An Embedded CNN Implementation for On-Device
ECG Analysis

Alwyn Burger
Embedded Systems
University of Duisburg-Essen
Duisburg, Germany
alwyn.burger @uni-due.de

Chao Qian
Embedded Systems
University of Duisburg-Essen
Duisburg, Germany
chao.qian.1119@stud.uni-due.de

Gregor Schiele
Embedded Systems
University of Duisburg-Essen
Duisburg, Germany
gregor.schiele @uni-due.de

Domenik Helms
OFFIS Institute for Computer Science
Oldenburg, Germany
domenik.helms @offis.de

Abstract—IoT systems that employ Al and neural networks
for processing sensor data are usually dependent on an active
connection to the cloud, or restricted to simplified models
and techniques. By employing a highly optimised Convolutional
Neural Network that can be executed directly on our heteroge-
neous IoT device, we can address both these problems without
sacrificing accuracy. Additionally, leveraging the cloud when
unknown or uncertain samples are seen allows us to continuously
improve the model.

Capable of running a ‘“normal” model trained using frame-
works such as TensorFlow, we show that our system can achieve
accuracy of up to 97% in medical applications such as ECGs.
This is done using our device that uses less than 200mW but can
locally process more than 300 heart beats per second.

Index Terms—Internet of Things, neural networks, FPGA,
Biomedical signal processing

I. INTRODUCTION

Modern IoT often depend on small battery-powered devices
to collect data directly from a user in their environment. For
example, in medical applications a wearable is used that needs
to continuously monitor the user’s heart condition. That creates
a strict power budget that limits which hardware components
can be used when creating such a device.

The microcontrollers that are low powered enough to oper-
ate long term on a battery usually cannot perform complex
algorithms such as inference with a Convolutional Neural
Network (CNN) fast enough. Therefore, most of the currently
used systems offload most of the calculations to the cloud,
or compromise accuracy by using a less complex technique or
neural network. Some applications such as medical monitoring
cannot afford the risk of downtime when the connection to the
cloud service is interrupted. In this case, a local processing
solution is essential for ensuring the continuous operation of
the system. High accuracy must still be maintained, or the
health of the user could be at risk. That is why a less accurate
solution — or one that cannot process incoming data at least

The authors acknowledge the financial support by the Federal Ministry
of Education and Research of Germany in the KI-Sprung LUTNet project
(project number 16ES1125).

as fast as it is collected — is unacceptable for such a critical
application case.

Our approach is to use highly efficient local hardware
acceleration. This allows us to perform CNN inference directly
on an embedded device at very high accuracy. By deploying a
trained model to a tiny local embedded FPGA, our device can
locally analyse data from the sensors with no communication
required with the cloud. An FPGA offers numerous Digital
Signal Processing (DSP) components for the complex mathe-
matics required, and Look-up Tables (LUTs) and registers for
efficient data logic — without sacrificing flexibility. Another
advantage is that it can be updated whenever required when
new information becomes available and a better model can be
created.

The first contribution of this work is a pervasive IoT
system that uses this FPGA-based embedded device to monitor
users’ electrocardiograms (ECGs), but can be applied to other
applications. It leverages the local intelligence of the device to
classify every beat of the user’s heart into various categories.
It also uses cloud services to log a user’s condition over
time and continuously improve the system’s performance. The
second contribution is that we use a conventional CNN to
allow developers an easy to way use our system. By using
a generic framework such as TensorFlow [13], anyone could
create a model that can be deployed to our system.

The requirements that we set for our system are as follows:

1) It should be applicable to a wide variety of applications,

2) It should provide industry standard inference accuracy

of at least 95%,

3) The local device should be able to process incoming

data at least at real-time, and

4) Its power consumption should be low enough to realis-

tically be battery powered.
The term “real-time” here implies that the computation should
be faster than the data is captured. In this case, that varies
with the heart rate of the patient, which should not commonly
exceed an average of 180 beats per minute. However, linking
Requirement 3 to the timing requirement implies that we want

faster processing — so the device may save power by going into
a sleep state.

We present our work by first discussing some related work
in Section II, followed by an overview of the entire system in
Section III. After explaining the details of how we optimised
the CNN in Section IV, we present an evaluation of the system
in Section V and some concluding thoughts in Section VI.

