Visualisation of Hierarchical Cost Surfaces for Evolutionary Computing

Janet Wilest* and Bradley Tonkes*
*School of Psychology
*School of Information Technology and Electrical Engineering
University of Queensland
Queensland, 4072
Australia
{j-wiles,btonkes}Qitee.uq.edu.au

Abstract - In this paper we present a technique for
visualising cost surfaces that are relevant to work in
evolutionary computation, particularly genetic algo-
rithms. The focus is on moderate-dimensional, binary
cost surfaces (i.e., functions defined over {0,1}", for
n < 16) that have a hierarchical, modular structure.
The visualisation approach involves an unfolding of
the hyperspace into a two-dimensional graph, whose
layout represents the topology of the space using a
recursive relationship, and whose shading defines the
shape of the cost surface defined on the space. Using
this technique we present a case-study exploration of
the hierarchical-if-and-only-if (H-IFF) function. The
visualisation approach provides an insight into the
properties of this function, particularly in regards to
the size and shape of the basins of attraction around
each of the local optima.

I. INTRODUCTION

A variety of techniques exist for studying the structure
and properties of cost surfaces (fitness landscapes). Such
approaches can provide insights for selecting appropriate
search processes. The No Free Lunch theorem asserts
the equality of all search processes when averaged over
all cost surfaces [1]. However, it is arguable that not all
cost surfaces are equally likely, so that some optimisation
processes will be more effective than others in practice
[2]. For efficient/effective optimisation, an algorithm (or
its parameters) should be tailored to the features of the
cost surface.

For complex families of cost surfaces, it is often a non-
trivial problem to find a matching algorithm. One ap-
proach compares the empirical performance of a variety
of algorithms on a suite of test functions [3]. For this ap-
proach to be informative about novel cost surfaces, there
must be some principle suggesting appropriate similari-
ties between the benchmark problem and the new prob-
lem. Knowing which metric to use to judge the similarity
of two cost surfaces requires an understanding of why an
algorithm performs well on a particular problem.

One barrier to understanding why an algorithm is ef-
fective is in characterising features of the cost surface.

For large (benchmark) problems, where it may be too
computationally expensive to compute the entire surface,
one approach is to describe the surface with a set of es-
timated statistics, such as the number of local optima,
and their relative distance. Such explorations of the cost
surface have been used for describing NK landscapes [4].

An alternative approach to understanding cost sur-
faces, applicable to smaller benchmark problems, is the
use of visualisation techniques. Visualising cost surfaces
for problems of more than a few dimensions is a difficult
task for the human perceptual system. Unfortunately,
as is well known, surfaces in 2- or 3-D, which are most
intuitive for humans, can be misleading with respect to
properties of higher dimensional spaces. Ideally a bench-
mark problem should be small enough to be efficiently
computed, while remaining complex enough to provide
insights into scaled-up versions.

A wide variety of techniques exist for visualising mul-
tivariate data (see [5] for a classic guide). These include
dimension-reduction techniques such as PCA and multi-
variate scaling (e.g., [6]), graph visualisation (e.g., [7]),
and animation (e.g., [8]). Specialist techniques have also
been developed in many domains. However, many tech-
niques for visualising high-dimensional data are less well
suited to visualisation of high-dimensional surfaces.

For different domains, the types of displays that are
effective depend on the problems that are addressed and
the simplifications that can be made without loss of in-
formation. This paper considers cost surfaces that have
been proposed in the literature as being amenable to
search by evolutionary computation, particularly using
the crossover operator.

One of the early tenets of evolutionary computation
was the “building block hypothesis” [9]. This hypoth-
esis proposes that a characteristic of many real-world
problems is that solutions may be constructed from pro-
gressively higher-level combinations of building blocks.
These blocks must be easy to identify (once discovered)
and easily recombined into a wide variety of structures.
Holland [10] reasons that, “once a computer scientist
starts thinking about building blocks as a source of in-

novation, the next obvious step is to look for algorithms
that can discover and exploit building blocks” (p374).

Holland argues that many problems exhibit a hierar-
chically structured cost surface, and argues that opti-
misation algorithms should behave accordingly, claiming
that genetic algorithms do so because of the crossover
operator of reproduction which allows the recombination
of disparate building blocks. The performance of genetic
algorithms on such hierarchically structured cost surfaces
has been studied using a variety of test functions includ-
ing the Royal Road problems [11], [12]. The original
Royal Road problem was proposed to study recombina-
tion using crossover, but in the search for clarity, it had
only one fitness peak. It was discovered that hill-climbing
strategies worked very well, better in fact than crossover
(see [13] for a good summary of the reasons).

