
CLI-DOS: Collaborative Counteraction against
Denial of Service in the Internet of Things

Syafiq Al Atiiq∗, Christian Gehrmann∗
∗Department of Electrical and Information Technology, Lund University

Lund, Sweden
{syafiq al.atiiq, christian.gehrmann}@eit.lth.se

Abstract—Internet of Things (IoT) is the next generation of
network scenario where billions of devices are connected to the
internet and capable to communicate with each other. However,
they are especially vulnerable to Denial of Service (DoS) attack,
which typically launched by overloading the server with bogus
messages. Hence, unnecessary computation is performed by the
IoT units, which can seriously worsen their performance or
even make them unable to serve legitimate requests. Existing
mechanisms for the detection and prevention of DoS attacks only
either make it more difficult to perform massive DoS attacks or
completely block the legitimate requests to be served. In this
paper, we present CLI-DOS, a collaborative mechanism between
Gateway and IoT units to counteract Denial of Service attacks.
CLI-DOS combines an efficient attack-detection principle using
short MAC value with a more effective defense strategy. In
an under attack situation, we leverage the IoT gateway for
preventing the attack messages to make contact with the IoT
units while opening up possibilities to set-up connection with
legitimate external entities. We evaluate the performance of our
proposal from several standpoints. In conclusion, CLI-DOS offers
a lower resource utilization in an under attack IoT units while
preserving service availability to the best possible extent.

Index Terms—Internet of Things, Denial of Service, Security.

I. INTRODUCTION

Internet of Things (IoT) is commonly referred to an increas-
ing trend in information technology en route to networked
society, where all devices are interconnected and able to
harness the connection to the internet [1]. In some cases,
these devices are even used for prominent and important tasks
such as health monitoring, industrial automation, or energy
management. However, many IoT devices are built upon a
constrained hardware platform, which has limited resources of
CPU, memory, or even power source compared to e.g. personal
computers. That being said, keeping the availability of the
devices as long as possible becomes a very important task.

IoT units with a direct connection to the internet are prone
to be exposed to DoS attack. The common strategy used by
the adversaries consist in flooding the server devices with
invalid messages such that the server becomes exhausted and
unable to serve legitimate requests. As most IoT units are
battery-powered, the impact of DoS attack to those devices is

Work supported by framework grant RIT17-0032 from the Swedish Foun-
dation for Strategic Research as well as the EU H2020 project CloudiFacturing
under grant 768892

considerably severe which can greatly reduce the lifetime of
the IoT units or even make them out of battery at once.

A number of countermeasure strategies have been proposed
to counteract DoS attacks. As explained by Wang [2], strate-
gies can be classified into two types, namely router-based
and host-based. First, router-based approach addresses the
problem by deploying a built-in defense mechanism running
on the intermediate nodes between client and server. On
Cisco routers [3], this include for instance: reverse routing
path verification and IP address filtering. As for the host-
based solution, IoT units are designed to use cryptographic
protocols e.g. DTLS [4] and IKE [5]. As these protocols use a
stateless cookie exchange, launching DoS attack with spoofed
IP addresses towards IoT units would be difficult. On the other
hand, the cryptographic operations employed in the IoT units
can be quite expensive in terms of power consumption at the
set-up phase. Furthermore, as mentioned in the standard [4], a
cookie does not provide any defense mechanism against DoS
attack launched from valid IP addresses.

Another approach [6] is by forcing the adversaries to solve a
computational demanding puzzle as a requirement to proceed
to the handshake phase. However, with an increasing power of
modern GPU, the puzzles from the victim can be easily solved
[7]. Furthermore, a more advanced strategy to determine the
validity of incoming request is by including a short symmetric
key based MAC value in the packet header when both parties,
client and server, are trying to establish a connection [8] [9]
[10]. While this is very efficient to detect the occurrence of
DoS attack in the IoT units, such strategy will at the same
time completely prevents the legitimate clients to reach the
IoT units. An adaptive solution, called SARDOS [11] has been
proposed to counteract DoS attack while preserving service
availability from legitimate clients. Even though SARDOS
mechanism is already good enough to prevent the battery drain
by adaptively changing the server state, but the computational
burden to check the validity of the incoming requests is
still inside the IoT units. Aside from shutting down the
interface, there is no mechanism in SARDOS to drop the
attack messages even before reaching the IoT units.