II. RELATED WORK

One example of using cloud computing resources to aug-
ment a similar IoT system was created by Ke, Hengjin, et
al. [1], who proposed a cloud-aided online EEG classification
system for brain healthcare. It has also been used in other
fields, e.g. [2] where researchers presented a cloud-based
object detection algorithm which can detect not one or two
but hundreds of objects in near real-time.

Other work has used local device intelligence with CNNs,
such as Bettoni, Marco, et al. who performed image recog-
nition with a ZYNQ FPGA platform [3]. Their project only
needs 1.943MB memory but offers an inference runtime of
almost 1.33 s per sample. Furthermore, a binarized neural
network (BNN) has been used on an Intel Curie with only 15
KB of usable memory. By using this stripped down version of
the neural network they achieve an inference runtime of under
50 ms per sample [4].

Instead reducing the size of the CNN by quantizing weights
and biases as is done in a BNN, the CNN can be compressed
by altering its mathematical model. In [5], the researchers
proposed an XNOR-Network in which both the filters and
the input to convolutional layers are binary. Moreover, they
approximate convolutions using primarily binary operations.
This results in 58x faster convolutional operations (in terms
of number of the high precision operations) and 32x memory
savings. Another approach rethinks the inference task with
FPGA soft logic [6]. The FPGA implementations following
the later approach achieved a mean area reduction of 1.81x
vs the state-of-the-art BNN architecture with unrolling and
pruning. However, such radical compression creates a risk of
loss of inference accuracy.

Our approach aims to create an IoT system that uses a
conventionally created CNN model, can achieve very high
inference accuracy, and operate at a considerably lower power
usage than found in the literature. That involves not only the
development of a bespoke local device, but also a redesigned
IoT stack that can take advantage of the FPGA reconfigura-
bility as well as the cloud resources available.

III. SYSTEM OVERVIEW

To illustrate how our system can be used, consider a device
that monitors a user named Steven’s heart using an ECG
sensor. Since he wants continuous monitoring, the device
should be battery powered and mobile so it can be carried or
worn. However, Steven has a problematic heart condition, and
so it is critical his data be analysed as accurately as possible
to make sure that no defects are missed or misdiagnosed.

Since Steven’s internet connection is not 100% stable, he
needs the system to be functional even when it is not available.
His doctor needs a full overview of the monitoring data, and
wants to keep an eye on all his patients’ trends and histories.

Therefore, an IoT-based solution makes sense for him,
where data is collected and uploaded to the cloud for databas-
ing and further analysis. That does not require a constant
uplink, and can be uploaded sporadically when convenient
instead. Additionally, the doctor only needs the processed
results that describe the heart’s condition and not the raw data,
which greatly reduces the amount of data that needs to be
uploaded.

With human-centric applications such as this, it is important
to keep updating the model as new information becomes avail-
able. With medical applications this is even more important
when samples cannot be reliably recognised. These should
be forwarded to a trained medical professional for manual
inspection, and included in the training data once properly
identified. This allows the system to continuously improve the
model by expanding the training dataset. Once a newer and
improved model is available, it gets sent to each device and the
FPGA uses that instead. This offers a specific advantage over
application specific integrated circuits (ASICS) that cannot
change their configuration once deployed as easily.

Every new sample that is taken by the device is classified
based on the current CNN model, which creates both a label
for the current heart state and a measure of confidence in
this label. If this confidence is high, we may assume that the
sample is familiar enough to existing training data that the
neural network can identify it. In the case of a detected heart
condition, the device can directly provide feedback to the user
without having to wait for any interaction with a cloud service
and the communication delays that go with that. Routinely
the device can also push summarised reports to the cloud
for long term monitoring. Only the labels created during the
classification are required for this step, making it considerably
less data-intensive than uploading all raw data.

However, if the confidence value is low, we cannot trust the
label assigned to it. We consider a sample to have low certainty
when the softmax output of the CNN indicates low confidence
in the assigned label (multiple labels having high likelihood
instead of one singled out). That means that the sample should
be forwarded to the cloud, so it can be explicitly labelled by a
medical professional. At this point it can be incorporated into
the training dataset to improve the next model to be trained.
Over time, this should improve the resilience of the system
by exposing it to a wider variety of data. It also ensures that
all critical samples are reliably labelled, ensuring that no heart
conditions are missed.

This IoT system can be used to create any application
that uses an appropriate CNN for classification. Continuously
updating the model on FPGA as new data is available allows
it to adapt to changing environments. However, this relies on
the local device to be able to process this model efficiently,
which will be discussed in the following section.

