
SOFTWARE VERIFICATION RESEARCH CENTRE

SCHOOL OF INFORMATION TECHNOLOGY

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT

No. 02-29

Modelling Large Railway Interlockings and
Model Checking Small Ones

Kirsten Winter and Neil J. Robinson

Version 1, September 2002
Phone: +61 7 3365 1003

Fax: +61 7 3365 1533

http://svrc.it.uq.edu.au

Submitted to Australian Computer Science Conference (ACSC’2003).

Note: Most SVRC technical reports are available via anonymous ftp,
from svrc.it.uq.edu.au in the directory /pub/techreports. Abstracts and
compressed postscript files are available via http://svrc.it.uq.edu.au

Modelling Large Railway Interlockings and

Model Checking Small Ones

Kirsten Winter Neil J. Robinson

Software Verification Research Centre
University of Queensland

Email: kirsten@svrc.uq.edu.au njr@svrc.uq.edu.au

Abstract

This paper describes the results to date of a feasibility study
on model checking applied to railway interlockings. Our ap-
proach, in contrast to others, targets a high-level description
of interlocking systems, namely the logical view of its opera-
tion. The result is a formal model that can be discussed with
and validated by our industry partners and, moreover, provides
a formal semantics for the notation that is used in practice. We
suggest optimisations on the formal model and a decomposition
technique for large railway layouts that is easy to apply. This
renders our approach feasible for use in industrial practice.

Keywords: Railway interlockings, automated verifica-
tion, model checking, Abstract State Machines

1 Introduction and Motivation

Railway signalling interlockings are safety critical sys-
tems. They are designed to permit the safe move-
ment of trains along a railway system. Therefore spe-
cial attention has to be given to the correctness of
the design and the implementation of an interlocking
system. We aim to provide automated tool support
for the analysis during early stages of the design by
means of model checking.

Railway interlocking systems, next to hardware
designs, have been shown to be a suitable applica-
tion for automated analysis techniques, such as model
checking and automated theorem proving. Borälv
and St̊almark (Borälv & St̊almarck 1999) employ au-
tomated theorem proving based on propositional logic
for formal verification of interlocking systems. The
formal model is derived from program code (written
using the language Sternol) that implements the sig-
nalling interlocking. Eisner (Eisner 1999) uses the
symbolic model checker RuleBase (Beer, Ben-David,
Eisner, Geist, Gluhovsky, Heyman, Landver, Paanah,
Rodeh, Ronin & Wolfstahl 1997) to verify the safety
of railway interlocking software, which implements
the control cycles. Huber (Huber 2001) describes
a framework based on the model checker NuSMV
(Cimatti, Clarke, Giunchiglia & Roveri 1999) for ver-
ifying interlockings specified using the Geographic
Data Language (GDL), a language used in the British
railway industry for defining a track layout and the
corresponding signalling control. Simpson, Woodcock
and Davies (Simpson, Woodcock & Davies 1997) use
CSP, a formal language based on process algebras, to
model geographical data of interlockings and apply
the model checker FDR (For 1996).

In our current approach we apply the NuSMV
model checker for automatically verifying safety re-
quirements. However, we model the interlocking at a
higher level of abstraction than the other approaches.
Queensland Rail (QR), the main operator of rail-
way systems in Queensland, Australia, is the industry
partner in our project. QR, as most railways, uses a
table notation for describing the functionality of an

interlocking for a particular track layout. These ta-
bles are called control tables. The task is to support
the analysis of these tables in order to find erroneous
or incomplete entries (see Robinson et al. (Robinson,
Barney, Kearney, Nikandros & Tombs 2001) for an
overview of the project). In earlier work we used the
language CSP as a modelling language and applied
the model checker FDR. The results are published in
Winter (Winter 2002).

In our new approach we model the semantics of
control tables by means of the formal notation ASM
(Abstract State Machines) (Gurevich 1995). Experi-
ence with our industry partners has shown that the re-
sulting formal model is easier to read and understand
than our corresponding CSP model (Winter 2002).
It provides a formal semantics to the control tables
(whose meaning is fairly difficult to grasp) as well as
a platform for discussions with our industry partner.
The formal model is automatically transformed into
NuSMV code (which is equivalent to SMV code) using
the tool interface introduced by Del Castillo and Win-
ter (Castillo &Winter 2000). The safety requirements
to be checked are modelled in CTL (Emerson 1990),
the temporal logic supported by NuSMV. Due to the
high-level of abstraction that is given through our
control table model, the safety requirements can be
stated in terms of train movement and train colli-
sion. The requirements specification therefore be-
comes easy to write and to understand. Also the
counter-examples provided by the NuSMV tool when
an error is found are easy to analyse by railway engi-
neers.