To fill the gap, in this paper we introduce CLI-DOS,
a collaborative mechanism between the IoT units and the
gateway to counteract DoS attacks. In particular, we leverage
an efficient DoS detection mechanism from the previous work



[8] [9] [10] with a novel collaboration protocol between the
IoT units and the gateway at the border of IoT wireless
domain. Our rationale is, it would be better to offload some
computational expensive process of filtering attack messages
from the IoT units to a much more powerful gateway that sits
close to the IoT wireless domain. The gateway will have the
capability to filter the message ID of the CoAP request based
on the acceptable range provided by the victim. This way,
we are able to protect the wireless IoT units from battery
drain attack, even when the adversaries changing their IP
address many times, while at the same time allowing legitimate
request to be served. CLI-DOS will to some extent lessen the
capabilities of IoT units to communicate with external entities,
however, it will not completely block the communication from
serving the critical messages even when under heavy attacks.

We have made a proof-of-concept implementation of CLI-
DOS for the CoAP [12] protocol using ContikiOS [13] inside
resource-constrained CC2538 platform. Yet, CLI-DOS is de-
signed with the general mindset and can be implemented at any
communication protocol stack. On the gateway side, we have
made an implementation using u32 module of netfilter [14]
inside the kernel in a way that it can parse the CoAP message
ID as one of our requirement. Also, the design of our protocol
in the gateway side is general so that it can be implemented on
any linux flavor, either in user-space or kernel-space. As some
computational burden of filtering attack messages has been off-
loaded to the gateway unit, our results show that CLI-DOS has
a lower resource utilization in terms of energy consumption at
the IoT units compared to the vanilla CoAP implementation
and pure IP blocking mechanism at the gateway. In addition,
CLI-DOS has efficiently dropped the bogus messages even
before reaching the under-attack IoT units while still serving
legitimate requests from external entities at the same time.

The rest of the paper is organized as follows. We discuss
related works in Section II and background concepts in Section
III. We provide the application scenario in Section IV. Section
V presents collaborative solution against DoS, while in Section
VI we provide a performance evaluation of CLI-DOS. Section
VII draws our conclusions and anticipate future works.

II. RELATED WORK

Denial of Service is a security menace, as defined at [8], in
which the aim is to (partially or completely) disrupt the service
of server(s). The victim is usually forced to use its resource
in a high fashioned utilization. This include for instance CPU,
memory, and network bandwidth as a means to make it less
responsive or even unable to serve legitimate request. The use
of DoS to attack can be classified into Distributed Denial of
Service [15] if the attacker sources are using many machines.
This usually done by creating a well coordinating master and
slave nodes, in which the master act as a leader.

To counteract DoS, there have been several ideas proposed.
As classified by Wang [2], there are two types of DoS
counteraction, namely router-based and client-based. A router-
based mechanism solve the problem by identifying address
passed by the attacker [16], thanks to its built-in mechanism

planted on every router on the path from the client to server.
This particularly efficient for a network that is managed by
single entity where we have the access to all the router. On the
other hand, router-based solution normally need the involving
router to implement Probabilistic Packet Marking (PPM) and
coordinating mechanism between them. This would lead to
the inconvenience of the person in charge as they need to
maintain many coordinating nodes with additional complexity.
Seidel proposes a protocol validation to complicate remote
DoS attack [17]. While this is a good starting point to offload
the filtering mechanism to the border router, we believe that
a further step to determine the validity of request message
should be taken into account.

Host-based approach counteract DoS by building a mecha-
nism at the end nodes, which does not need a coordination
function between entities. Several examples of host-based
approach can rely on resource management schemes [18] [19].
Another proposed solution that can be classified into host-
based leverages puzzle [20]. In order to legitimately access
the server, a client has to solve puzzles which has several level
of difficulty. While this can prevent a DoS to some extent, but
with an increasing power of modern GPU, a puzzle from a
resource constrained device can easily be solved [7].

