
A Proof of Concept Denial of Service Attack
Against Bluetooth IoT Devices

Shane Ditton∗, Ali Tekeoglu†, Korkut Bekiroglu‡, Seshadhri Srinivasan§
∗Network Computer Security Department, SUNY Polytechnic Institute, dittons@sunypoly.edu
†University of New Brunswick, Canadian Institute for Cybersecurity, ali.tekeoglu@unb.ca

‡Electrical Engineering Department, SUNY Polytechnic Institute, korkut.bekiroglu@sunypoly.edu
§Berkeley Education Alliance for Research in Singapore, seshadhri.srinivasan@bears-berkeley.sg

Abstract—Bluetooth technologies have widespread applications
in personal area networks, device-to-device communications and
forming ad hoc networks. Studying Bluetooth devices security is a
challenging task as they lack support for monitor mode available
with other wireless networks (e.g. 802.11 WiFi). In addition,
the frequency-hoping spread spectrum technique used in its
operation necessitates special hardware and software to study
its operation. This investigation examines methods for analyzing
Bluetooth devices’ security and presents a proof-of-concept DoS
attack on the Link Manager Protocol (LMP) layer using the
InternalBlue framework. Through this study, we demonstrate
a method to study Bluetooth device security using existing
tools without requiring specialized hardware. Consequently, the
methods proposed in the paper can be used to study Bluetooth
security in many applications.

Index Terms—Bluetooth, Internet of Things, Security, Denial
of Service.

I. INTRODUCTION

Bluetooth technology is one of the most prominent wireless
connectivity options for the resource constraint Internet of
Things (IoT) devices. Reasons for the popularity of Bluetooth
among IoT include; low power consumption, lightweight net-
working, and ubiquity of the technology for interconnecting to
other IoT devices. The most recent specification of Bluetooth
is v5.11.As mentioned in the Bluetooth market update for
2019, ABI Research lists the primary markets for Bluetooth as
mobile phones, tablets & PCs, audio & entertainment devices,
automotive industry, smart buildings, smart industrial infras-
tructure, smart homes, and smart cities. They are expecting 48
billion Internet-enabled devices to be installed by 2021. Out
of these IoT devices, about one-third will include Bluetooth
technology for wireless communication.

With the ubiquitous deployment of Bluetooth technology
embedded within billions of IoT devices, comes the security
risks associated with it [1]. In particular, it is being deployed
in a number of safety-critical products, including medical
devices and connected automobiles. Recently, a brain-machine
interface (BMI) start-up company, Neuralink, has announced
that Bluetooth technology will be utilized to connect a spe-
cialized chip implanted into the human brain to connect it to
a controller device, most likely a mobile application, which

†This work is supported by State University of New York Polytechnic
Institute Undergraduate Research Program (SURP) during summer 2019.

1https://www.bluetooth.com/specifications/bluetooth-core-specification/

in turn connects to the Internet [2]. Bluetooth enabled insulin
pumps, blood glucose monitoring systems, have been in the
market for a while now. Around 2011, they have been shown
to be vulnerable for multiple security issues in Bluetooth
stack, which could let an attacker inject fatal doses remotely
through the exploited insulin pump. Security of these Blue-
tooth enabled medical IoT devices is of utmost importance
due to the potentially fatal consequences after the exploitation
of vulnerabilities in the Bluetooth stack. Moreover, Bluetooth
devices carry significant personal information which is critical
in many ways.

Recently, with a constant, on-board Internet connection, cars
became massive mobile IoT devices on wheels. The automo-
bile industry has been embedding Bluetooth stack into vehicles
for about a decade now. The attack surface on automobiles has
been exponentially increasing with the surge in the integration
of computer sub-systems. These sub-systems form controller
area networks (CAN), and an exploit in one sub-system, could
spread to the other which would eventually lead to complete
take-over of control of a vehicle. Bluetooth security becomes
significantly important in this case as well to prevent fatal
malicious attacks.

In a previous work [3], we have analyzed the security of
Bluetooth Low Energy (BTLE) and detailed an approach to
test for security issues of BTLE enabled devices with low-
cost off-the-shelf devices and open-source software, such as
Ubertooth and Bluefruit. In this paper, we present details of
the design and implementation of a proof-of-concept denial
of service attack against Bluetooth enabled devices, utilizing
Bluetooth’s Link Manager Protocol (LMP). First, we give a
brief overview of the recent literature on Bluetooth security
research in Section II. In Section III, an overview of Bluetooth
architecture followed by different approaches to capturing
Bluetooth network traffic for security research purposes are
presented. Then, in Section IV we are going to explain the
design and tools we used for proof-concept Denial of Service
attack. In Section V, we will present the implementation and
experiment details. And finally, the conclusion and future work
will be presented VI.