In this paper, we introduce our formal model of
interlockings based on control tables, propose sev-
eral optimisations to the model to improve efficiency
of the model checking process, and provide a proce-
dure for decomposing large interlocking systems into
smaller ones without decreasing the scope of our ver-
ification approach. Optimisation and decomposition
techniques render our approach feasible for realistic
case studies.

The paper is organised as follows: Section 2 ex-
plains the basic concepts used in QR’s interlocking
design process. Section 3 describes briefly the for-
mal notation of ASM and presents our formal model
of interlockings and the requirements. Section 4 in-
troduces some optimisations that helped improve the
model and describes a decomposition procedure for
splitting up large systems. We conclude the paper in
Section 5.

2 Railway signalling and control tables

Railway signalling permits the safe movement of
trains over a track layout. An example track layout is
shown in Figure 1. Signals, e.g. he2, use colour light
indications (e.g. green for go, red for stop), to give au-
thorities for trains to travel a particular route through

p511

ng5

ng7 ng8ng6

he1 he3

he2

he4 he7

he5

he6 he8

cr1 cr4

cr2

p500 p501

p502

NG7AT NG7BT HE2CT HE2BT HE2AT

HE2AT HE1AT HE1BT

HE5AT HE5BT HE5CT CR4BT CR4AT CR1AT CR1BT

CR1CT

CR8CT

cr3

NG8AT
NG8BT

NG5AT

NG8CT

NG1CT

NG8DT

HE1CT

HE8CT

HE8BT HE8AT HE5AT

A

A B

B

up down

Figure 1: Track layout of the Helensvale section and its surrounding

the layout (triangles in Figure 1 represent shunt sig-
nals that operate similarly). Points, e.g. p500, are
switches in the track that permit the train to con-
tinue at high speed in the current direction normal
or to ‘switch’ to another track, generally at a lower
speed reverse.

Railway interlockings control and monitor the sig-
nals and points, and monitor the position of trains on
the layout via track circuits. Track circuits can either
be clear indicating that there is no train on the track
section, or occupied indicating the possible presence
of a train. Track circuits are shown in Figure 1 by
labels adjacent to track sections, e.g. HE1CT.

The functionality of QR’s railway interlockings is
generically specified by the QR signalling principles,
which state in general terms how track layouts should
be signalled. To specify the functionality of a par-
ticular railway interlocking, QR uses control tables.
These are functional specifications for the signalling
of a particular track layout and are presented in a
tabular form. It is the control tables that we aim
to verify with our model checking approach. In the
following we refer to the signal control table simply
as the control table. We will also mention the points
table which is responsible for the control of points.

Table 2 shows a part of the control table for He-
lensvale (see Figure 1), which specifies the conditions
for route he2 1m, from signal he2 to signal ng8. The
meaning of the conditions can be informally under-
stood from the column headings. For example, the
”Tracks clear” column (column ©8) specifies those
tracks which must be clear before route he2 1m can
be cleared for a train to pass through. As described
in Section 3, we define the semantics of QR’s control
tables with a formal model.

3 The Formal Model

ASM (Abstract State Machines) (Gurevich 1995) is a
formal notation with an operational semantics similar
to ordinary state transition systems. The state space
is specified through domains and functions over these
domains.

The transition behaviour is given through a set of
transition rules for which a minimal set of rule con-
structors is provided.

A computation (run) of an ASM model is given as
a sequence of states Si, obtained from a given initial
state S0 by repeatedly executing transitions δi:

S0
δ1−→ S1

δ2−→ S2 . . .
δn−→ Sn . . .

Each transition δi is a group of transition rules
applied (firing) simultaneously to the current state
Si−1 of the model.