Our solution in this paper falls between router-based and
host-based. We leverage the simplicity of setting up host-based
approach while still maintain contact with the router to get
better quality and resource to filter bogus messages. To get a
better segregation on valid and invalid messages on the server
side, we leverage SMACK [9], a host-based countermeasure
to DoS that make use of short Message Authentication Code
(MAC). The server analyze the embedded short MAC on the
request message sent to them and instantly get a classification
of the validity of the message.

The additional value of our proposed solution compared to
traditional DoS mitigation relies on the coordination function
between victim server and the router on the same network.
As the router is usually more powerful in terms of resource,
we move some computational burden of filtering messages to
them, not only using IP based blocking but also a mechanism
based on message ID of CoAP message. This way, even
the adversaries changing its IP address, we can preserve the
battery on the server side while maintaining the service to the
legitimate user to the best possible extent.

III. BACKGROUND

A. CoAP

The Constrained Application Protocol [12] is a lightweight
communication protocol, specifically designed for resource
constrained nodes and networks. To some extent, it is similar to
HTTP but for affordable and lightweight type of communica-
tion. CoAP’s main purpose is to be used for Internet of Things
environment, where machine to machine communication take
place. Home automation, factory monitoring, and connected
vehicles are some examples of where CoAP is suited.

Unlike HTTP, CoAP uses UDP as its transport protocol,
meaning that it has less overhead in terms of the amount



of messages exchanged between parties. With regards to
security, CoAP does not provide any mechanism, but rather
offload it to other components. The most recommended one
is DTLS, where it can provide secure communication, e.g.
authentication, integrity, and confidentiality of the messages
that’s exchanged between nodes.

B. SMACK
SMACK [9], correspond to Short Message Authentication

ChecK, is a security mechanism to identify a validity of
incoming messages in the server. The way SMACK works
is by probing into a short and lightweight Message Authenti-
cation Code embedded in the message. The output of SMACK
processing is a verdict whether a message is a valid request
(and proceed for further processing) or not (discarded).

SMACK is designed to work well with CoAP, in which it
uses the Token field to embed short MAC in the message. By
message structure, there is not much modification of the CoAP
header, except the Token field itself. In advance of sending
the message, client generates 16-bits random Request ID R as
a means to match request and respective response messages.
Following R, client computes 16-bits short MAC SM. Then,
the client put R and SM in the Request ID and Validity check
field respectively, as depicted in figure 1.

Fig. 1. CoAP Message with Short MAC

Upon receiving the message, the server computes the short
MAC of the incoming message and compare the value with
the provided short MAC of the request message.

IV. APPLICATION SCENARIO

Henceforward, we examine the scenario in Figure 2. It
consists of a Server S and a Client C exchanging message over
CoAP protocol. At the same time, an adversary A launch a
DoS attack by sending large number of invalid CoAP messages
towards S. The aim of the attack messages is to make S
worthlessly commit resources in a way that is not serving
actual legitimate request. A also has the capability to spoof
its IP address as many times as he wants. This way, S could
be endangered by becoming less responsive or even running
out of energy due to battery drain.

A Gateway G sits between C and S. The gateway carry out
the job as a message forwarder between C and S. We assume
that the connection between G and S are in the wireless
communication channel, meanwhile communication towards
C is a wired connection. The adversary A always come from
the wired connection domain. The case where A is coming
from the wireless domain is out of scope of this paper.

At any times, S should be able to identify legitimacy of
the request message. A legitimate request from C is always

Fig. 2. Application Scenario

processed and replied with a CoAP response. On the other
hand, an illegitimate request from A should be detected and
S should further act (i.e. report to Gateway G) as explained in
chapter V. In this paper, the capability to identify legitimacy
of the message come from the implementation of SMACK [9].

We assume G is secure enough, such that it is unattainable
to be compromised. It is possible to design G as a distributed
gateway to get a better reliability as described in [21] [22].
The work to design such system is out of scope of this paper.
Nevertheless, we assume that G is robust and reliable such
that no matter how high the DoS magnitude, does not kill G.