IV. OPTIMISED CNN DESIGN

To deploy a CNN to an embedded FPGA that is in our
power budget, its design must be altered to fit in the available
resource constraints. Where a larger FPGA could simply in-
stantiate the entire network simultaneously, our design requires
a more minimalistic approach.

Inference-Only Implementation

Additionally, machine learning techniques such as CNNs
consist of two phases: training and inference. Training is the
process in which the network tries to learn from the input data
and its labels. During this phase, the weights and biases that
describe the CNN model are updated through backward prop-
agation. During inference, the CNN infers/predicts the label of
input data using the trained model. Since the training process
is much more computationally expensive than inference, we
choose to only place the inference on the device. While this
would normally limit the system to offline training that cannot
adapt to newly available data acquired after deployment, our
IoT stack allows us to avoid this limitation.

Parameter and Connection Loading

When using CNNs on cloud servers that have copious
RAM and CPU resources, all parameters (weights and biases)
and input/output connections can be passed between layers
directly. This means that the entire layer receives its input
simultaneously, and every layer can simply be kept in RAM to
be instantly available. Besides, modern CPUs can use SIMD
(single-instruction-multiple-data) techniques to load multiple
values into wide vector registers and simultaneously compute
them in one instruction.

On an embedded FPGA the number of computational re-
sources (DSP slices) and bandwidth of data buses (LUT slices)
are inherently limited. To save computational resources, we
must load input/output connections from memory as they are
needed. To improve the speed of this step, all intermediate
connections between layers are stored in Block-RAM on the
FPGA. This is very fast local on-chip memory that offers
reduced power and increased performance over externally
connected memory.

Optimised Static Paremeters

On the FPGA the weights and biases are implemented
into LUTs. While this means that they cannot be changed
once the design is synthesized, it allows the compiler to
further optimise resource consumption based on their values.
Even considering bit-level optimisations, this can significantly
improve the implemented size of the CNN.

Layer Combination

Lastly, CNNs commonly only integrate the activation op-
erations into the convolution layer, while the pooling layer is
implemented independently. On an FPGA this would require
additional resources (usually block RAMs) for the intermedi-
ate data. Therefore, these have been combined in our design
of the CNN.

Fixed Point Logic

According to a document from Xilinx [7], FPGA designs
benefit from using fixed point data types over float point due
to a reduction in logic resources, lower power, shorter latency,
etc. Multiple researchers have proved that an accurate fixed
point quantization of the CNNs would not cause any loss
accuracy [8], [9].

Softmax Layer

As a final note, the traditional design includes a softmax
layer which uses an exponential function to calculate likeli-
hoods and certainty of the inference. On an FPGA this would
involve either using a very large LUT or a Taylor expansion.
Since this step is not required for local classification, this
layer is deferred to the MCU or cloud. Even without it, we
can choose the most likely classification and a measure of its
certainty.

The structural optimisations of loading parameters and
intermediate connections only when required — combined with
the integration of the convolution and activation layers — allow
us to fit a much larger CNN than is possible with a traditional
design. This makes our system applicable to more applications,
since the user merely has to convert an existing CNN model
into this representation. This does not alter the behaviour of the
model, and therefore performs exactly like “normal” models.

V. EVALUATION

To evaluate our system — and in particular the intelligent
local device — we should firstly revisit our requirements. As
detailed in Section I, they are for the system to be applicable
to a variety of applications, to achieve an accuracy greater than
95%, and for the local device to process new data faster than
real-time without leaving the battery-limited power budget.

The system’s flexibility to different applications has been
discussed in the previous sections. In short, our custom CNN
implementation optimises the available FPGA resources to
support larger networks, allowing the system to address more
complex problems. Using a “normal” CNN model greatly
simplifies adapting the system to a new application. Addi-
tionally, the IoT stack used allows us to support changing and
expanding problems.

Testing the other requirements cannot be done without
a real implementation. Therefore, we created a real-world
experiment using our Elastic Node embedded experimental
platform [10], [11] and the popular MIT-BIH Arrhythmia
database [12]. It contains over 40 thousand samples labelled
with six classifications. These include normal (N), paced beat
(/), and atrial premature beat (A) — the last two indicating
specific irregularities in the beat in question.

Some basic preprocessing is used to denoise each sample.
The Wavelet Transform is chosen since regular filters like FIR
filters are not effective in removing noise in a non-stationary
signal such as an ECG signal. Next, the dataset should be
balanced for additional stability. When the number of samples
for each class in the training is not equal, the data set is

imbalanced, which can cause reduced inference accuracy for
minority class.