Domains are specified as types in the typed version
of ASM that is used here. The functions over these
domains can be static, dynamic, or external. Static
functions simply define constants. Their evaluation
is predefined and they do not change their value. In
contrast, dynamic functions are not predefined. They
are only initialised but their evaluation can change
throughout a run of the system due to updates speci-
fied in the transition rules (see below). Dynamic func-
tions play the role of state variables. External func-
tions may change their value during a run, however,
they are not controlled by the model. Their value is
arbitrarily given through the environment. External
functions model oracles or inputs to the system.

The following transition rule constructors are used
in our model:

• Simple update:
f(t1, . . . , tn) := t

where ti are terms and f is a dynamic function;
updates are comparable to simple value assign-
ments in programming languages;

• Guarded command rule:
if G then RT else RF endif

where G, the guard, is a Boolean expression and
RT and RF are transition rules; the semantics is
that of a simple guarded command “if guard is
true then apply rule RT otherwise apply RF ”.

• Block rule:
block R1 . . . Rn endblock

where Ri are transition rules; the block rule
groups a set of transition rules and fires them
simultaneously;

• Do-forall rule:
do forall v in A with G(v) R(v) enddo

where v is a name of a new variable (bound in
this rule), A is a set, G(v) is a Boolean condition

2

S
ig
n
a
l

R
o
u
te

N
u
m
b
er

R
o
u
te

to

R
o
u
te

In
d
ic
a
ti
o
n

Requires
Replaced

by
Tracks
Occ

Points Locked Routes Route
Holding

or Until Tracks

Normal Reverse Normal Reverse Maintained by
Tracks occ

Tracks
occ

for Time
secs

Clear Occ

he2 1m ng8 - p500

he3(1s) HE1BT

HE1BT HE1AT
HE2AT HE2BT
HE2CT NG7BT
NG7AT NG8AT

HE1BT

he1 (1M)
he1 (2M)

HE1BT HE1AT

ng5 (1M)
ng7 (1M)

HE1BT HE1AT
HE2AT HE2BT
HE2CT NG7BT
NG7AT

©a ©b ©c ©d ©1 ©2 ©3 ©4 ©5 ©6 ©7 ©8 ©9 ©0

Figure 2: Control Table for Helensvale (shown is the row for route he 2m with its sub-rows)

over v, and R(v) is a transition rule depending
on v; semantically the do-forall rule collects all
rule instances R(a) with values a ∈ A such that
G(a) is satisfied; all those instances are fired si-
multaneously; the restrictions on the values of
parameter v, namely the phrase with G(v), is
optional and can be omitted.

3.1 The ASM Model of Control Tables

We use ASM as a notation to model the logic of in-
terlockings at a high level of abstraction. Our formal-
isation comprises

a.) the static part (namely data types and static
function definition as well as dynamic/external
function declarations) that contains all informa-
tion about the particular track-layout that is con-
sidered, and the corresponding control tables;

b.) the behavioural part (namely a set of transition
rules) that specifies the logic of interlocking con-
trol as it is described through the control table.

The framework of our model, meaning the function
declarations and the set of transition rules, is generic.
For analysing a particular layout and its control table,
the generic model is “instantiated” with the static
information of the layout and the table, a process
that can easily be automated.

In contrast to other approaches, we also model the
movement of trains in the track-layout. Although our
model of trains is fairly simplistic, e.g. we do not
specify the speed of a train, it prevents unrealistic
behaviour like the jumping of trains. The benefits
of this approach are that the safety requirements are
easier to specify and to read. They relate directly to
the hazards the signalling system is designed to avoid.
Also the counterexamples are easier to follow in that
they provide a hazardous scenario.

The Static Part.

As domains of our model, we define the sets of
tracks, signals, points, and routes that are given
in the track-layout. Additionally, we define a
set of trains. These sets are specified as simple
enumerated types, for example the type TrackId:
datatype TrackId == {HE1AT, HE1BT, HE1CT,
HE8CT, . . .}.

Furthermore, we specify a number of value do-
mains, e.g. the state of a track with the values clear

and occupied 1: datatype TrackState=={clr, occ}.
We also have to model a set of request-values.

For each route, we need a value for request-
ing this route and for cancelling a request. For
each point we need a value for requesting to
set the point normal and one to set it reverse:
datatype RequestT ype=={req he2 1m, reqC he2 1m,
. . . , reqN p500, reqR p500, . . .}.

