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Abstract 
The capabilities of the two computational intelligence 
technologies including neural network and fuzzy logic can 
be synergized through the formation of an integrated and 
unified model which capitalizes on the benefits and con-
currently offsets the flaws of the involved technologies. In 
this paper, a neural-fuzzy model, which is characterized by 
its ability to suggest the appropriate change of process 
parameters in a relatively complex parameter-based con-
trol situation involving multiple parameters, is presented. 
This model is particularly useful in multiple input and mul-
tiple output situations where complex mathematical calcu-
lations are required if conventional control approach is 
adopted. In particular, it serves to acquire knowledge from 
the information base for extracting rules which are then 
fuzzified based on fuzzy principle. To validate the feasibil-
ity of this approach, a test has been conducted based on 
the neural-fuzzy model with the obje ctive to achieve heat 
transfer enhancement in rectangular ducts using trans-
verse ribs. This paper describes the roadmap for the de-
ployment of this hybrid model to enhance machine intelli-
gence of a complex system with the description of a case 
study to exemplify its underlying principles. 
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INTRODUCTION 
In industrial and engineering applications, parameter-based 
control systems are normally employed in situations where 
parameters such as heating temperature, injection pressure 
and cooling time need to be adjusted to achieve the re-
quired outcome of the overall condition. Traditionally, Pro-
portional-Integral-Derivative (PID) control algorithms are 
adopted to deal with these parameter-based control situa-
tions albeit complex mathematical equations need to be 
used to analyze the operating conditions. However, the 
mathematical analysis based on relevant algorithms may 
become more complex when dealing with Multiple-Input 
Multiple-Output (MIMO) control situations where more 
than one input is used with more than one output. A typical 
example of MIMO is the control of flow rate (e.g. gal-
lons/hour) and temperature (e.g. degrees C) of a certain liq-

uid (e.g. water) by adjusting the hot tap and the cold tap of 
that particular liquid (in this case it is water) for a specific 
industrial or engineering process. The complexity of this 
type of control (two inputs and two outputs) is that a slight 
change of either one of the taps (hot or cold) affects both 
the temperature and flow rate of the output liquid. The 
mathematical equations involved in the PID control algo-
rithms of such a MIMO situation are rather complex. By the 
same token, the level of complexity can be visualized if more 
than two inputs and two outputs are involved, noticing that 
this is not uncommon in actual engineering processes and 
operations. The analysis of MIMO control using PID algo-
rithms can be found in a number of publications (such as 
Driankov et al [1]) and therefore not to be covered in this 
paper.  

To address this MIMO situation, a model incorporating 
computational intelligence technologies such as fuzzy logic, 
neural network and genetic algorithms, can be employed. It 
is known that a system with the inclusion of the artificial 
intelligence elements is able to enhance the performance, 
reliability and robustness of control by incorporating 
knowledge which cannot be accommodated in the analytic 
model upon which the design of the control algorithm is 
based [1]. This paper presents a neural-fuzzy model, which 
is featured by its ability to recommend the adjustment of 
process parameters in a MIMO parameter-based control 
situation involving multiple parameters. This model is par-
ticularly useful in situations where complex mathematical 
calculations are required if conventional control algorithm is 
adopted. In particular, it serves to acquire knowledge from 
the information base for extracting rules which are then 
fuzzified based on fuzzy principle. A case study has been 
conducted related to the heat transfer situation where mu l-
tiple parameters, such as rate of radiation and rate of con-
duction, are involved. Most importantly, this paper outlines 
the roadmap for the deployment of this hybrid model to deal 
with complex control situations in various engineering and 
industrial applications.  
 

THE NEURAL-FUZZY MODEL WITH PRACTICAL 
EXAMPLE 
The neural-fuzzy model proposed in this article is focused 
on the approach to find the required results without involv-
ing too many mathematical calculations. To exemplify the 
procedures and steps of this non-mathematical approach, a 
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practical example is employed to illustrate how it can be 
used to deal with a real life MIMO problem.  
 