Once this data is split 2:1 between the training and testing
data, it is used to train a traditional floating-point CNN using
Tensorflow [13]. Testing this model results in an overall
accuracy of 97% Overall, the classification of the CNN is on
par with current solutions, and provides a good target for our
embedded solution to attempt to achieve.

What remains to be evaluated is how well a fixed point
based FPGA model can match these results. Note that we
describe the fixed point representation with a notation of (z,),
where z is the number of fractional bits (representing numbers
< 1) and y is the total width in bits.

A. Fixed Point Bitwidth

To evaluate the effect of the fractional bits = on the system’s
accuracy, it is varied from O to 16 and tested using the full
testing set (13876 samples). This is done using the FPGA
simulator built into Vivado, which executes the full CNN
inference with all parameters and variables in the relevant fixed
point.

The resulting accuracy, recall, and fl score are shown in
Figure 1 and all tend to their respective values for the floating
point model. This shows that a larger fixed point representation
can adequately represent the values required for inference.

100

80

60

Percentage

40 4

accuracy
. recall
hoeeeennnns e ke fl

20 4 e

T T T T T T T
0 2 9 6 8 10 12 14 16
Fixed Point Fractional Bits

Fig. 1. Accuracy for different FP

As an example, the confusion matrix for x = 12 is shown in
Figure 2. This shows the inference accuracy for each class, as
well as the distribution of incorrect classifications. This exactly
matches the original results obtained using the floating point
Tensorflow model, proving that this fixed point approximation
is accurate enough for this application.

Before finally choosing the correct fixed point represen-
tation for this application, we must first evaluate the effect
it has on the FPGA resource consumption. An unnecessarily
large representation may increase the power consumption for
a diminishing return on the accuracy.

B. FPGA Utilisation

We compare the resource consumption of the different
representations by synthesizing each of them into an FPGA

Confusion matrix

True label

0.00 0.00

T T T T T 0.0
- ~ L3 ¥ A \
Predicted label

Fig. 2. Inference Confusion matrix for fixed point (12, 24)

configuration. Three different FPGAs from the Spartan 7
family from Xilinx are used, with varying available resources.

As shown in Figure 3, the number of DSP elements increase
with larger FP representations. That is because each one has
a fixed number of bits, and when this is surpassed by an
operation additional DSPs are required.

The S25 and S50 devices have 80 and 120 DSP slices
available respectively, which is much higher than the 20
available on the smaller S15 device. That means that the S15
cannot create some of the larger fixed point representations,
and even for a (20,40) fixed point all of the available resources
are in use.

LUT tilisation (in %)

(S R B

5
(8,200 (1224) (1428) (16,32) (18]36) (20.40) (6.20)
Fixedpoint Fractional Bits

L 1

(12,24) (14,28) (16,32) (18.36) (20,40)
Fixed tation

Fig. 3. DSP utilisation for
different Fixed Point

Fig. 4. LUT utilisation for different
Fixed Point

Similarly, the percentage of LUTs for different devices is
shown in Figure 4. As the number of LUTs available in these
FPGAs is multiple orders of magnitude larger than the number
of DSP elements, this is not a limiting factor as even the largest
version fits comfortably in the LUTs available on the S15.
However, using a larger percentage of the available resources
on an FPGA increases the dynamic power consumption, which
will be inspected next.

C. FPGA Power Consumption

The power estimate provided by Xilinx’s Vivado software
for each of the FPGAs is shown in Figure 5. This clearly
shows the near-linear increase in power consumption as the
dynamic power usage increases. Importantly, the static power
of the different FPGAs considered is vastly different.

0.09 /—’//
0.08
% 0.07 |
= — sl5
@
= s25
2 0.06 <50
3
= 0.05
0.04 /\/
0.03
T T T T T T
(8, 20) (12, 24) (14, 28) (16, 32) (18, 36) (20, 40)
FPGA Device

Fig. 5. Power consumption estimates

This makes the S15 considerably more efficient for smaller
models, but it is rather limiting when larger CNNs are re-
quired. By choosing the correct FPGA, the user can optimise
the device to their use case. This will also impact the speed at
which the system can operate, since fully utilising an FPGA’s
resources can reduce its maximum operating frequency.