We define a list of static functions to model the
columns in the control table and the point table. For
instance, the function
static function tracksClear :

RouteId → SET(TrackId) ==
MAP TO FUN {he2 1m → {HE1BT, . . .},

he3 1s → . . .}
models column ©8 of the table in Figure 2. The
function maps each route to the set of tracks that are
listed in the corresponding field in the table. Note
that a related project aims to generate the mappings
for these static functions automatically from a control
table.

Another category of static functions reflects the
information given in the track-layout, e.g. a function
next that provides for each track in each direction the
next track. These functions are necessary in order to
control the train movement.

A number of dynamic functions describe those en-
tities in our model that can change their value during
a run. We dynamically model the trackState (each
track becomes occupied when a train is on it), the
routelock (a route is either set reverse, i.e. locked or
reserved for an approaching train, or set normal, i.e.
free), the signalaspect (each signal indicates either
proceed or stop), the pointset (a point is set normal
or reverse), the front position of a train, the rear po-
sition of a train, and its direction dir. The dynamic
function route used indicates for each route how far
a train has proceeded on this route so that parts of
the route can be released as soon as the train has
passed certain points. We assign numerical values for
the “degree” of usage. With this model of route-use,
we avoid introducing dynamic functions for all sub-
routes (which would increase the complexity of the
model checking process). The maximal degree of us-
age coincides with the number of sub-rows for each
route.

We declare some external functions to re-
present input to our model. For instance,

1Although most of these domains could also be modelled in
terms of Boolean, we thought it prudent to adapt the railway ter-
minology to improve readability.

3

transition Route Reverse ==
do forall r in Routes

if
guard(r)

then
routelock(r) := rtR

endif
enddo

Figure 3: Transition Rule for Route Reverse

external function request : RequestT ype mod-
els a request for a route or a point that is input by
the signaller. The value of this nullary function can
change arbitrarily and is not controlled by the model.
The external function long enough occ is specified as
a Boolean. It is used for now to model those condi-
tions that need some time to elapse before being sat-
isfied. If a train is occupying the track in column ©6
longer than the number of seconds in column ©7 , then
the route locking applied by the points and routes in
columns ©1 to ©4 can be released. This condition is
modelled by the Boolean long enough occ.

The Behavioural Part.

The behavioural part of our formal model specifies
the actual meaning of the control table, i.e. the ac-
tual control of routes, points and signals. It consists
of a set of transition rules, each of which describe
the control of one of the dynamic functions that are
described above.

All transition rules have the same structure, which
we will explain using Route Reverse as an example.
Transition rule Route Reverse sets a route r reverse
(i.e. locks or reserves it for an approaching train) if a
particular condition for r, guard(r), is satisfied. This
checking of the condition and setting the route is done
simultaneously for all routes.

The rule has a structure as shown in Figure 3.
The guard that needs to be satisfied in order to set
the routelock of a particular route r reverse (rtR) is a
conjunction of simple conditions on r. All these con-
ditions can be read from the control table by railway
engineers. Since the static functions in our model re-
flect the content of the control table, the simple con-
ditions are given in terms of these static functions.
They read as follows:

• member(request, RouteReq)
and convertRouteReq(request)=r

The current request must be a request for a route
and, in particular, it must be a request for route
r, the route that is currently considered.

• forall t in tracksClear(r) :
trackState(t)=clr

All tracks in the entry of tracksClear column
(©8) for route r must be clear.

• forall p in pointLockDetN(r) :
pointset(p)=setN

All points in pointsLockedNormal column (©1)
must be set normal.

• forall p in pointLockDetR(r) :
pointset(p)=setR

All points in pointsLockedReverse column (©2)
must be set reverse.

• forall r2 in routesNormal(r) :
routelock(r2)=rtN

All routes in routesNormal column (©3) must be
set normal.

• forall r3 in routesReverse(r) :
routelock(r3)=rtR

All routes in routesReverse column (©4) must be
set reverse.

• forall pair in routeNormalIndex(r) :
(routelock(first(pair))=rtN and
(route used(first(pair)) >= second(pair))

All routes, for which the current route r appears
in a sub-row i in column ©3 , must be normal
and not used (not used implies that the tracks in
column ©5 are clear).

If guard(r), the conjunct of the simple conditions
that are listed above, is not satisfied, then the value
of routelock(r) will not change.