Goldberg, Deb and Korb [14] argued that demonstrat-
ing the power of crossover requires the use of deceptive
functions in which the fitness landscape includes local op-
tima that interfere with hill-climbing techniques. More
recently, Watson and Pollack [15] reviewed the tasks that
have been used to study hierarchical structure across a
variety of studies from the literature. They concluded
that many of the tasks used to investigate such problems
do not have the requisite structure to fully investigate the
power of evolutionary algorithms using crossover. Their
own example, H-IFF (hierarchical if-and-only-if; [16]) has
the interesting property of symmetry around diametri-
cally opposed fitness peaks, with many suboptimal peaks
and consequently many local optima. The H-IFF func-
tion is designed to exhibit hierarchical modularity, par-
ticularly recursive modularity (i.e., the same relationship
holds between layers of the hierarchy).

This paper considers a visualisation technique for cost
surfaces that are of particular relevance to genetic al-
gorithms. The technique is applicable to cost-surfaces
that are defined over moderate-dimensional binary spaces
({0,1}" for n < 16) and which are hierarchically struc-
tured. This visualisation tool exploits the fact that sym-
metric patterns in low dimensions often indicate recur-
sive structure in higher dimensions. Although humans
do not readily visualise high-dimensional structures, we
do readily perceive symmetries.

The features of these functions that we would most like
to understand concern

« the ruggedness of each surface, based on the number
and distribution of local optima

« the size and shape of basins of attraction around each
local optimum

« the length of random adaptive walks.

It is possible to use statistical techniques to estimate the

properties of such features for some problems (see [4] for
application to NK problems), but they require detailed
mathematical insight and lack the efficacy of direct visu-
alisation.

The visualisation technique is aimed at providing a
lucid description of a cost surface, allowing researchers to
understand how the properties of the cost surface interact
with the properties of the evolutionary strategy (or other
optimisation technique). The visualisation approach is
described in Section II, and in Section III we perform a
case-study analysis of the H-IFF function [16] using the
visualisation tool.

II. METHODS FOR REPRESENTING COST SURFACES:
HYPERCUBES AND HYPERGRAPHS

Hypergraphs are a way of representing all points in
a boolean space recursively on a two dimensional dis-
play. They are particularly applicable to recursive mod-
ular functions. In this section we show how the corners
of the n—dimensional hypercube (i.e., the points in the
space) are mapped onto the two dimensional graph, and
discuss some of the insights that can be gained.

Consider an n—dimensional binary space, {0,1}".
Each point in this space is an n—dimensional binary vec-
tor, V = (xg,x1,...,Tn—1). The set of all possible points
is the set of all possible bit-strings, 000...0 to 111...1.
These strings can be represented as the corners of a hy-
percube. Higher-order hypercubes can be recursively ex-
trapolated from lower-order ones. A three-dimensional
space has eight points which can be represented as the
corners of a cube. The cube, and its unfolded hyper-
graph, are shown in Fig. 1. In the general case, an
n—dimensional space has 2" points. The corresponding
hypergraph is a display of 2L7/2) x 217/21 boxes, with each
box representing one corner of the hypercube. A sketch
of the recursive structure for n = 8 is shown in Fig. 2.

100 101 0%0 0*1 1+0 1%1
N 3
000
001 *0* | , 000 001 100 101
110 111 1™ o0 011 110 111
01 011

Fig. 1. Hypercube and hypergraph. This figure demonstrates
the relationship between the cube (left) and its graph
form (right), showing the position in the graph to which
each point in the cube is mapped. Rows and columns
of the graph are labelled by their hyperplane templates.
Dotted arrows on the graph show the immediate neigh-
bours of 000.

Formally, using the recursive layout described above,
for each n—bit string, B = b,_1b,_2...by, the carte-
sian co-ordinates (in binary notation) are given by z =
b",Qb",4 e bo and Yy = bnflbnfg . bl. Thus, the lower
order bits define the fine structure of the hypergraph and
the higher order ones define the gross structure. The
string of all zeroes (000 ...0) maps to the top left corner,
and the vector of all ones (111...1) maps to the bot-
tom right corner. The structure of the display can be
tuned to the problem under investigation. For example,
to keep adjacent dimensions together an alternative lay-
out is to represent the lower order bits on the z—axis,
and the higher order bits on the y—axis, corresponding
to an alternative unfolding of the hypercube.