D. Local Device Power Breakdown

To validate the power estimates retrieved above, we de-
ployed a specific CNN to two versions of our Elastic Node
platform, one with an S15 and one with S25. Based on the
fixed point accuracy experiments above, we chose a represen-
tation of (12,24). Based on an inspection of the intermediate
values in the model, an integer bit size of 12 was chosen.

For the main components on the board, the active and the
power usage is given in Table I. This idle usage shows that it
can operate long term when the FPGA is not required, which
during this time has zero usage as it is switched off.

TABLE I
ELASTIC NODE POWER BREAKDOWN

Component Idle Active S15 | Active S25
MCU 2.3 mW 75.4 mW 78.8 mW
FPGA internal 0 mW 16.9 mW 26.6 mW
FPGA aux 0 mW 12.3 mW 18.8 mW
FPGA 10 0 mW 73.4 mW 74.6 mW
Total 2.3 mW 168 mW 198.8 mW

One can notice that these values are somewhat larger than
the estimate provided in Section V-C. This can largely be
attributed to assumptions made by the Vivado software, which
has limited information about pins connected to other devices
such as the MCU or flash memory. However, the device still
operates under 200mW when fully active, which combined
with a conservative duty cycle can easily be battery powered.

E. Processing Time

Our requirement for real time computation of incoming
sensor data, and relying on a duty cycle to maximise FPGA

sleep time, emphasises the local processing time for CNN
inference.

1) Processing Speed Model: A timing model is presented
here to estimate the throughput and performance of the system.
This is needed as our design does not follow the usual CPU-
based design of multiple instructions per neuron, or the large
FPGA-based design of multiple neurons pipelined together.
By calculating the number of operations required, an accurate
estimation can be created for the processing time of the full
CNN.

The simplified model for the CNN’s processing time can be
given by

tCNN = tclock X Notal = tclock: X (ncl +n02 +nga+nfc) (1)

where {cocr 1S the period of the clock, ng, n., are
the number of operations required for the first and second
convolution layers respectively. They can be calculated using

nci:fXKXS (2

by using the number of features f, the kernel size K, and
the number of convolution steps S. As we are using a stride
of 1, the steps for layer c, can simply be given by using H
as the input height: S,, = H, — K + 1. The height of every
subsequent layer is then halved through a max pool operation.

Similarly the operations required for the global averaging
layer ng4. can be written as

Nge = [X (Hge +1) 3)

. Lastly, for the fully connected layer the formula is

nge=fxC @)

for C' being the number of classes being classified.

Using this model we can calculate the total number of
operations required for our CNN. It classifies C' = 6 classes
with f = 18 features, yielding a total of nspq = 143262
operations. To calculate the processing rate and throughput,
we also require the clock frequency of the device. Therefore,
we deployed the same model used in Section V-D onto the
Elastic Node to test its speed.

F. Real World Experiments

The CNN was able to be operated at 32MHz and SOMHz for
both the S15 and S25 FPGA devices. The achieved processing
speed is shown in Figure 6 with the estimates created using
our model discussed above.

The real world results are only slightly increased from the
estimate, since it includes overhead from the MCU such as
retrieving results before the next sample can be started. The
similarity here shows that by using Equation 1 a user can
create an accurate estimate for the performance they can expect
from using the Elastic Node when using their own model.

At a clock frequency at 32MHz, a throughput of 215.98
samples/s is achieved, and at SOMHz 335.24 samples/s. This

5
BN Estimate

= 41 Experimental
€
€3]
Q 4
£?
E

1 .

0 .

32 MHz 50 MHz

Fig. 6. Estimated and real world performance results

shows that the overall performance of the system is consid-
erably faster than real-time, allowing the use of batching to
collect data over a period of time before processing the full
batch.

For example, using an FPGA frequency of 50MHz and
using a simple peak detection to isolate heart beats, an average
heart rate of 120 would require a processing time of 358ms
every minute. Adding the FPGA’s activation time of 100ms
still allows the device to process all captured data within half
a second, allowing it to sleep for more than 99% of the time.

1) Time Breakdown: Since the data is originally sampled on
the MCU, it needs to be transferred via the external memory
interface to the FPGA [11]. For improved performance, this is
done as soon the first convolutional layer is processed — since
that is the only layer that directly uses the inputs.

This pipelined procedure can be seen in the oscilloscope
output in Figure 7, which shows the active time of the MCU
and FPGA for one sample of processed data. At ¢ = 0, the
CNN is started and it calculates the first convolutional layer. At
this point ({ = 0.36ms) the next sample’s data can be written
while the computation continues with the second layer. Once
this is complete (¢ = 1.02ms), we simply wait for the network
to finish (¢ = 2.93ms) so we can retrieve the results.