All other transition rules are specified similarly.
For all those transition rules that update the same
dynamic function we have to make sure that in every
state the guards of both rules exclude each other in
order to prevent a clash of two updates happening
simultaneously. This is easy to show in our model
since all related rules have contradicting conditions.

The transition rule that models the movement of
trains is based on the following notion of trains: Sta-
tionary trains occupy one track, a moving train never
occupies more than two tracks and they move at a
constant speed, i.e. they move their front or rear
at each step onto the next track. They obey signals
in that they always stop in front of a red signal. A
stationary train will move in the direction of a clear
signal (this permits a train to change direction in the
case its rear faces a clear signal). Track layouts are
not circular, they simply end on the left and right side.
As a consequence, trains disappear at the boundaries
of the track-layout. The front and rear position be-
come undefined. Trains can also appear on the track-
layout from beyond the boundaries. Since our model
has a fixed set of trains a “new” train can only appear
if it has disappeared before.

As a train moves, tracks clear or become occupied.
The dynamic function trackState indicates this status.
This status is only evaluated one step after a train
has moved from or onto a track, i.e. the indication is
delayed. This is a fairly realistic model since also in a
real implementation track-circuits first have to detect
their status and a delay should be expected.

3.2 The Safety Requirements to be verified

The general safety requirements of railway inter-
locking systems are explained in full detail in
Tombs, Robinson and Nikandros (Tombs, Robinson
& Nikandros 2002). The formalisation of these re-
quirements are easy to model in our case since they
can be expressed in terms of trains rather than route,
point or signal settings as in the related work (e.g.
(Simpson et al. 1997) and (Huber 2001)). We use
the temporal logic CTL (Emerson 1990) as a speci-
fication language which is supported by the NuSMV
tool. Two examples follow.

No Collision.

A train collision is simply specified as two trains (CR
and FS) occupying (either with their front or rear)
the same track, unless the track is outside the track-
layout (i.e.undef). The CTL formula for non-collision
is given as follows:
AG (((front(CR) != front(FS))

& (front(CR) != rear(FS)))
| (front(CR) = undef))

&
(((rear(CR) != front(FS))
& (rear(CR) != rear(FS)))

| (rear(CR) = undef))

4

p511

ng5

ng7 ng8ng6

he1 he3

he2

he4 he7

he5

he6 he8

cr1 cr4

cr2

p500 p501

p502

NG7AT NG7BT HE2CT HE2BT HE2AT

HE2AT HE1AT HE1BT

HE5AT HE5BT HE5CT CR4BT CR4AT CR1AT CR1BT

CR1CT

CR8CT

cr3

NG8AT
NG8BT

NG5AT

NG8CT

NG1CT

NG8DT

HE1CT

HE8CT

HE8BT HE8AT HE5AT

Helensvale_A

Helensvale_B

Helensvale_C

Figure 4: Segments of the Helensvale track-layout

where AG can be read as always, | as or, & as and,
and != as not equal.

No Derailment.

The notion of derailment caused by a point that is
moving under a train can be specified in CTL as fol-
lows: If one of the trains (CR or FS) has either its
front or rear on the track where the point is located
(provided by static function homeTrack(p)) then the
point should not change its position. That is, the
point is either normal and stays normal in all next
states or it is reverse and it stays reverse.

We give the CTL formula for the case that point
p is normal:
AG ((front(CR) = homeTrack(p)

| rear(CR) = homeTrack(p)
| front(FS) = homeTrack(p)
| rear(FS) = homeTrack(p))
& pointset(p) = setN

-> AX (pointset(p) = setN))
where AX can be read as always in the next state. This
has to be proved for each point in the track-layout for
both directions.

4 Model Checking the Formal Control Table
Model

Model checking as a fully automatic approach is lim-
ited with respect to the state space of the model.
With the formal model described so far we were able
to check only very small track-layouts. In order to
get better results for our feasibility study on model
checking, we exploited a number of optimisations on
our formal model.

4.1 Optimising the ASM Model

We agreed with our industry partner on a number
of simplifications and optimisations that could be ex-
ploited. So far we have not attempted any optimisa-
tions of the model checking procedure itself, only on
how our model is formalised. For example:

• All those tracks in the layout that always oc-
cur as a group in the control table can be col-
lapsed into one track. For example, the tracks
HE2AT, HE2BT, HE2CT, NG7BT, NG7AT in Figure 1
are replaced by one track HE2AT NG7AT in our
model. These changes also affect the safety re-
quirements.