II. RELATED WORK

In this section, recent research from the literature on the
security and privacy of Bluetooth connected IoT devices,



is presented to the best of our knowledge. There has been
significant attention on Bluetooth technology with the prolifer-
ation of IoT devices, which stimulated the interest of security
researchers from academia as well as industry. Researchers
have been reporting a variety of Bluetooth related potential
attacks and vulnerabilities since the popularity of Bluetooth
picked up.

The most recent version of Bluetooth technology standard
v5.0 is investigated by security researchers in [4]. They exper-
imented with Secure Simple Pairing (SSP) protocol which is
responsible for the pairing of devices. SSP contains a security
mechanism called the passkey entry association model. The
authors analyzed this model and found that the passkey entry
association model is vulnerable to Man-in-the-Middle attacks,
as soon as the host re-uses the passkey. As a solution, they
proposed a new protocol to fix this vulnerability in the passkey
entry model of SSP in Bluetooth v5.0. Authors emphasized
the importance of security in Bluetooth v5.0, due to its com-
monplace use in home networking systems. They underline
that people use home IoT devices that are utilizing Bluetooth,
usually transfer personal, sensitive information.

Researchers find a potential weakness in the initial phase
of pairing which would lead to impersonation of a device [5].
This vulnerability requires a sniffer to capture the Input-Output
capability and public keys during the initial phase of pairing.
Potential problem exists even with Bluetooth version 5.0.
To counter the potential problem, researchers developed an
enhancement to SSP by embedding two new security levels.
They attempted to reduce the potential for man-in-the-middle
attacks during the pairing phase.

In recent years, System-on-Chip (SoC) designs became pop-
ular. An SoC system embeds multiple components of computer
electronics in a single board/chip. For instance, Bluetooth
and WiFi electronics could be integrated into a single chip.
Security researchers discovered two chip-level vulnerabilities,
nicknamed BleedingBit [6], in SoC chips manufactured by
Texas Instruments that have integrated BLE and WiFi com-
ponents. With these vulnerabilities, an attacker would gain
unauthenticated access to remote-code-execution on the chip.
What makes it even more severe is this chip very commonly
used in Cisco, Meraki and Aruba enterprise level access points.
That means an exploit in the BLE component of the chip
would let the attacker compromise the enterprise WiFi network
as well.

A group of serious security issues was discovered in im-
plementations of the Bluetooth stack [7], which was named
“BlueBorne”. These vulnerabilities affected a variety of oper-
ating systems, including Android, iOS, Windows and Linux [8]
as well as a desktop and IoT based devices. Bluetooth devices
that are not in discoverable mode or devices that are not paired
with the attacker are still vulnerable for “BlueBorne” attack
unless they are patched. In [9], security researchers inves-
tigated Bluetooth protocol’s implementation in the Android
system and uncovered design flaws which could lead to serious
security issues. One of the findings was in authentication,
for instance, if a paired device has a change in its profile,

other ends of the pairing is not notified, and trust is still
maintained. Bluetooth’s omnipresence in home automation
and entertainment systems urged researchers to investigate its
security model in more detail [10]. They looked into v5.0,
the latest standard and proposed a formal security model to
evaluate secure simple pairing (SSP) protocol.

A survey of recent Bluetooth exploits and the recommended
mitigation techniques are presented in [11]. Authors mention
the recent popularity of Bluetooth, low-cost, low-power, short-
range wireless technology, especially amongst Internet-of-
Things (IoT) devices. Real-life examples of successful exploits
are discussed and the importance of understanding attack risks
faced with using Bluetooth technology within our daily used
devices is presented in this study.

Furthermore, the authors in [12] investigate major security
issues in Bluetooth protocols with the help of a Man-in-
the-Middle (MitM) attack setup. The investigation tests the
proposed attacks with necessary equipment after introducing
some of the well-known tools for Bluetooth hacking. The work
proved that how easy to interfere with the Bluetooth device to
control the data and even the mobile devices in some cases.