—— FPGA MCU

Active

0 1 2 3

Fig. 7. Time breakdown for single sample

Doing this allows us to better utilise the FPGA while it
is active, increasing the total throughput. Instead of waiting
0.66ms for the MCU to transfer the data to the FPGA, the
device can continuously run samples one after the other.

VI. CONCLUSION & OUTLOOK

Allowing embedded devices to locally process incoming
data allows for very interesting pervasive IoT systems. It pro-
vides the ability to increase the complexity of the processing
done on this data without resorting to constantly uploading all

the raw data to the cloud. By updating the configuration of
the FPGA during the deployed time of the system, improved
knowledge and increased data collected can be leveraged.

We have presented our solution for such an IoT stack
and an accompanying embedded device, which is capable of
accurately computing Convolutional Neural Networks without
relying on cloud computing. It achieves the same 97% accu-
racy as can be achieved using a full floating point Tensorflow-
based model, but using under 200mW total during active
computation. This provides a very energy efficient solution
that can still process 335 heart beats per second, allowing the
use of duty cycles and batching for longer battery life.

In the future we plan to automate the process of creating
such a system by developing a tool that can optimise the
variables mentioned automatically based on an energy or
accuracy target, and select an appropriate FPGA. Additional
neural networks such as Recurrent Neural Networks should
also be included in this tool, allowing the user to address a
greater variety of target applications.

REFERENCES

[1]1 Ke, Hengjin, D. Chen, T. Shah, X. Liu, Xi. Zhang, L. Zhang, and X. Li,
“Cloudaided online EEG classification system for brain healthcare: A
case study of depression evaluation with a lightweight CNN”, Software:
Practice and Experience, 2018.

[2] Lee, Jangwon, J. Wang, D. Crandall, S. abanovi, and Ge. Fox, “Real-
time, cloud-based object detection for unmanned aerial vehicles”, In
2017 First IEEE International Conference on Robotic Computing (IRC),
pp. 36-43. IEEE, 2017.

[3] Bettoni, Marco, G. Urgese, Y. Kobayashi, E. Macii, and A. Acquaviva,
“A convolutional neural network fully implemented on FPGA for
embedded platforms”, In 2017 New Generation of CAS (NGCAS), pp.
49-52. IEEE, 2017.

[4] McDanel, Bradley, S. Teerapittayanon, and H. T. Kung, “Embedded
binarized neural networks”, 2017.

[5] Rastegari, Mohammad, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural networks”,
In European Conference on Computer Vision, pp. 525-542. Springer,
Cham, 2016.

[6] Wang, Erwei, J. J. Davis, P. Y. Cheung, and G. A. Constantinides,
“LUTNet: Rethinking Inference in FPGA Soft Logic”, In 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 26-34. IEEE, 2019.

[7]1 Finnerty, Ambrose, and H. Ratigner, “Reduce Power and Cost by
Converting from Floating Point to Fixed Point”, 2017.

[8] Lin, Darryl, S. Talathi, and S. Annapureddy, “Fixed point quantization
of deep convolutional networks”, International Conference on Machine
Learning, 2016.

[9]1 Anwar, Sajid, K. Hwang, and W. Sung, “Fixed point optimization of

deep convolutional neural networks for object recognition”, 2015 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2015.

A. Burger and G. Schiele, “Demo Abstract: Deep Learning on an

Elastic Node for the Internet of Things,” International Conference

on Pervasive Computing and Communications Workshops (PerCom

Workshops), IEEE, 2018.

G. Schiele, A. Burger and C. Cichiwskyj, “The Elastic Node: An

Experimentation Platform for Hardware Accelerator Research in the

Internet of Things,” International Conference on Autonomic Computing

(ICAC), IEEE, 2019.

Moody, G. B., & Mark, R. G. (2001). “The impact of the MIT-

BIH arrhythmia database. IEEE Engineering in Medicine and Biology

Magazine”, IEEE Engineering in Medicine and Biology Magazine, 2001

Martin Abadi et al. Yuan Yu, and Xiaoqgiang Zheng. (2015) “TensorFlow:

Large-scale machine learning on heterogeneous systems”, Software

available from tensorflow.org.

(10]

[11]

[12]

[13]