Description of the case  
An overview of the thermal system under test is shown in 
Figure 1. The main portion to be discussed in this paper is 
the "Test Section" of the system, which is further explained 
in Figure 2.  

In the present study, experiments are conducted for six re-
peated ribs to investigate the overall heat transfer from the 
tip port ion as well as the sides of the ribs. The experimental 
apparatus was a long rectangular duct of 1.22 m length, with 
the test section at 50 cm from the inlet. The cross sectional 
area of the test section was 190(W) x 170(H) cm2. The test 
geometry comprised six rectangular aluminum ribs of vari-
ous cross sections and 190 cm long. A suction fan with 
variable speed control was connected to the exit of the duct. 
A 13mm thick aluminum plate was placed on the bottom of 
the duct and it was heated with an electric heater (input 
power rating: 1000W). The backside of the heater was insu-
lated with glass wool to minimize the heat losses. Mica and 
insulation wood were used to insulate the aluminum and 
electric heater to avoid short circuit. The electric heater was 
controlled by means of a variable transformer. K-type ther-
mocouples (1-mm diameter) were used to detect the tem-
perature at the top and sides of each rib by inserting them in 
a small groove along the top surface and the upstream and 
downstream sides. These thermocouples were connected to 
a thermocouple scanner for simultaneous temperature 
measurements. An XYZ table was used to maintain the in-
struments in the correct position. 

 

 

Figure 1. An overview of the thermal system under test 
showing the heat transfer process within the system of 

the case. 
 

The geometry of the rectangular duct with transverse ribs of 
equal spacing is illustrated in Figure 2. The following addi-
tional assumptions are also made: 

� Laminar flow 

� Newtonian and incompressible fluid  

� Constant fluid properties 

� Steady-state 

 

 

Figure 2. Side view of the long rectangular duct with 
transverse ribs of equal spacing, showing all the essen-
tial parameters for heat transfer study within the "Test 

Section" of the thermal system. 
 

The air velocity inside the duct was maintained at 9.75 m/s. 
The average room temperature and pressure were 22 oC and 
757 mm respectively. Measurements of rib temperature were 
taken an hour after the commencement of each experiment 
to allow for stability of readings. It can be seen that for each 
experimental investigation a new aluminum plate of different 
rib dimensions and spacing would be required.  

A rib zone is defined as the area along the contour of the 
ribs and inner duct surface between the midpoints on the 
tips of adjacent ribs. The first rib zone is the area from the 
inlet of the duct to the midpoint on the tip of the first rib. 
The last rib zone is the area from the midpoint on the tip of 
the last rib to the exit of the test section. The values of 
Q/Qo are relative measures of performance representing the 
ratio of heat transfer from the inner wall for a rib zone to the 
heat transfer from the corresponding zone on an unribbed 
duct. The values for Q/Qr represent the amount of heat 
conducted from the zonal area to outer wall of an otherwise 
unribbed duct with no airflow.  

The steady-state convection heat transfer, Q, from the rib 
surfaces to the fluid flow was deduced from the input power 
(E) as follows:  

 

Qc = E - Qrad - Ql   (1) 

 

Where  Qrad = the rate of radiation loss 
through both ends of the duct 
to its environment and it can be 
estimated by means of the fol-
lowing equation i.e. 

 

Qrad = εσ(Tc4 - Ta4)   (2) 

 



Where ε = emissivity of duct surface 

 σ = Stefan-Boltzmann constant 
(W/m2-°K) 

 Tc = Average rib side temperature 
(°K) 

 Ta = Average air temperature meas-
ured upstream of the test sec-
tion (°K) 

    

And Ql = the rate of conduction heat 
loss through the external sur-
face of the rectangular duct 
assembly to the surroundings 
and it can be estimated by us-
ing the Fo urier's Law, i.e. 