Apple products are no exception for Bluetooth popularity,
on the contrary, almost all Apple devices including; Apple
Watch, iPods, Apple-TV, iPhones have Bluetooth capability.
Researchers [13] examined communication between iOS and
macOS devices. One protocol for keeping connections alive
under Bluetooth stack is Bluetooth Low Energy Continuity
protocol, which is designed for inter-operability and seamless
experience for users. However researchers, in their exper-
iments, found that some fields in the Continuity protocol
network packets are transmitted in clear text, which leaks
information about users that would enable malicious entities to
track their devices. One such information is the MAC address
of the device, which is designed to be changing randomly for
increased privacy. However, due to discovered flow, attackers
can figure out the MAC address with the help of the Continuity
protocol’s clear text data-fields and profile and track Apple
users.

III. BACKGROUND

Before going into the details of the proposed proof-of-
concept Denial of Service attack, in this section, we provide
some background information on Bluetooth architecture and
different approaches to investigate Bluetooth packets for se-
curity research.

A. Overview of Bluetooth Architecture

Bluetooth devices operate at an RF-based 2.4 GHz fre-
quency in the license-free, globally available ISM (Industrial,
Scientific, and Medical) radio band. It was originally designed
for short-range (i.e. up to 10 meters), connectivity technology
& solution for portable, personal devices. The Bluetooth spec
comprises an HW & SW protocol specification usage case
scenario profiles and interoperability requirements as shown
in Figure 1.



Fig. 1: Bluetooth architecture, and protocol layers

Worldwide availability and compatibility is the advantage
of operating in this band. However, a potential disadvantage
is that Bluetooth devices must share this band with many
other RF emitters such as automobile security systems, other
wireless communications standards (such as 802.11), and or-
dinary noise sources (such as microwave ovens). To overcome
this challenge, Bluetooth employs a fast frequency-hopping
scheme and uses shorter packets than other standards in the
ISM band. This scheme makes Bluetooth communication more
robust and more secure.

B. Capturing HCI Messages

The Host Controller Interface (HCI) messages provide a
simple way to analyze Bluetooth devices. The communication
between the host operating system and the physical Bluetooth
device is managed by the HCI subsystem within the Bluetooth
stack. Since these messages are visible to the operating system,
they can be captured through the use of software on the host.

For instance, in the Android mobile operating system, this
can be accomplished by enabling ”the Bluetooth HCI snoop
log” in Android Developer Options. Then, Android would
write all incoming-outgoing Bluetooth packages on the mobile
device into a .pcap formatted file, which could be extracted
from the phone (i.e. using ADB tool) and examined offline
on a computer with a Wireshark network packet analyzer. On
Linux systems using the BlueZ Bluetooth stack, hcidump,
tcpdump, or Wireshark can be used to capture HCI
messages for further analysis. This allows a researcher to
see everything happening above the HCI layer. This may be
sufficient for some types of research. However, if one wants to
see into the lower layers of the Bluetooth stack, this approach
with HCI snooping will not suffice.

C. Hop Sequence Following Sniffers

One option for viewing the lower layers of the Bluetooth
protocol is to sniff the packets out of the air. The main
obstacle to this strategy is the FHSS technique that Bluetooth
uses to avoid interference. Bluetooth Classic operates over
80 channels, with each channel being 1 MHz wide, while
Bluetooth Low Energy operates over 40 channels, with each
channel being 2 MHz wide. There are two main approaches
to solving this problem. The first is to record all data on all
channels. This is sometimes referred to as ”wideband” capture,
Wideband capture can be achieved using Software Defined

Radios (SDR). Several commercial protocol analyzers also use
this technique to capture Bluetooth traffic. The SDR approach
can be implemented with open-source software such as GNU-
Radio. One drawback for SDR is the amount of data produced
by sniffing the whole Bluetooth spectrum, and the amount of
CPU power required for digital signal processing on this raw
data [14].

The second approach is to try to ”follow” a connection by
hopping to the correct channel at the correct time. This is the
approach used by many low-cost USB connected Bluetooth
sniffers, such as the Adafruit’s Bluefruit and the Ubertooth, as
shown in Figure 2. Connection following avoids the need to
use an expensive radio receiver with 80 MHz of instantaneous
bandwidth, but it introduces several challenges and limitations.
First, these sniffers can only listen to one channel at a time.
Therefore, only one Bluetooth network may be monitored at
a time. Second, the sniffer must hop very precisely to avoid
dropping Bluetooth packets. In practice, it can be challenging
to get a high-quality packet capture with these devices.

