bits).

Statistical Test Proposed Methodology P-Values lmRNG P-Values
Approximate Entropy (block length 10 bits) 0.151871 0.429923
Block frequency (block length 10 bits) 0.328051 0.666245
Cumulative sums (Forward) 0.278876 0.668321
Cumulative sums (Reverse) 0.176714 0.340858
FFT 0.363646 0.254411 (DFT)
Frequency 0.149162 0.500279
Linear complexity 0.532336 0.452173
Longest run 0.506970 0.914025
Non-overlapping template
template = 000110111 0.616752 0.435430
template = 001001101 0.410845 0.191687
template = 001011011 0.846972 0.595549
template = 101111100 0.810269 0.755819
template = 110111000 0.495427 0.395940
template = 111010100 0.893308 0.325206
template = 111101100 0.459074 0.204439
Overlapping template 0.421596 0.672470
Rank 0.181162 0.834308
Runs 0.909460 0.299736
Serial Test (block length 16) 0.383318 0.208837
Serial Test (block length 16) 0.502142 0.647530

the output of CBC-MAC as initial key for the block cipher and
to reseed the CPRNG as shown in the Figure 3. The reason we
are not recommending key at the programming level is that, we
expect each individual sensor manage itself in a decentralized
manner, by generating its random numbers without any need
of preconfiguring keys. Also, in a situation where the number
of sensors are over millions, configuring such large number
of devices become challenging. Therefore, using the output
of CBC-MAC as initial key for block cipher can prevent the
unnecessary overhead. Third, in order to minimize the storage
requirements, as sensor data is stateless, it is not necessary
to have entropy pool. Entropy can be generated instantly and
it can be fetched into the CBC-MAC. Also, if the adversary
has access to the entropy pool, it is possible to extract the
randomness from the pool. So we recommend to generate
seeds on the fly. The choice of CBC-MAC as randomness
extractor has many advantages, such as it utilizes low memory
(re-using block cipher as CPRNG) [19], is a more practical,
and a better randomness extractor [21].

VII. Security Analysis

There are many possible scenarios, when the attacker can
exploit the sensor and consequently random number genera-
tors.

A. Exploiting Randomness Extractor

Block ciphers are cryptographically secure RNG. The ex-
traction properties of CBC-MAC show that for any input dis-
tribution with sufficiently high entropy, CBC-MAC guarantee
a uniform output for any family of permutations. Let f be
a random permutation over {0, 1}k, X be an input distribution
with minimum entropy of at least 2k and F(X) be the function
f computed in CBC-MAC mode over L blocks. Then, the
statistical distance between F(X) and the uniform distribution
on {0, 1}k is L.2−K/2 [21]. Which proves that k-bits output
from F(X) is computationally indistinguishable from uniform
distribution. Thus, it can be used as secure cryptographic keys.

B. Remotely

The attacker’s aim is to predict the random number gen-
erated by observing pseudorandom numbers. Remote attack
against our proposed seed derivation mechanism can be hard,
since the attacker need to generate the same sensor data, per-
form the same steps, and extract the same randomly permuted
bits.

C. Physically

When the attacker has physical access to the sensor, he
can read the memory of the sensor and can change the
code unless there are secondary protection such as program
integrity verification techniques [19] [26]. However, if secure
pseudorandom number generator is used to generate secret
keys to encrypt the communication, then the attacker should
not be able to decrypt the communication before or after the
attack, instead can only decrypt the communication during the
time of the compromise [19]. A third scenario can be that
the attacker fit his own sensors into the network to eavesdrop
and collect the data. However, the probability of generating
correct seed is much less because, the random seed is extracted
uniformly. We have compared the seeds of multiple sensors
that are in the same network and at the same time using
Hamming distance. And it turns out that the seeds generated
by sensors are significantly different from each other.

VIII. Conclusion

We propose a seed extraction and PRNG mechanism with
consideration of decentralization of IoT ecosystem. Where
configuration and built-in keys is becoming a tedious job and
technically impractical. Therefore, the reusability of sensor
data for decentralized cryptographic purposes is very crucial.
The results show that the proposed seed extraction mechanism
derive random seed from sensor data and the seed is capable
of passing 12 out of 15 NIST statistical tests. The results of
the passed tests are compared with lmRNG [18]. In certain
tests, our proposed methodology shows better results. The
proposed CPRNG is seeded with the extracted seed. The
results shown in [19], illustrate that the proposed CPRNG is
secure, lightweight, and practical.

IX. Limitations

The proposed seed extraction mechanism is probabilistic.
Since, sensitivity of sensors can impact the quality of the
seed and also sensors behaviour is unpredictable. For instance,
when the sensor is idle, there might be no randomness.

Acknowledgment

This work has been partially supported by the EFRO, OP
Oost program in the context of Countdown project.



Figure 3. The proposed randomness extraction and pseudorandom number generation mechanism. CBC-MAC is used as randomness extractor and the same
block cipher is used as the CPRNG. The CPRNG is a block cipher in counter mode encrypts a counter using key generated by randomness extractor.

References

[1] L. M. Dinca and G. Hancke, “Behavioural sensor data as randomness
source for iot devices,” in 2017 IEEE 26th International Symposium on
Industrial Electronics (ISIE), June 2017, pp. 2038–2043.

[2] L. Francis, G. Hancke, K. Mayes, and K. Markantonakis, “Potential
misuse of nfc enabled mobile phones with embedded security elements
as contactless attack platforms,” in 2009 International Conference for
Internet Technology and Secured Transactions, (ICITST), Nov 2009, pp.
1–8.