 

Ql = kA(Tc - To)/L   (3) 

  
Where k = thermal conductivity of duct 

material 

 A = internal surface area of duct 

 To = ambient air temperature 

 L = thickness of duct 

 
Hence in the case of a ribbed duct with fluid flow, Qc = Q; 
whereas in the case of an unribbed duct, Qc = Qo (for duct 
with fluid flow) and Qc = Qr (for duct with no fluid motion). 
The Prandtl (Pr) number is a dimensionless quantity de-
pends solely on the physical properties of the fluid, irre-
spective of flow conditions. 
 

METHODOLOGY FOR DESIGNING A NEURAL-FUZZY 
MODEL 
As depicted in the above context, the two different values 
(Q/Qo and Q/Qr) are the outputs affected by the four input 
parameters (Pr, z/H, s/H and h/H). The dimensions of ribs 
and their spacing (i.e. z/H, s/H and h/H) depend mainly on 
the magnitude of the overall heat transfer. This is consid-
ered to be a parameter-based control situation where com-
plex mathematical analysis is required if conventional con-
trol theory is used. The proposed neural-fuzzy model con-
sists  of a neural network for acquiring the knowledge be-
tween the input and output data, and a fuzzy logic reason-
ing mechanism for generating a more reliable suggestion for 
modifying the induced output values from the trained neural 
network. 

A methodology with a step-by-step approach has been 
developed for those who would like to tackle a MIMO pa-
rameter-based control problem using a hybrid neural-fuzzy 

approach which is able to significantly simplify the tedious 
analytical work of a conventional PID approach. In particu-
lar, this proposed hybrid approach does not require the 
prior knowledge of the theoretical aspects of neural network 
and fuzzy logic and therefore is meant to be used by novice 
users. The following steps provide guidelines for the 
development of such model.  

 

Step 1 - Determine the input and output parameters of the 
neural network  

The first step of the methodology is to determine the input 
and output values of the neural network with the purpose to 
obtain data for training purpose. The two key parameters of 
heat transfer are Q/Qo and Q/Qr with required performance 
as shown in Table 1: 

 
Table 1. The two key parameters of the heat transfer 

model (Q/Qo and Q/Qr) 

 Q/Qo Q/Qr 

Experimental heat transfer ratio 1.4698 5.7974 

Deviation of heat transfer ratio (%) 0 0 
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The number “0” for the “Heat Transfer Pe rformance (%)” 
indicates that the performance are within the tolerance limit 
or in this example referred as experimental values. Any value 
more than or less than “0” of “Deviatio n of heat transfer 
ratio (%)” indicates that certain degree of dimensional in-
consistency has occurred.  

In this test, the heat transfer model parameters that may 
affect the outputs have been identified. The values of pa-
rameter that are able to maintain the nominal values of Q/Qo 
and Q/Qr are specified below.  

z/H =    3.75 

s/H =    0.50 

h/H =    0.10 

Pr =  10.00 

Obviously, the target is to keep the “Deviation of heat 
transfer ratio (%)" at “0” for the two values (Q/Qo and 
Q/Qr). As mentioned before, it is important that the neural 
network learns the relationship between data sets mapped 
to the nodes of the input and output layers. To meet this 
requirement, 108 sets of data were obtained by varying the 
values of the depicted heat transfer model parameter, which 
would subsequently affect the dimensional outcome.  

 



Step 2 - Recall the trained neural network due to changed 
variables  

Technically, there should not be any dimensional changes 
occurred in Q/Qo and Q/Qr if the four parameters remain 
unchanged. However, as in real industrial environment, 
there can be many reasons for creating such changes. In 
this test, it happened that the two dimensions of the heat 
transfer model changed slightly after a few days of produc-
tion though the heat transfer model conditions have re-
mained unchanged. It was found that the dimensions have 
been changed as shown in Table 2: 
 
Table 2. The dimensional deviation of the heat transfer 

model  
 Q/Qo Q/Qr 

Design Heat Transfer Ratio 1.4793 5.7202 

Experimental Heat Transfer Ratio 1.4698 5.7974 

Heat Transfer Deviation (%)  0.65 -1.33 

 