D. Firmware Reverse Engineering

Another technique for obtaining low-level details about
the operation of a Bluetooth chip is to reverse engineer its
firmware. Dennis Mantz, a researcher from TU Darmstadt,
achieved this with the BCM4339 in his thesis titled ”Inter-
nalBlue - A Bluetooth Experimentation Framework based on
Mobile Device Reverse Engineering” [15]. The framework that
was developed is compatible with all Broadcom chips, with
varying levels of support [16]. The InternalBlue framework
uses vendor-specific HCI commands to gain access to the
RAM and ROM of the Broadcom Bluetooth controller, which
allows the framework to control the execution of the chip
and to retrieve interesting information [17]. In particular,
InternalBlue supports capturing Link Manager Protocol (LMP)
packets. LMP can be ingested and parsed by Wireshark
through the use of a modified third-party Wireshark dissector.
LMP packets can also be injected into active connections using
the InternalBlue framework. This process can be used for
fuzzing at the LMP layer, or to implement various attacks
on Bluetooth pairing.

IV. TOOLS AND METHODS

Firmware source code for Bluetooth chips is not shared
publicly by chip manufacturers, even though the Bluetooth
standard is openly available. For researchers interested in
investigating the internal workings of Bluetooth firmware,
there are multiple challenges. These challenges are as fol-
lows; (i) Low-level operations are handled by the Bluetooth
controller, not by the host. (ii) The Host Controller Interface
(HCI) limits access to the controller from the host. (iii) Sniffing
Bluetooth RF signals can be difficult due to FHSS.

A. Capturing Bluetooth at the RF Layer

One approach is to follow a Bluetooth connection as it
hops through the spectrum. Affordable sniffers (such as the
Ubertooth and Adafruit Bluefruit) use this strategy.



Fig. 2: Ubertooth for open-source Bluetooth packet sniffing and Adafruit’s
BLE Sniffer Bluefruit

Another approach is to sniff the entire RF band used by
Bluetooth. This can be done with a software-defined radio,
provided that it has enough bandwidth. Commercial Bluetooth
protocol analyzers that use this approach are also available. We
ultimately opted to pursue an alternative approach.

B. InternalBlue Framework

In 2018, development began on a framework called ”In-
ternalBlue”, as part of a master’s thesis at TU Darmstadt.
Development has continued at TU Darmstadt’s Secure Mobile
Networking Lab (SEEMOO). InternalBlue uses Broadcom-
specific HCI commands to gain access to the firmware of
Broadcom Bluetooth controllers. Using this framework, the
firmware can be examined, controlled, and modified while the
chip is running. InternalBlue can also be used for live/dynamic
analysis through the use of a ”breakpoint” feature on supported
chips. We used the framework on a Nexus 5 and on the
Raspberry Pi 3.

C. Ghidra: Reversing Bluetooth Firmware for Patching

In conjunction with InternalBlue, we also used Ghidra,
a software reverse engineering suite developed by the US
National Security Agency. We used Ghidra to perform static
analysis on firmware images that we obtained with Internal-
Blue. This was used to develop patches for the firmware.

V. EXPERIMENTS: ATTACKS AND MITIGATIONS

It has been shown previously that one can start a DDoS
attack against a Bluetooth device in proximity with simple
Linux command-line tools. For instance, an attacker in prox-
imity could start reconnaissance with hcitool and can scan
the environment for Bluetooth devices (i.e: $ hcitool scan). If
there are any, the MAC address would be found out. With the
knowledge of the target device’s MAC, the next step would be
to start ping with large sized request packets in flood mode.
l2ping tool could be used for this step (i.e: $ l2ping -i hci0
-s 600 -f <Bluetooth MAC>). If the attacker has multiple
Bluetooth interfaces in his attacking machine, with automated
scripts, he can start a devastating DDoS attack on any target in
proximity. However, this approach is brute-force and it would
generate an immense amount of packets potentially cause
congestion in the 2.4GHz frequency domain. Instead of brute

force attack, in this research, we used a different approach
that would not generate a flood of packets directed towards
the victim. We explain the concept of filling the available
connection slots in the LMP layer on the target device below.
Our test-bed for the proof-of-concept attack is depicted in
Figure 3.