Each point in the space has n immediate neighbours,
which are the bit strings at a Hamming distance of one.
In the graph, these neighbours are located at points
1,2,4,...,2"* positions away in the same row and col-
umn. It is often helpful to overlay grid-lines on the graph
which vary in thickness and highlight the recursive sym-
metries in the graph (see Fig. 2).

The regularity of the hypercube connection structure
makes it possible to view the hypergraph without ex-
plicitly representing the neighbourhood topology. Since
the hypergraph is a recursive unfolding of the hypercube,
rather than a low-dimensional projection, each corner of
the hypercube has a unique position on the graph and
no information is lost in the process. Thus, if required,
the positions of all connections can be inferred from the
position of each string in the hypergraph.

The hypercube has been unfolded onto the hypergraph
using translations for each dimension. Hence, recur-
sive symmetries characterise the display. Consider an
8-dimensional space. There are 28 = 256 strings in this
space. In GA terms, each allele (0 or 1) in a string defines
a hyperplane that divides the space in half. For example,
* % % % % % x1 corresponds to a set of rows and *0 * % * % % %
corresponds to a set of columns. Combinations of alleles
such as #0 * x x x x 1 (also known as clusters) correspond
to intersections of the separate hyperplanes.

Given the basic hypergraph layout, we can assign a
cost to each point, and plot each point as a coloured
box on the hypergraph (see next section for examples).
The lower the cost of a particular point (i.e., the more
optimal it is) the lighter the colour it is shaded. Thus,
points of maximal cost are shaded white, and points of
minimal cost are shaded black. The set of points in the
hypergraph shows the entire cost surface.

The hypergraph visualisation technique has been im-
plemented as a Java tool which allows several properties
of interest to be explored. These include

o the number and distribution of local and global op-

FF
T

Fig. 2. Hypergraph layout for an 8-dimensional space.
The 8D hypercube is recursively unfolded to show all
256 strings, with 00000000 in the top left corner, and
11111111 in the bottom right corner.

tima (peaks in the landscape)

« points of low fitness, or valleys

o paths from a point to those fitness peaks that can be
reached via fitter neighbours (i.e., adaptive walks)

« steepest ascent paths from a point

o basins of attraction for different peaks (the set of
points that can climb to that peak)

o (inverse) basins of potential (the set of points that
can be reached via an adaptive walk from a point)

o the extent and shape of neutral layers (sets of neigh-
bouring points of equal fitness that provide agents
with starting points for exploring different peaks; H-
IFF does not exhibit this characteristic).

ITI. H-IFF: A CASE STUDY
A. H-IFF Ezplained

A variety of modular tasks have been proposed to study
the conditions under which GAs outperform comparable
search techniques. Hierarchical-If-and-only-If (H-IFF)
[16] is one such function that is hierarchical, modular,
is not searchable by mutation, but is amenable to search
by crossover. Its defining characteristics are two fitness
peaks at opposing corners of the search space. Combina-
tions of the sub-components that comprise each level of
the competing hierarchies cause many sub-optimal peaks
and consequently many local optima.

H-IFF [16] is defined on bit-strings of length 2”. The
fitness value of a particular string is defined in terms of
hierarchical ‘building blocks’ which are sub-strings of the
main bit-string. The building block at the highest level
of the hierarchy is defined over the entire bit-string (i.e.,
all 2" bits). Each building block is recursively divided
into two equally-sized blocks, except for blocks of size
one, which cannot be divided. For a building block to
be correctly set, it must consist of either all 1s or all Os.
The value of a correctly set building block of size n is 2™
plus the sum of the values of its two sub-blocks (whose

values depend on the sub-sub-blocks). Thus, the overall
value of a bit-string of length 2" is the sum of values for
the building blocks of sizes 1,2,4,...,2". The optimal
bit-strings consist of either all Os or all 1s so that they are
rewarded for building blocks of every size. The evaluation
of the H-IFF function is more easily understood by way
of example, shown for an 8-bit string in Fig. 3.