Neural network recall is the processing of new inputs 
through a trained network to obtain the outputs based on 
the correlation acquired during the data training process. 
The two new “Design Heat Tran sfer Ratio” data for “Q/Qo” 
and “Q/Qr” were mapped to the input nodes of the trained 
network. The network’s outputs were as below:  

Output node 1 (Pr)   =  10.261 

Output node 2 (z/H)  =    4.137 

Output node 3 (s/H)   =    0.500 

Output node 4 (h/H)   =    0.098 

The outputs from the trained network as indicated above 
suggest the deviations of the heat transfer conditions that 
subsequently cause the dimensional inconsistencies. For 
example at output node 1 (Pr), the output value is 10.261. 
This means that the deviation of the 'Pr' partly contributes 
to the dimensional deviations of the heat transfer model.  

 

Step 3 - Determine fuzzy sets representation for output 
variables  

The third step is to determine the fuzzy sets for the output 
variables [2, 3]. At this stage, the input and output data are 
all in crisp value (exact numeric values) and it is necessary 
that the data should be fuzzified prior to the fuzzy inference 
process. Figure 3 shows the fuzzification of the two key 
dimensions. The membership functions for dimension Q/Qo 
and Q/Qr, taking the higher values, are 0.87 and 0.74 respec-
tively. The product of two membership function values is 
0.64 (0.87 * 0.74) which will be used for the fuzzy inference 
with the output fuzzy set [4, 5]. In Figure 3, the fuzzy sets 
are represented by S (small), RS (relatively small), N (normal), 
RL (relatively large) and L (large). The detail about this 

fuzzification technique can be found in relevant publica-
tions and not to be covered here. 

 

Figure 3. The fuzzification of dimensions Q/Qo and Q/Qr, 
where the fuzzy sets are represented by S (small), RS 
(relatively small), N (normal), RL (relatively large) and L 

(large). 
 

 

Figure 4. The COA defuzzification of process model pa-
rameters. 

 



Step 4 - Specify the setting of fuzzy rules  

The fourth step is to set up the fuzzy rules that are to be 
used by the rule (inference) engine to provide the desired 
answer. The fuzzy rules are set based on experience from 
field experts, experimental results and theoretical derivation. 
Unlike conventional expert systems, fuzzy rules allow the 
use of imprecise, uncertain and ambiguous terms. In this 
practical example, the parameter values of the output nodes 
need to be fuzzified as well. As shown in Figure 4, the out-
put fuzzy sets are represented by S (small), RS (relatively 
small), N (normal), RL (relatively large), L (large). Using the 
output node 4 (h/H), the output value is 0.0098, which is -
1.8% of the nominal value 0.1. As shown in Figure 3, it cuts 
N at 0.64 and RS at 0.36.  Based on this result, the fuzzy rule 
can be specified as: 

If  dimension Q/Qo is relative small (RS) and 

dimension Q/Qr is normal (N)  

Then adjust the h/H to a higher value as it is 
relative small now. 

 

Step 5 - Determine fuzzy rules for firing and defuzzification 
process  

The fifth step is to determine the rules to be fired based on 
the given conditions, then obtain the results using the 
graphical techniques, and defuzzify the results from the 
inference process. Since the outcome of the fuzzy inference 
process is likely to be another fuzzy set, it is essential that 
only a single discrete action is applied and so a single point 
that reflects the best value of the set needs to be specified 
eventually.  

Based on Figure 4, the Max-dot reasoning strategy and 
COA defuzzification using triangles with membership func-
tion values 0.64, 0.64 and 0.36 evaluated that the value of 
h/H is -1.1 (%) lower that the nominal value or is 0.001 lower 
and should be adjusted. As the actual h/H was 0.1, it should 
be adjusted to 0.099 (0.098 + 0.001). The same technique is 
also applied to the other 3 parameters.  

The second parameter is at output node 3 (s/H) with the 
value of 0 which is 0 (%) of the nominal value 0.5. Referring 
to the diagram shown in Figure 4, the value of s/H is  0 (%) 
or the same as the nominal value. As the actual s/H was 0.5, 
there should be no adjustment required.  