Fig. 3: Test-bed for PoC LMP denial of service attack

A. Proof of Concept LMP DoS Attack

In the thesis [15], the author identified a connection tracking
data structure in the firmware of the BCM4339 (used on
the Nexus 5). This data structure keeps track of each of the
active LMP connections and has a maximum capacity of 12
connections. Our concept was to fill this table with spurious
LMP connections from one or more devices, preventing the
Nexus from connecting to any other devices.

1) Keeping an LMP session open: In our testing, different
devices exhibited different behaviors when it came to how
they handled LMP connections. The Nexus 5, when initiating
connections, tended to maintain connections until it received
a ”detach” packet from the other device.The Raspberry Pi 3
would almost immediately send a detach packet and discon-
nect. This made the DoS attack difficult to execute using the
Raspberry Pi 3.

In order to resolve this, we developed a firmware patch
for the Raspberry Pi 3 which prevented detach packets from
being sent (see Algorithm 1). We did this by referencing
[15] the author’s work on reversing a function he calls
“send lmp packet”. This function takes a “connection handle”
(or connection number) and a pointer to packet data as
arguments.

Our patch hooks the send lmp packet function, branching
into our code whenever an LMP packet arrives to be checked



and sent. We then inspect an opcode byte within the packet
buffer (referenced by the pointer argument), looking for a
detach packet. If a detach packet is found, we branch into
a handler for invalid LMP packets. Otherwise, we branch
back into the main send lmp packet function and continue
as normal.

Algorithm 1 Setting up connection to HCI interface
Libraries:
from pwn import *
from internalblue.adbcore import ADBCore

1: internalblue = hcicore()
2: internalblue.interface=internalblue.device list()[0][1]
3: if not internalblue.connect():

log.critical(“No connection to target device.”)
exit(-1)

4: HOOK ADDRESS = 0x170ba
5: ASM ADDRESS = 0x207eee
6: ASM SNIPPET = ”””

b prevent detach
prevent detach:
mov r4, r1
ldr r0, [r1, #12]
and r0, 0xff
cmp r0, 0x0e
beq 0x1712a
b 0x107be

”””
7: progress log = log.info(“Writing prevent detach to RAM...”)
8: code = asm(ASM SNIPPET, vma=ASM ADDRESS)
9: if not internalblue.writeMem(address=ASM ADDRESS,

data=code, progress log=progress log):
log.critical(”Error writing to RAM.”)
exit(-1)

10: log.info(“Writing send lmp packet hook to ROM...”)
11: patch = asm(“b 0x%x” % ASM ADDRESS,

vma=HOOK ADDRESS)
12: if not internalblue.patchRom(HOOK ADDRESS, patch):

log.critical(“Error patching ROM.”)
exit(-1)

13: internalblue.shutdown()
14: log.info(“Goodbye!”)

We initially developed our patch for the Nexus 5 to take
advantage of InternalBlue features such as tracepoints. We then
later ported them to the Raspberry Pi 3. The patches were
loaded onto the devices using the InternalBlue framework.

2) Measuring Victim’s System Vitals under DoS attack: Our
experiments included a rooted Nexus 5 phone as the victim
device. The victim could be any Bluetooth enabled device,
however in order to monitor the effects of our DoS attack
better, we opted to use an Android device. In Android OS,
texttt”dumpsys”2 is a command-line tool that could be exe-
cuted through Android Debugging Bridge to measure system
information. This tool is designed to monitor many different
system vitals, from CPU to battery usage. We used "ADB
shell dumpsys cpuinfo" to measure the system’s CPU
statistics, before, during and after the proposed Bluetooth DoS
attack. Figure 4 plots the CPU information from the Nexus 5.

2https://developer.android.com/studio/command-line/dumpsys

The dotted red line on the top shows the total CPU usage,
which shows that our DoS attack does not affect the CPU
usage on the victim. This proves that the proposed method is
not a brute force attack, on contrary it is lightweight on the
victim, which makes it much harder to detect the anomaly on
the victim’s side.