[3] J. Kaur, P. Swain, and G. Tamizharasi, “Ship intrusion detection
using accelerometer and temperature sensor,” International Journal
of Research, vol. 3, no. 9, pp. 461–466, 2016. [Online]. Available:
https://journals.pen2print.org/index.php/ijr/article/view/4464.

[4] S. L. Hong and C. Liu, “Sensor-based random number generator
seeding,” IEEE Access, vol. 3, pp. 562–568, 2015. [Online]. Available:
https://doi.org/10.1109/access.2015.2432140.

[5] J. Krhovják, V. Matyas, and P. Svenda, “The sources of randomness in
mobile devices,” In Proceeding of NORDSEC, pp. 73–84, 2007.

[6] J. Krhovják, “Analysis, demands, and properties of pseudorandom
number generators,” -, November 2019.

[7] F. Xiang, L. Zhang, Z. Zhang, and L. Zhang, “True random bit generator
based on cell phone recording and chaotic encryption,” in 2012 IEEE
International Conference on Automation and Logistics. IEEE, Aug.
2012. [Online]. Available: https://doi.org/10.1109/ical.2012.6308147.

[8] E. B. Barker and J. M. Kelsey, “Recommendation for random number
generation using deterministic random bit generators,” NIST, Tech.
Rep., 2012. [Online]. Available: https://doi.org/10.6028/nist.sp.800-90a.

[9] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud, and D. Wichs,
“Security analysis of pseudo-random number generators with input,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security - CCS '13. ACM Press, 2013. [Online].
Available: https://doi.org/10.1145/2508859.2516653.

[10] M. Dubal and A. Deshmukh, “On pseudo-random number generation
using elliptic curve cryptography,” in Security in Computing and Com-
munications, S. M. Thampi, P. K. Atrey, C.-I. Fan, and G. M. Perez,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 77–89.

[11] J. C. Lagarias, “Pseudorandom numbers,” Statistical Science, vol. 8,
no. 1, pp. 31–39, 1993. [Online]. Available: http://www.jstor.org/stable/
2246038.

[12] S. Ruhault, “Security analysis for pseudo-random number generators,”
Theses, Ecole normale supérieure - ENS PARIS, Jun. 2015. [Online].
Available: https://tel.archives-ouvertes.fr/tel-01236602.

[13] M. Herrero-Collantes and J. C. Garcia-Escartin, “Quantum random
number generators,” Reviews of Modern Physics, vol. 89, 04 2016.

[14] M. Pawlowski, A. J. Jara, and M. Ogorzalek, “Harvesting entropy for
random number generation for internet of things constrained devices
using on-board sensors,” Sensors, vol. 15, pp. 26 838–26 865, 10 2015.

[15] M. L. Chaves, J. J. Márquez, H. Pérez, L. Sánchez, and
A. Vizan, “Intelligent decision system based on fuzzy logic
expert system to improve plastic injection molding process,”
in International Joint Conference SOCO’17-CISIS’17-ICEUTE’17
León, Spain, September 6–8, 2017, Proceeding. Springer
International Publishing, Aug. 2017, pp. 57–67. [Online]. Available:
https://doi.org/10.1007/978-3-319-67180-2 6.

[16] P. Song, Y. Zeng, Z. Liu, J. Ma, and H. Liu, “True random number
generation using process scheduling of android systems,” in 2018 Inter-
national Conference on Networking and Network Applications (NaNA),
Oct 2018, pp. 304–309.

[17] A. Rukhin. (2010, April) A statistical test suite for
random and pseudorandom number generators for cryptographic
applications. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-22r1a.pdf.

[18] A. Sojka and K. Piotrowski, “lmrng: A lightweight pseudorandom
number generator for wireless sensor networks,” SECRYPT 2012 - Pro-
ceedings of the International Conference on Security and Cryptography,
pp. 358–363, 01 2012.

[19] A. Francillon and C. Castelluccia, “Tinyrng: A cryptographic random
number generator for wireless sensors network nodes,” in 2007 5th
International Symposium on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks and Workshops, April 2007, pp. 1–7.

[20] T. Yamada, “Principles of error detection and correction,” in Essentials of
Error-Control Coding Techniques. Elsevier, 1990, pp. 11–37. [Online].
Available: https://doi.org/10.1016/b978-0-12-370720-8.50006-4.

[21] Y. Dodis, R. Gennaro, J. Håstad, H. Krawczyk, and T. Rabin, “Ran-
domness extraction and key derivation using the cbc, cascade and hmac
modes,” in Advances in Cryptology – CRYPTO 2004, M. Franklin, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 494–510.

[22] A. Marghescu, G. Teseleanu, and P. Svasta, “Cryptographic key gen-
erator candidates based on smartphone built-in sensors,” in 2014 IEEE
20th International Symposium for Design and Technology in Electronic
Packaging (SIITME), Oct 2014, pp. 239–243.

[23] M. R. Khalili-Shoja, G. T. Amariucai, S. Wei, and J. Deng, “Secret
common randomness from routing metadata in ad hoc networks,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 8, pp.
1674–1684, Aug 2016.

[24] Promove. [Online]. Available: http://inertia-technology.com/.
[25] Y. Ma, G. Zhou, and S. Wang, “WiFi sensing with channel state

information,” ACM Computing Surveys, vol. 52, no. 3, pp. 1–36, Jun.
2019. [Online]. Available: https://doi.org/10.1145/3310194.

[26] T. Park and K. G. Shin, “Soft tamper-proofing via program integrity
verification in wireless sensor networks,” IEEE Transactions on Mobile
Computing, vol. 4, no. 3, pp. 297–309, May 2005.