• One part of the control table logic describes the
functionality of approach locking, i.e. the locking
of routes in advance for an approaching train.
We decided to restrict our checking to a model
without approach locking in order to decrease the
state space to be checked. This also allowed us
to simplify our train movement model.

• The dynamic function route used was originally
computed for all routes in the layout. However,
it is only ever required for those routes which
occur in the columns ©3 or ©4 or in the point
table. Restricting the range of the transition rule
Route Usage appropriately helped saving up to
eight extra state variables in our example.

• The external function long enough occ models if
a train occupies a track long enough so that the
locking of the corresponding route can be re-
leased. Since only those cases are safety critical
in which the route locking is released, it is suf-
ficient to check what happens if long enough occ
evaluates to true. Hence, we changed this exter-
nal function into a static function that is always
true.

These optimisations were all discussed with rail-
way engineers. The discussion provided some valida-
tion for the optimised model. This was only possible
because the formal model was understood by every-
body and changes could be communicated.

All the suggested optimisations above have helped
to speed up the model checking process quite remark-
ably. However, a track-layout of the size shown in
Figure 1 (i.e. 24 routes, 16 signals, 18 tracks (after
combining tracks) and 4 points) is without further op-

5

...

State 1.8:
incoming_train = FS
request = reqC_he2_1m
route_used(he2_1m) = 0
signalaspect(he2)

= proceed
State 1.9:
dir(FS) = up
front(FS) = HE1BT
incoming_train = CR
request = req_ng5_1m
routelock(he2_1m) = rtN
signalaspect(he2) = stop

State 1.10:
rear(FS) = HE1BT
route_used(he2_1m) = 1
trackState(HE1BT) = occ

State 1.11:
front(FS) = HE1AT
route_used(he2_1m) = 2

State 1.12:
rear(FS) = HE1AT
trackState(HE1AT) = occ

State 1.13:
front(FS) = HE2AT
route_used(ng8_1m) = 2
trackState(HE1BT) = clr

State 1.14:
move(FS) = 0
rear(FS) = HE2AT
route_used(he2_1m) = 3
trackState(HE2AT) = occ

...

State 1.19:
incoming_route = ng7_1m
route_used(ng7_1m) = 0
signalaspect(ng7)

= proceed
State 1.20:
front(CR) = NG8CT

State 1.21:
rear(CR) = NG8CT
trackState(NG8CT) = occ

State 1.22:
front(CR) = NG8BT

State 1.23:
rear(CR) = NG8BT
trackState(NG8BT) = occ

State 1.24:
front(CR) = NG8AT
trackState(NG8CT) = clr

State 1.25:
move(FS) = 1
rear(CR) = NG8AT
trackState(NG8AT) = occ

State 1.26:

front(CR) = HE2BT_NG7AT
front(FS) = HE2BT_NG7AT
trackState(NG8BT) = clr

Figure 5: A Counter-example output by NuSMV

timisations still beyond our computational capacity2.
The solution to this problem lies in the decomposi-
tion of large layouts. The procedure is described in
the following.

4.2 Practical Approach for Decomposing In-
terlockings

In order to deal with large track-layouts, we use the
following decomposition technique. We divide the
track-layout into a number of segments such that the
following is guaranteed:

• On both sides (left and right) the layout is cut
behind a signal that faces towards the part that
is focussed. These incoming signals allow us to
safely let trains appear from the outer world onto
the layout segment without causing collisions.

• All signals, points and routes between left and
right boundary have to be considered in the con-
trol table model. Even those routes that lie only
partly in the segment must be checked for the
part within the boundaries of the segment.

• Each route of the full layout and its opposing
route must be contained fully in at least one of
the checked sub-layouts, i.e. we have to check
overlapping segments.

If the safety requirements are satisfied by each seg-
ment then we can conclude that they are also satisfied
for the track-layout as a whole. This decomposition
technique conforms with the approach used in indus-
trial practise and it can thus be regarded as validated
by use.