Fig. 4: CPU usage on the victim (Nexus 5) is not affected during the LMP
denial of service attack

During the experiment in test-bed (depicted in Figure 3),
we captured Bluetooth traffic with Wireshark with the help
of InternalBlue framework, on the victim device. First, a
legitimate user (R-Pi on the top of Figure 3) is connected
to Nexus 5. Since both devices are not peripherals, after
exchanging profile information, they decide to disconnect
gracefully. We did this legitimate connect-disconnect process
before the attack, with one attacker, with 2 attackers, with 3-
attackers, and with 4-attackers. When the number of attackers
reached 4, a connection request from legitimate R-Pi to
victim Nexus 5 timed-out, and failed. Which proved that even
though the number of LMP slots in Bluetooth stack is 12, in
practice Nexus 5 was only able to handle 3 simultaneous LMP
connections. Figure 5 shows the delta time between the first
connection request packet and the final connection teardown
request packet, without and with the DoS attack.

Fig. 5: The amount of time it takes from the initial connection request packet
to the final disconnection request packet between Nexus 5 and legitimate R-Pi
clients. Measurements are taken before and during the LMP denial of service
attack. When the number of attackers reached 4, a connection request from
legitimate devices times out.



One possible strategy to mitigate this attack would be to
add some type of exponential back-off timer to prevent devices
from repeatedly establishing LMP connections which do not
result in the pairing. Another strategy would be to give the
user more control over when and how LMP connections
are established. Currently, no user-perceptible feedback is
provided, and the conditions under which LMP connections
are established and maintained varies by device.

3) Single Device DoS attack: We also investigated whether
or not it was possible to conduct a denial of service using one
device. This would make the attack more practical. Using [15]
again as a guide, we examined the connection data structure.
We then used Ghidra’s cross-reference feature to find functions
which reference this piece of memory. Through a thorough
review using breakpoints and manual analysis, we found a
function that checks if a connection already exists before
establishing it. We modified this function to skip this check.

After being modified, the link manager attempted to create
another connection, but this caused an error. We surmise that
the baseband controller, which is implemented as a separate
chip on this Bluetooth controller, is also checking for an
existing connection. Since this chip is not accessible via
InternalBlue, we could not establish additional connections.

4) LMP Fingerprinting & Mitigations to Improve Privacy:
One of the major findings in SEEMOO’s InternalBlue research
is that devices provide identifying information through LMP.
This includes (but is not limited to): (i) Device name, (ii)
LMP version and subversion, (iii) Manufacturer ID. This
information can be used to profile a target for vulnerabilities,
or for device tracking purposes. This is a potential privacy and
security concern.

A potential mitigation against LMP layer fingerprinting, and
privacy protection could be achieved as follows. By hooking
the “send lmp packet” function, we are able to modify LMP
packets in memory as they’re dispatched by the Bluetooth
controller. This allows us to modify or conceal identifying
information.

VI. CONCLUSION AND FUTURE WORK

This paper provided an approach to study Bluetooth security
using the Link Manager Protocol (LMP) layer without using
specialized hardware. We demonstrated the approach through
a Denial of Service (DoS) attack using the InternalBlue
framework. The proposed method had three operations to
study the security, they are: (i) Monitor LMP traffic (ii) Inject
arbitrary LMP packets (iii) Modify or reject LMP packets on
the fly. Our study shows that the proposed approach can be
used to perform a hard to detect Denial of Service attack.

Future work may focus on finding a way to conduct the
LMP denial of service using only one attacker device (i.e.
one Raspberry-Pi armed with multiple usb Bluetooth dongles),
and on identifying the cause of the LMP connection timeouts
that we observed. Additional exploration of the Bluetooth
controller’s firmware may also yield new security findings.

REFERENCES

[1] K. Haataja, K. Hyppnen, S. Pasanen, and P. Toivanen, Bluetooth Se-
curity Attacks: Comparative Analysis, Attacks, and Countermeasures.
Springer Publishing Company, Incorporated, 2013.

[2] E. Musk, “An Integrated Brain-Machine Interface Platform with
Thousands of Channels,” bioRxiv, 2019. [Online]. Available: https:
//www.biorxiv.org/content/early/2019/07/18/703801

[3] S. Sevier and A. Tekeoglu, “Analyzing the Security of Bluetooth Low
Energy,” in 2019 International Conference on Electronics, Information,
and Communication (ICEIC), Jan 2019, pp. 1–5.