[0Jo[1Jo[1[1]1]1] Value]
T[1[1Jt[1J1]1[1] 8
2 — 2 2 6
— 4 4
— 0
Fig. 3. Evaluation of H-IFF for the bit-string 00101111 show-
ing hierarchical decomposition. For this bit-string, H-IFF
evaluates to 8 + 6 + 4 + 0 = 18. Note that the maximum
obtainable value for each level of the hierarchy is 8, so
the maximum value for H-IFF on bit-strings of length 8

is 32.

For H-TFF defined on [= 2™ bits there will be n + 1
levels of building blocks. Within these levels there will be
1/k building blocks of size k, each of which has value k.
The optimal bit-strings of length [therefore have value
I(n+1). The minimum value for H-IFF on bit-strings of
length is I. Such a bit-string contains all building blocks
of size 1 but no higher-level blocks.

The major difference between H-IFF and the more well
known Royal Road function is that RR has a single op-
timal bit-string (all 1s) and significantly, no local optima
other than the global optimum (although there are local
plateaus). By comparison, H-IFF has two optimal bit-
strings and, for bit-strings of length [= 2", there are 2¢/2
local optima.

B. Visualising H-IFF

Our first example of the hypergraph visualisation ap-
proach takes a very simple instantiation of H-IFF, defined
over only four dimensions (see Fig. 4). The symmetry of
the display instantly reveals the symmetry of the under-
lying function.

Examining a hypergraph for a larger space (see Fig. 5)
shows the generality of the structures observed in Fig. 4.
The visualisation tool allows some aspects of the cost
surface to be directly displayed.

Number of local optima. The local optima can be
highlighted, and doing so reveals that they always fall
along the diagonal (as observed in the four-dimensional
case). Thus, the number of local optima is the square
root of the size of the space, 2*/2. Furthermore, there
are an equal number of local pessima (points that have

Ncal Optima —

0100=——— 0101

0111

1010

%:al Pessima

Fig. 4. Hypergraph representation for H-IFF defined on four
dimensions. Darker shaded areas correspond to points
of less cost (i.e., more optimal). Interactions with the
visualisation tool reveal that the local optima all fall along
the top-left /bottom-right diagonal, and that the points of
least fitness (the pessima) fall along the other diagonal.
Also shown in this figure are all of the paths of increasing
fitness that lead to one of the global optima (0000). The
set of points through which these paths travel form the
basin of attraction for 0000. The basin of attraction for
the other global optimum can be easily derived through
the symmetry of the graph.

no worse neighbours) which fall along the other diagonal,
all of which are global pessima.

Size and shape of basins of attraction. Some
insights can be drawn about the size and shape of the
basins of attraction for the local optima, shown in Fig. 6.
The most obvious observation is that that basin of attrac-
tion for the global optimum is a Sierpinski triangle (made
more obvious by the manner in which points are high-
lighted in Fig. 6). The recursive structure shows that the
size of each basin is given by 3"/2. Thus, the basins scale
in proportion to (the number of points in the Sierpinsky
triangle) / (the size of the space), or 372 /2" = (3/4)™/2.

Not only does the basin of attraction form a Sierpinski
triangle for the global optima, the basins of attraction for
local optima are also variants of the Sierpinski triangle
(see Fig. 6b). Thus, a cursory visual inspection using the
hypergraph tool reveals that the basins of attraction for
all local optima are of the same size. The size and shape
of these basins suggests that random adaptive walks are
as likely to terminate at the global optima as they are
to terminate at a local optimum (i.e., all outcomes are
equally likely). Further detailed analysis revealed that
this speculation was indeed correct.

Interactions between basins of attraction. Such
a landscape is very difficult to optimise using hill-

I- = BN BB

F_

F
ﬁ,j I. B N N
o
I

F_

(a) H-IFF(8)

o
(b) RR(8)

Fig. 5. (a) Eight-dimensional H-IFF. As in Fig. 4, all local
optima fall along the top-left /bottom-right diagonal, and
all pessima fall along the other diagonal. Compare the
structure of H-IFF with that of Royal Road, shown in (b).
The landscape of H-IFF is clearly more complex than that
of RR which has only a single fitness peak (at 11111111, in
the lower right corner) and which is, effectively, a convex
bowl: the basin of attraction for the global optimum is
the entire space.

climbing approaches. The only points in common be-
tween the basins of attraction for 00000000 (Fig. 6a) and
11111111 (not shown, but symmetric) are the pessima,
which lie along the diagonal. In fact, the pessima belong
to the basin of attraction for all local optima, or con-
versely, any local optimum can be reached by an adaptive
walk from any pessimum. The separation of the basins
at such a low level of fitness indicates a watershed in the
landscape that would be difficult to traverse with hill-
climbing algorithms. The H-IFF task was designed to be
difficult for mutation alone, and the hypergraph makes
the success of this design goal directly apparent.