V. COLLABORATIVE COUNTERACTION AGAINST DOS

In this section, we present CLI-DOS, the Collaborative
Counteraction against DoS. The fundamental motivation of
CLI-DOS lies in two following arguments: (i) It is possible
to offload computational expensive filtering at the server to
a much more powerful gateway, while at the same time (ii)
Allowing legitimate request to be served in a best effort
manner. CLI-DOS leverages the Message ID field in the CoAP
header to determine the validity of subsequent CoAP requests.
This will allow the gateway to detect IP spoofing events from
the adversaries. CLI-DOS will to some extent reduce the
communication capabilities of the server, however it will not
completely stop the server to perform critical communication
task even under heavy DoS attacks. The following subchapter
explain the detailed procedures of CLI-DOS both from the
server and gateway side.

A. Procedures from The Server Perspective

At any times, the server measures the number of invalid
message(s) m for every time period t. In a normal operation,
if there is no DoS attack occured, S resets m to 0 when
t is over. However, if the number of invalid messages m
exceeds a predefined threshold h, S contacts G and sends
a request r to start DoS protection. Let IDqa be the message
ID accepted by SMACK as a valid request [9], and IDq as
a set of accepted message ID of size x, then Algorithm 1
summarize S procedures for every time period t.

When a newer valid request arrived, IDq should be up-
dated accordingly. For example, let x be 20, once IDq1

arrived, IDq would contains {IDq2, IDq3, IDq4, ..., IDq21}.



Algorithm 1 Procedure at S

1: IDq = {IDq1, IDq2, ..., IDqx}
2: m = 0
3: while time < t do
4: <Receive and check short MAC>
5: if CoAP Request Valid and IDqa ∈ IDq then
6: IDq.delete(IDqa)
7: if a < (x/2) then
8: IDq.append(IDq(x+1))
9: else

10: IDq.delete(IDq1, ..., IDq(a−(x/2)))
11: IDq.append(IDq(x+1), ..., IDq(x+1+(a−(x/2))))
12: end if
13: else if CoAP Request Invalid then
14: m = m+ 1
15: if r has not been sent and m > h then
16: <Send r to G, starts s1 and turn off radio>
17: else
18: <Send mf to G >
19: end if
20: end if
21: end while
22: m = 0

Since CoAP runs on top of UDP, it is possible that re-
quest messages arrived out of order. For example, in-
stead of IDq1, it is IDq13 whose arrived first. Then
IDq would delete IDq13 and {IDq1, ..., IDq(13−(20/2))},
and append 1 + (13 − 20/2) additional message ID’s
at the end of the list. Hence, IDq would become
{IDq4, IDq5, ..., IDq12, IDq14, ..., IDq23, IDq24}. However,
if the message ID is less than x/2, IDq will just delete IDqa,
and append 1 new message ID at the end of the list.

Request r includes the following information:
• The latest state of set IDq .
• A list of recorded source IP addresses in which the Server
S wants to block.

• Maximum number of allowed IP packets per second, p.
• Threshold value h, denotes the maximum number of

invalid messages for a time period t.
• A sleep period, s.
Once S goes into the sleep mode, it initializes an internal

clock s1, which then followed by turning off its radio com-
munication. On the other hand, if r has been sent to G, S
only sends mf , a flag message informing G of each individual
invalid request arrived at S.

B. Procedures from The Gateway Perspective

When there is no request r from S, G operates normally
by forwarding all request messages from C to S. However,
when r received, G initialize s2, a timer to indicate when S
is going to wake up again. This step marks G to operates on
a more strict rules on who can send CoAP request towards S.

During this period, all packets which have the destination
address of S are checked with respect to their higher level

Algorithm 2 Procedure at G during attack period
1: <Receive r from S >
2: IDq = {IDq1, IDq2, ..., IDqx}
3: <Starting timer s2 >
4: <Apply filtering mechanism as requested by S >
5: a = 0 and d = 0
6: <Initiate messages buffer with the length x >
7: while s2 is not expired do
8: <Receive CoAP request packet from C >
9: if IDqa ∈ IDq then

10: < a = a+ 1 and put the packet into buffer>
11: else
12: < d = d+ 1 and discard the packet>
13: end if
14: end while
15: if a < p then
16: <Forwards all queued packet to S >
17: else
18: <More severe attack happens>
19: <Sends warning w to the system responsible>
20: end if

protocol, such that: i) all packets with the messages ID not
in the list of IDq , ii) all packets with forbidden IP addresses,
and iii) all packets but CoAP, are dropped.
G measures the number of dropped and accepted packets

per second targetting S, denoted as d and a respectively.
When period s is over, S turned on its radio communication
again, and notify G. When G get notified by S, it checks
whether s2 > s as well as if a < p, where p is a threshold
determines the maximum allowed load on S. If both conditions
are met, G starts forwarding sequentially all queued packets
targetting S until the packet buffer is empty. G then sets a
to 0 and reinitialized s2 to 0. Otherwise, when s2 > s, G
would assumes that a more severe attack happens and sends
a warning message w to the system responsible. Algorithm 2
summarizes G behavior during the attack period.