Following these rules for decomposition, we are
able to check the Helensvale layout in three smaller
steps. The proposed segments are

1. Helensvale A: between signals ng5 and ng7 and
signals he2 and he4

2. Helensvale B: between signal he1 and signal he8

3. Helensvale C: between signals he5 and he7 and
signals cr2 and cr4.

2The main problem was the limitation of memory space which
was exceeded by the process (up to 2173MB) and swapping became
necessary.

They lead to the decomposition of the Helensvale lay-
out as shown in Figure 4. Note that there are overlap-
ping parts (e.g. between signals he1 and he2, he4),
which are contained in two segments.

4.3 Model Checking Results

Helensvale, cut by vertical boundaries into three parts
as described above, became a feasible task for the
model checker. Each part could be checked within
one hour.

In order to check the scope of errors the model
checking approach can find in a control table, we in-
troduced errors into the table. We give an example
for the model Helensvale A (see Figure 4): In order
to check the entries of column ©5 we need to delete
all entries of column ©8 . This is necessary since with
our simple train movement model the columns carry
redundant controls. Assume that in the row for route
he2 1m (as shown in the control table in Figure 2)
the entry HE2AT is missing in column ©5 in the fourth
sub-row. As a consequence this track is not collapsed
with the tracks HE2BT, . . ., NG7AT since to collapse
a number of tracks they always have to appear to-
gether. With this missing entries in column ©5 and
©8 the route locking against ng5 1m and ng7 1m will
not be maintained (i.e. kept locked) when a train is
on track HE2AT.

Checking the erroneous ASM model results in a
counter-example output by the NuSMV. A counter-
example is a list of states that lead to a state that
violates the checked safety requirements (i.e. in this
case a front-to-front collision). For each state only the
changes from the previous state are given. Figure 5
shows the key parts of the states that finally lead to
a collision of trains CR and FS on the track next to
the omitted track, HE2BT NG7AT (see State 1.26).

If an error exists a counter-example is often gen-
erated in a relatively short period of time as the full
state space does not need to be explored. Finding
this error took less than 20 minutes user time. Our
experience suggests that the initial debugging of the
control table is very fast and that counter-examples
are fairly quickly computed by the NuSMV tool. It
is only when no error can be found that the model
checker needs a long time to complete.

6

5 Conclusion and Future Work

This work describes an approach for debugging in-
terlocking specifications, provided as a high-level de-
scription in tabular form, the so called control tables.
We introduced our formal model of the control ta-
bles specified in ASM notation. Additionally, we in-
troduced a model for train movement, so that trains
could use the modelled interlocking system. As a con-
sequence, the requirements of the system can be easily
formalised in terms of trains, namely no collision and
no derailment should occur. In case a requirement is
violated the output counter-example provides a mean-
ingful scenario of possible train behaviour that would
lead to an accident. This is easy to read by railway
engineers.

In contrast to work suggested by others (e.g.
(Borälv & St̊almarck 1999), (Eisner 1999), (Simpson
et al. 1997) and (Huber 2001)) our approach focuses
on the modelling side of the analysis. We choose a for-
mal language, namely ASM, that seemed to be clos-
est to the construct to be modelled, namely control
tables. Our optimisations are based on the model
formalisation rather than on the checking algorithms.
We formulated and tested an approach to allow the
decomposition of large layouts.

It was essential to have QR railway engineers vali-
date our model including our simplifications that op-
timised the model. For any simplification the conse-
quences for the model checking results needed to be
discussed so that we were aware about how a simpli-
fication would decrease the scope of errors that can
be found.

Our approach would certainly benefit from an op-
timisation within the model checking algorithms. Hu-
ber reports in his thesis (Huber 2001) attractive re-
sults gained by tailoring the NuSMV algorithms to-
wards checking of geographical signalling data. Al-
though both control tables and geographical data
model interlockings, the table notation used by QR
is more abstract. As a consequence our formal
model has a different structure. Most significantly,
our model is a synchronous model whereas Huber’s
model is asynchronous. Nevertheless, it appears to be
promising to follow his approach in our future work,
namely mapping the ASM model onto the internal
data structure of the NuSMV tool and adapting algo-
rithms and heuristics to our particular needs. How-
ever, we do not expect that this will remove the need
for decomposition of the track layouts.