4

ga" =i

(2) (b)

Fig. 6. Eight-dimensional H-IFF. Shown are (a) the basin of
attraction for the global optimum, 00000000 and (b) the
basin of attraction for the local optimum 00111111 (the
bottom right point in the upper left quadrant). Points
in the basin have been highlighted by drawing a triangle
across the upper left half of the area. (In the interactive
tool, the whole square is coloured. The tool was modified
to allow display on greyscale media.)

IV. EVALUATION

Hypergraphs provide a mechanism through which
properties of high-dimensional surfaces can be explored
with relative ease. Visualisation provides direct in-
sight into landscape structure negating the need for
mathematical expertise. Early unpublished experiments
on the usability of hypergraphs showed that for six-
dimensional hypercubes, people either mastered the dis-
play and learned to navigate very quickly — usually in
time linearly proportional to the Hamming distance be-
tween points — or failed to understand the structure at
all. One subject, a computer science graduate student,
not only had the fastest times of any of the people tested,
but also appeared to navigate between points in constant
time.

The hypergraph visualisation technique is not without
its shortcomings. Primary amongst its limitations is its
lack of scalability. Because the hypergraph attempts to
represent the entire surface (a worthy goal), the size and
complexity of the display scales exponentially in the di-
mensionality of the cost function. It is not expected that
the approach be used in exploring real-world problems,
since if the cost surface can be enumerated, the function
poses little practical difficulty. Even on some artificially
constructed test functions, the cost surfaces for problems
of ‘interesting’ size are too large to represent. For exam-
ple, Holland’s [10] hyperplane defined functions (hdf) are
defined over spaces of hundreds of dimensions.

Nevertheless, some simplifications can be made that al-
low these larger, and more complex cost functions to be
reduced to manageable sizes: much of the space in hdfs
is a flat plateau of uniform (maximal) cost which can be
removed by the deletion of ‘uninteresting’ dimensions.
On these simplified versions of hierarchically defined test
functions, the hypergraph display provides useful intu-
itions of the high-dimensional structure.

A further issue with applying the hypergraph approach
to hierarchical, modular functions is the mismatch be-
tween the topology of the graph and the manner in which
GAs search. The unfolding of the space into the hyper-
graph structure is done so that neighbouring points are
laid out in a recursive fashion. That is, the layout of
the hypergraph is designed to visually enhance the Ham-
ming distance between points: translational adjacency
in the hypergraph topology represents single-point mu-
tation. The layout of the hypergraph is thus tuned to dis-
play how the space would be searched by a hill-climbing
approach. Crossover works by combining subsequences
from potentially disparate points. The hypergraph does
not make it clear how a population of solutions would
adapt when crossover is used. A possible solution to this
dilemma might be to animate the adaptation of a pop-

ulation, but the dimension limitations, discussed above,
may limit the viability of this approach.

As mentioned in the introduction, the hypergraph vi-
sualisation technique is aimed at exploring cost surfaces
that have a hierarchical, modular structure defined over
a binary space. To this end, the technique is success-
ful (modulo the reservations above) in that it uses the
human perceptual system’s ability to perceive symme-
try as a way to enhance the salient features of recursive
high-dimensional structure. We have also successfully
used hypergraphs for investigating non-hierarchical sur-
faces, particular NK functions [4]. For these surfaces,
the hypergraph is not unfolded recursively, rather, neigh-
bouring dimensions are grouped together along an axis
(i-e., low-order dimensions are along the z—axis and high-
order dimensions are along the y—axis).

V. DiSCcuUSSION AND CONCLUSIONS

The H-TIFF function was originally developed as a case
study through which the search strategy of building-
block recombination in GAs was demonstrably superior
to mutation-based search [16]. The insights provided by
the hypergraph visualisation make it clear why mutation-
based search was so unsuccessful. Observations that
the size of the basins of attraction were equally sized
prompted the hypothesis that all outcomes of random-
adaptive walks were equally likely. The graphs also made
it clear how the number of local optima scaled with the
size of the problem. From these two properties it follows
that the size of the population for mutation-based search
must scale with the number of local optima (2*/2). Thus,
from visualisation of the cost surface we (a) gain insight
into the most desirable parameters for mutation-based
search, and (b) discover that module recombination is a
more appropriate approach.