Also, when filtering mechanism kicked in, G should have
a MID list processing, regardless of the state of S. When a
request with MID IDqa received, G checks if it is in the IDq

or not. If yes, then G puts IDqa into a temporary list IDt

where the size is adjustable. Meanwhile, G initialize a timer
tw, where it expects to receive an ominous message from S,
saying that CoAP request with IDqa is an attack. If it does not
happen until tw expired, G assumes that the request is valid,
and delete IDqa from IDt, followed by the adaptation of IDq

similar to the process explained in section V-A. Algorithm
3 summarizes the G message ID processing, which running
parallel with Algorithm 2 as a non-blocking operations.

VI. EXPERIMENTAL EVALUATION

In this section, we discuss the setup, scenario, and results
of the evaluation of CLI-DOS. We compare CLI-DOS with
Vanilla CoAP and pure IP based protection at G. We have
developed a prototype of CLI-DOS on Contiki Operating



Algorithm 3 Procedure at G at any times

1: IDt = {}
2: <Receive CoAP with MID IDqa from C >
3: if IDqa ∈ IDq then
4: IDt.append(IDqa)
5: <Starts tw >
6: if tw expired then
7: <CoAP message with IDqa is valid>
8: IDt.delete(IDqa) and IDq.delete(IDqa)
9: if a < (x/2) then

10: IDq.append(IDq(x+1))
11: else
12: IDq.delete(IDq1, ..., IDq(a−(x/2)))
13: IDq.append(IDq(x+1), ..., IDq(x+1+(a−(x/2))))
14: end if
15: else if mf received before tw expired then
16: <CoAP message with IDqa is an attack>
17: IDt.delete(IDqa)
18: end if
19: else
20: <Drop CoAP Request>
21: end if

System [13]. The new developed firmware is tested on Zolertia
Firefly platform [23], which has the following specifications :
CC2538 radio chipset, 32 kB RAM, 512 kB of flash ROM.

Our experiment follows the scenario depicted in Fig 2,
where S is connected to G using IPv6 over IEEE 802.15.4
[24] transmission running 6LoWPAN stack. S is the Zolertia
Firefly [23] device running extended CoAP server equipped
with CLI-DOS. G is a dedicated VM running contiki rpl-
border-router and connected to a slip radio through serial
connection. The combination of rpl-border-router and slip-
radio makes it possible to bridge the wired domain with the
6LoWPAN protocol in the wireless domain. G, C, and A runs
on a native linux and performs the computation on an identic
but fully isolated VM with native IPv6 connectivity. All of the
VM’s equipped with 2 GB Memory and 1 core vCPU.

We perform three experiments, namely 1) E PLAIN, where
S running Vanilla CoAP implementation, and G acts as a
forwarder, where all the packets are forwarded to S. 2)
E SMACK IP, where S has SMACK [9] and able to shuts
down its interface and report to G the source IP of A,
when certain limit of attack is reached. For simplicity, we
made the limit same as h value at E CLIDOS MID. 3)
E CLIDOS MID, where S running CLI-DOS with message
ID filtering mechanism. To this end, aside from source IP
filtering, G has the capability to inspect CoAP message
based on its MID, as we explained in the previous section.
One experiment performed by running 100 Request-Response
exchange messages between C and S. One experiment consid-
ered as done only if the last request message has been replied
by the S, and received by C. It is possible to lost the message
if S is fully occupied by A. In this case, the experiment
considered to be done when the last retransmission message on

the last request has been transmitted. C sends similar request
message every 2 sec, with the size of 28 bytes.