Moreover, we are planning to develop an animator
for control tables based on our formal model. This
will help to check liveness properties which cannot
easily be checked by the model checker since the in-
put values can easily obstruct liveness of the system.
It will also allow us to run the counter-examples pro-
vided by the checker. In the future we may extend
our model in order to check, e.g., the functionality
of approach locking, a feature that is currently not
checked. This would also involve the use of a more
sophisticated train model.

To complete the feasibility study on automated
tool support for control tables, we will apply the au-
tomated theorem prover NP-Tools (Borälv 1998) to
our verification task and compare the results with our
results from NuSMV.

Acknowledgements

This work is a result of joint work with and funded by
Queensland Rail (QR). It greatly benefited from the
knowledge and insight into railway interlocking sys-
tems provided by David Barney from QR. We would
also like to thank George Nikandros from QR for his
interest and support of our work.

References

Beer, I., Ben-David, S., Eisner, C., Geist, D.,
Gluhovsky, L., Heyman, T., Landver, A.,
Paanah, P., Rodeh, Y., Ronin, G. & Wolfstahl,
Y. (1997), Rulebase: Model checking at IBM, in
O. Grumberg, ed., ‘Proc. of Int. Conf. on Com-
puter Aided Verification, CAV’97’, Vol. 1254 of
LNCS, Springer-Verlag, pp. 480–485.

Borälv, A. (1998), ‘Case study: Formal verification
of a computerized railway interlocking’, Formal
Aspects of Computing 10, 338–360.

Borälv, A. & St̊almarck, G. (1999), Formal verifica-
tion in railways, in M. Hinchey & J. Bowen, eds,
‘Industrial-Strength Formal Methods in Prac-
tice’, Springer-Verlag.

Castillo, G. D. & Winter, K. (2000), Model check-
ing support for the ASM high-level language, in
S. Graf & M. Schwartzbach, eds, ‘Proc. of Tools
and Algorithms for the Construction and Analy-
sis of Systems, TACAS 2000’, Vol. 1785 of LNCS,
Springer-Verlag.

Cimatti, A., Clarke, E., Giunchiglia, F. & Roveri, M.
(1999), NuSMV: A new symbolic model verifier,
in ‘Proc. of Int. Conf. on Computer Aided Ver-
fication, CAV’99’, Vol. 1633 of LNCS, Springer-
Verlag, pp. 495–499.

Eisner, C. (1999), Using symbolic model check-
ing to verify the railway stations of hoorn-
kersenboogerd and heerhugowaard, in ‘Proc. of
Conf. on Correct Hardware Design and Verifi-
cation Methods (CHARME’99)’, Vol. 1703 of
LNCS, Springer-Verlag.

Emerson, E. A. (1990), Temporal and modal logic,
in J. van Leeuwen, ed., ‘Handbook of Theoreti-
cal Coomputer Science’, Vol. B, Elsevier Science
Publishers.

For (1996), Failure Divergence Refinement, FDR 2.0,
User Manual.

Gurevich, Y. (1995), Evolving Algebras 1993: Lipari
Guide, in E. Börger, ed., ‘Specification and Val-
idation Methods’, Oxford University Press.

Huber, M. (2001), Towards an industrially applicable
model checker for railway signalling data, Mas-
ter’s thesis, University of York.

Robinson, N., Barney, D., Kearney, P., Nikandros,
G. & Tombs, D. (2001), Automatic generation
and verification of design specification, in ‘Proc.
of Int. Symp. of the International Council On
Systems Engineering (INCOSE)’.

Simpson, A., Woodcock, J. & Davies, J. (1997), The
mechanical verification of solid state interlock-
ing geographic data, in ‘Proc. of Formal Meth-
ods Pacific (FMP’97)’, Vol. vii+320, Springer-
Verlag, pp. 223–243.

Tombs, D., Robinson, N. J. & Nikandros, G. (2002),
Signalling control table generation and verifica-
tion, in ‘Proc. of Conference on Railway Engi-
neering (CORE 2000)’, Railway Technical Soci-
ety of Australasia.

Winter, K. (2002), Model checking railway inter-
locking systems, in M. Oudshoorn, ed., ‘Proc.
of Australasian Computer Science Conference
(ACSC02)’, Vol. 24 of Austalian Computer Sci-
ence Communications, Australian Computer So-
ciety Inc., pp. 303–310.

7