[4] D.-Z. Sun, Y. Mu, and W. Susilo, “Man-in-the-middle attacks on secure
simple pairing in bluetooth standard v5.0 and its countermeasure,”
Personal Ubiquitous Comput., vol. 22, no. 1, pp. 55–67, Feb. 2018.
[Online]. Available: https://doi.org/10.1007/s00779-017-1081-6

[5] S. Gajbhiye, S. Karmakar, M. Sharma, and S. Sharma, “Bluetooth
secure simple pairing with enhanced security level,” Journal of
Information Security and Applications, vol. 44, pp. 170 – 183, 2019.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S2214212618301728

[6] B. Seri, G. Vishnepolsky, and D. Zusman, “Bleeding Bit: The
Hidden Attack Surface within BLE Chips,” Armis, Tech. Rep.,
2018. [Online]. Available: https://go.armis.com/hubfs/BLEEDINGBIT-
TechnicalWhitePaper.pdf

[7] B. Seri and G. Vishnepolsky, “BlueBorne: The dangers of Bluetooth
implementations: Unveiling zero day vulnerabilities and security flaws in
modern Bluetooth stacks,” Armis, Tech. Rep., 2017. [Online]. Available:
https://go.armis.com/hubfs/BlueBorneTechnicalWhitePaper-1.pdf

[8] B. Seri and A. Livne, “Exploiting BlueBorne in Linux-based
IoT devices,” Armis, Tech. Rep., 2019. [Online]. Available: https:
//go.armis.com/hubfs/ExploitingBlueBorneLinuxBasedIoTDevices.pdf

[9] F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang,
“BadBluetooth: Breaking Android Security Mechanisms via
Malicious Bluetooth Peripherals,” in 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019, 2019. [Online]. Available:
https://www.ndss- symposium.org/ndss- paper/badbluetooth- breaking-
android-security-mechanisms-via-malicious-bluetooth-peripherals/

[10] D.-Z. Sun and L. Sun, “On Secure Simple Pairing in Bluetooth
Standard v5.0-Part I: Authenticated Link Key Security and Its Home
Automation and Entertainment Applications,” Sensors, vol. 19, no. 5,
2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/5/1158

[11] A. M. Lonzetta, P. Cope, J. Campbell, B. J. Mohd, and T. Hayajneh,
“Security Vulnerabilities in Bluetooth Technology as Used in IoT,”
Journal of Sensor and Actuator Networks, vol. 7, no. 3, 2018. [Online].
Available: https://www.mdpi.com/2224-2708/7/3/28

[12] T. Melamed, “An Active Man-in-the-Middle Attack on Bluetooth
Smart Devices,” International Journal of Safety and Security
Engineering, vol. 8, no. 2, 2018. [Online]. Available: https:
//www.witpress.com/Secure/ejournals/papers/SSE080202f.pdf

[13] J. Martin, D. Alpuche, K. Bodeman, L. Brown, E. Fenske,
L. Foppe, T. Mayberry, E. Rye, B. Sipes, and S. Teplov,
“Handoff All Your Privacy - A Review of Apple’s Bluetooth Low
Energy Continuity Protocol,” Proceedings on Privacy Enhancing
Technologies, vol. 1, no. 4, pp. 34–53, 2019. [Online]. Available:
https://content.sciendo.com/view/journals/popets/2019/4/article-p34.xml

[14] W. Liu, D. Pareit, E. De Poorter, and I. Moerman, “Advanced
spectrum sensing with parallel processing based on software-defined
radio,” EURASIP JOURNAL ON WIRELESS COMMUNICATIONS
AND NETWORKING, p. 15, 2013. [Online]. Available: http://dx.doi.
org/10.1186/1687-1499-2013-228

[15] D. Mantz, “InternalBLUE - A Bluetooth Experimentation Framework
Based on Mobile Device Reverse Engineering,” Master’s thesis, Technis-
che Universitat Darmstadt, Secure Mobile Networking Lab Department
of Computer Science, July 2018.

[16] D. Mantz, J. Classen, M. Schulz, and M. Hollick, “InternalBlue -
Bluetooth Binary Patching and Experimentation Framework,” CoRR,
vol. abs/1905.00631, 2019. [Online]. Available: http://arxiv.org/abs/
1905.00631

[17] J. Classen and M. Hollick, “Inside Job: Diagnosing Bluetooth Lower
Layers Using Off-the-Shelf Devices,” CoRR, vol. abs/1905.00634,
2019. [Online]. Available: http://arxiv.org/abs/1905.00634