We examine CLI-DOS performance with five different at-
tack settings, that is: 0, 5, 10, 15, and 20 msg/s. We run each
experiments 5 times for each attack settings, and then calculate
the mean value. A sends 19-bytes CoAP request as the attack
messages in all experiments. Also, during our evaluation, we
set the threshold h to be 9 msg/s and sleep time s to be 60 sec.
These values are determined heuristically thorugh repeated test
and evaluations. The performances are measured in terms of
i.) energy consumption at S, and ii.) RTT from C.

A. Results

Fig 3 shows average energy consumption at S for 5 different
attack settings. When there is no attack, each of the experi-
ments shows little difference on the energy usage. It means that
SMACK as a message validator, does not have considerable
amount of additional overhead.

Fig. 3. Energy Consumption of each attack configuration

However, when the attack continue to rise to 5 msg/s,
E PLAIN uses 2.29 µJ, E SMACK IP uses 2.23 µJ, while
E CLIDOS MID uses 2.22 µJ. Intuitively, E SMACK IP and
E CLIDOS MID should show lower energy consumption than
shown in the graph. However, this is happened because S
considers 5 msg/s as a non-malignant attack. The reason is
because we set the threshold h to be 9 attack messages per
second (we would get a similar result with a different threshold
selection). Hence, S would not send any request r towards G
to start filtering protection. At 20 msg/s, E PLAIN reaches
the highest point 2.65 µJ, while E SMACK IP uses 2.17 µJ.
On the other hand, E CLIDOS MID comfortably uses only
1.61 µJ energy during the experiment. It means that even
though E SMACK IP performs IP filtering at G, it is not
enough to protect S once A spoof its address. Meanwhile, as
E CLIDOS MID performs deeper payload inspection (based
on MID) for each incoming request, it has better performance
because less bogus messages are arrived at S.

Fig 4 shows the average RTT for each different at-
tack settings in all experiments. We can see that during 0
and 5 msg/s (benign attack), there is not much different



Fig. 4. Average Round Trip Time

between them. However, when the attack goes up to 20
msg/s, E CLIDOS MID (645.28 ms) performs better than
E SMACK IP (2005.95 ms) and E PLAIN (811.28 ms).
E SMACK IP took longer time because it shuts down its
interface much longer than E CLIDOS MID due to IP address
spoofing at the advesary, which then followed by subsequent
attack. On the other hand, E CLIDOS MID could serve the
request better than others, due to MID blocking at G such
that adversary A could not reach S even by spoofing their
IP address. As Fig 4 is average value, E SMACK IP and
E CLIDOS MID’s are get affected by sleep period s of the
victim. But, it is only a fraction of the messages need to wait
longer to get reply due to s.

VII. CONCLUSION AND FUTURE WORK

This paper has presented CLI-DOS, a Collaborative Coun-
teraction against Denial of Service. Through this collaboration,
it is possible to off-load the computational expensive packet
filtering from the IoT units to a much more powerful gateway.
This way, CLI-DOS has effectively prevent the IoT units from
worhtlessly commit of resources during DoS attack, while at
the same time serving legitimate requests to the best possible
extent. The solution works without requiring any trust between
the IoT unit and gateway except for sharing filtering param-
eters, i.e. SMACK shared secrets are not shared. We have
experimentally evaluated CLI-DOS through our prototype on
Contiki OS running on Zolertia Firefly platform. The results
show that, when uder heavy attack, CLI-DOS successfully
preserve the energy consumption, such that IoT units does
not have to deal with the attack messages and can serve
the legitimate client better. This come at the price of some
longer RTT for some request packet, due to waiting time
of the server when they shut down their interface. Future
works will include evaluation of larger IoT networks and
under different wireless channel conditions. Also, scenarios
with more powerful adversaries is left to consider.

REFERENCES

[1] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart objects
as building blocks for the internet of things,” IEEE Internet Computing,
vol. 14, no. 1, pp. 44–51, Jan 2010.

[2] H. Wang, C. Jin, and K. G. Shin, “Defense against spoofed ip traffic
using hop-count filtering,” IEEE/ACM Transactions on Networking,
vol. 15, no. 1, pp. 40–53, Feb 2007.