Comparing the visual properties of H-IFF to those of
RR (Fig. 5) reveals an obvious difference. Relating the
performances of different algorithms on these two cost
surfaces to features in their visual appearance provides
insight into novel problems. Upon recognising that the
pattern of RR represents a convex bowl it becomes easy
to identify this pattern as a feature of other surfaces (e.g.,
smooth NK functions). The efficacy of the visual display
provides insights into appropriate similarity metrics be-
tween cost surfaces (i.e., the features that are important
for a particular optimisation algorithm). For example,
recursive structure in high dimensions produces repeated
patterns in a low dimensional unfolded representation.

The visualisation approach taken in this paper offers
some benefits over the more traditional statistical and
mathematical analysis of cost surfaces. One benefit is
that it is more accessible to those lacking a mathematical

background. Another is that it provides an exploratory
tool: interesting features ‘pop out’ and can then be sub-
jected to a more rigorous analysis as was the case with
H-IFF, where we determined that all local optima were
equally likely to be found by a random adaptive walk.

A Java-based version of the visualisation tool is available
at http://www.itee.uq.edu.au/~btonkes/hsgp.html.

REFERENCES

[1] D. H. Wolpert and W. G. Macready. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary Com-
putation, 1(1):67-82, 1997.

[2] S. Christensen and F. Oppacher. What can we learn from
No Free Lunch? A first attempt to characterize the concept
of a searchable function. In Proceedings of the Genetic and
FEvolutionary Computation Conference, pages 1219-1226, San
Francisco, CA, 2001. Morgan Kaufmann.

[3] T. C. Belding. Potholes on the royal road. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages
211-218, San Francisco, CA, 2001. Morgan Kaufmann.

[4] S. Kauffman. The Origins of Order. Oxford University Press,
NY, 1993.

[5] E.R. Tufte. The Visual Display of Quantitative Information.
Graphic Press, reprint edition edition, 1992.

[6] J. H. Friedman and J. W. Tukey. A projection pursuit algo-
rithm for exploratory data analysis. IEEE Transactions on
Computers, 23(9):881-889, September 1974.

[7] A.N. Pryke. The Haiku Visualisation System. PhD thesis,
University of Birmingham, 1996.

[8] A. Buja and D. Asimov. Grand tour methods: An outline.
In Proceedings of the 18th Symposium on the Interface, pages
63-67. American Statistical Association, 1986.

[9] J. H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[10] J. H. Holland. Building blocks, cohort genetic algorithms,
and hyperplane-defined functions. Evolutionary Computation,
8(4):373-391, 2000.

[11] S. Forrest and M. Mitchell. What makes a problem hard for a
genetic algorithm? Some anomalous results and their expla-
nation. Machine Learning, 13(2/3):285-319, 1993.

[12] M. Mitchell, J.H. Holland, and S. Forrest. When will a genetic
algorithm outperform hill climbing. In Advances in Neural
Information Processing Systems, volume 6, pages 51-58, 1994,

[13] M. Mitchell. An introduction to genetic algorithms. MIT
Press, Cambridge, MA, 1996.

[14] D. E. Goldberg, K. Deb, and B. Korb. Messy genetic algo-
rithms: Motivation, analysis and first results. Complez Sys-
tems, 3:493-530, 1989.

[15] R.A. Watson and J.B. Pollack. Hierarchically-consistent
test problems for genetic algorithms. In P. J. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, edi-
tors, Proceedings of 1999 Congress on Ewvolutionary Compu-
tation, pages 1406-1413. IEEE Press, 1999.

[16] R.A. Watson, G.S. Hornby, and J.B. Pollack. Modeling
building-block interdependency. Parallel Problem Solving
from Nature, proceedings of the Fifth International Confer-
ence, pages 97-106, 1998.

[17] M. Pelikan and D. E. Goldberg. Hierarchical problem solving
by the bayesian optimization algorithm. IlliGAL Report No.
2000002, Illinois Genetic Algorithms Laboratory, University
of Illinois at Urbana-Champaign, Urbana, IL, 2000.