[3] Cisco. (2008) Cisco guide to defending against distributed dos attacks.
[4] E. Rescorla and N. Modadugu, “Datagram transport layer security

version 1.2,” Internet Requests for Comments, RFC 6347, January
2012. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6347.txt

[5] C. Kaufman, “Internet key exchange (ikev2) protocol,” Internet
Requests for Comments, RFC 4306, December 2005. [Online].
Available: http://www.rfc-editor.org/rfc/rfc4306.txt

[6] R. Hummen, H. Wirtz, J. H. Ziegeldorf, J. Hiller, and K. Wehrle,
“Tailoring end-to-end ip security protocols to the internet of things,” in
2013 21st IEEE International Conference on Network Protocols (ICNP),
Oct 2013, pp. 1–10.

[7] Nithun Chand O and S. Mathivanan, “A survey on resource inflated
denial of service attack defense mechanisms,” in 2016 Online Interna-
tional Conference on Green Engineering and Technologies (IC-GET),
Nov 2016, pp. 1–4.

[8] M. Tiloca, C. Gehrmann, and L. Seitz, “On improving resistance to
denial of service and key provisioning scalability of the dtls handshake,”
International Journal of Information Security, vol. 16, no. 2, Apr 2017.

[9] C. Gehrmann, M. Tiloca, and R. Hoglund, “Smack: Short message
authentication check against battery exhaustion in the internet of things,”
in 2015 12th Annual IEEE International Conference on Sensing, Com-
munication, and Networking (SECON), June 2015, pp. 274–282.

[10] C. Gehrmann and G. Selander. (2013) Methods, nodes and computer
programs for reduction of undesired energy consumption of a server
node.

[11] M. Tiloca, R. Hoglund, and S. Al Atiiq, “Sardos: Self-adaptive reaction
against denial of service in the internet of things,” in 2018 Fifth
International Conference on Internet of Things: Systems, Management
and Security, Oct 2018, pp. 54–61.

[12] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (coap),” Internet Requests for Comments, RFC 7252, June
2014. [Online]. Available: http://www.rfc-editor.org/rfc/rfc7252.txt

[13] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th Annual
IEEE International Conference on Local Computer Networks, Nov 2004.

[14] Netfilter. (2019) Netfilter. [Online]. Available: https://www.netfilter.org/
[15] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet Denial

of Service: Attack and Defense Mechanisms (Radia Perlman Computer
Networking and Security), 2004.

[16] J. Li, M. Sung, J. Xu, and L. Li, “Large-scale ip traceback in high-
speed internet: practical techniques and theoretical foundation,” in IEEE
Symposium on Security and Privacy, 2004. Proceedings. 2004, May
2004, pp. 115–129.

[17] F. Seidel, K. Krentz, and C. Meinel, “Deep en-route filtering of
constrained application protocol (coap) messages on 6lowpan border
routers,” in 2019 IEEE 5th World Forum on Internet of Things (WF-
IoT), April 2019, pp. 201–206.

[18] X. Qie, R. Pang, and L. Peterson, “Defensive programming: Using an
annotation toolkit to build dos-resistant software,” in Proceedings of the
5th Symposium on Operating Systems Design and implementation, ser.
OSDI ’02. Berkeley, CA, USA: USENIX Association, 2002, pp. 45–60.

[19] N. Bhatti and R. Friedrich, “Web server support for tiered services,”
IEEE Network, vol. 13, no. 5, pp. 64–71, Sep 1999.

[20] Xiaofeng Wang and M. K. Reiter, “Defending against denial-of-service
attacks with puzzle auctions,” in 2003 Symposium on Security and
Privacy, 2003., May 2003, pp. 78–92.

[21] R. J. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems. Wiley Publishing Inc., 2010.

[22] K. P. Birman, Guide to Reliable Distributed Systems. Building High-
Assurance Applications and Cloud-Hosted Services. springer, 2012.

[23] Zolertia. (2019) Zolertia firefly. [Online]. Available:
https://zolertia.io/product/firefly/

[24] S. Chakrabarti, G. Montenegro, and J. Woodyatt, “Ipv6 over low-power
wireless personal area network (6lowpan) esc dispatch code points
and guidelines,” Internet Requests for Comments, RFC 8066, February
2017. [Online]. Available: https://tools.ietf.org/html/rfc8066