The third parameter is at output node 2 (z/H) with the value 
4.137 which is 10.3 (%) of the nominal value 3.75. The same 
approach will be repeated as the Pr. Referring to the diagram 
shown in Figure 4, the value of z/H is 10 (%) or 0.41 higher 
that the nominal value and should be adjusted back to nor-
mal. As the actual z/H was 3.75, it should be adjusted to 3.72 
(4.13 - 0.41).  

The fourth parameter is  at output node 1 (Pr) with the value 
of 10.261 which is 2.6 (%) of the nominal value 10.  Referring 

to the diagram shown in Figure 4, the value of Pr is 3.54 (%) 
or 0.36 higher than the nominal value. As a result the rec-
ommended adjustment is 9.90 (10.26 - 0.36).  

 

Table 3. The comparison of test results after each itera-
tion 

 Heat Transfer 
Deviation of 
“Q/Qo” (%) 

Heat Transfer 
Deviation of 
“Q/Qr” (%) 

Root Mean 
Square 

(RMS) value 

Original 
deviation 

0.65 -1.33 0.11 

1st iteration 
result  

0.22 -0.59 0.07 

2nd iteration 
result 

0.13 -0.23 0.04 

3rd iteration 
result 

0.10 -0.18 0.03 

 

The parameters of the heat transfer model were adjusted in 
accordance with these new parameter values evaluated 
based on the neural-fuzzy model. The subsequent dimen-
sional outcome was obtained with obvious sign of im-
provement. The process was repeated twice to find the 
trend of dime nsional performance through iteration of the 
heat transfer model. The test results are shown in the Table 
3 with the root mean square errors calculated to compare the 
results after each iteration. And according to Table 3, it can 
be observed that the dimensional output has achieved sig-
nificant improvement after each iteration, from the first root 
mean square error of 0.11 to 0.03 after third iteration. 
 

HOW THE NEURAL-FUZZY MODEL WORKS 

Neural network 
The responsibility of the neural network model element is to 
provide the desire change of parameters based on what the 
network has been trained on. Intrinsically, a sufficient 
amount of data sample is a key factor in order to obtain ac-
curate feedback from the trained network. In actual situa-
tions, recommended action about the required change of 
parameters to cope with the dimensional inconsistency is 
essential. In view of this situation, neural network can be 
regarded as a better option, if the dimensional values are 
mapped to the nodes of the input layer and heat transfer 
parameters are mapped to the output layer nodes, thus re-
sulting in a control model that is the reverse of the heat 
transfer model. In the light of the fact that in an actual ther-
mal system design, the required overall heat transfer is first 
determined from the system analysis. Then the rib geometry 
is chosen according to the nearest overall heat transfer per-
formance determined from experimental investigations. Very 
often the difference between the designed overall heat 



transfer and the experimental performance data can be quite 
significant.  

With a neural network, the correlation between the devia-
tions of heat transfer parameters in response to the devia-
tions of the occurring dimensional values can be trained 
based on a wide spectrum of actual sample data. As neural 
network is intended to learn relationships between data sets 
by simply having sample data represented to their input and 
output layers  [6], the training of a network with input and 
output layers mapped to dimensional deviation values and 
heat transfer deviation values respectively with the purpose 
to develop the correlation between these two groups of 
data will not contradict the basic principle of neural network. 

With a trained network available, it is possible that recom-
mended action about the change of parameters can be ob-
tained with the purpose to optimize the design of rib geome-
try, should that occur at a later stage. Therefore, in the train-
ing process of the neural network, the nodes of the input 
layer of the neural network represent the deviation of the 
dimensional values and those of the output layer represent 
the deviation of the heat transfer parameters. 

Fuzzy logic reasoning 
If there is dimensional inconsistency on the heat transfer 
model, the values at the nodes from the neural network (rep-
resenting the parameter deviations) may provide some hints 
for possible dimensional correction. With the availability of 
this information, a fuzzy logic approach can then be em-
ployed to provide a modified set of recommended parameter 
change based on the original output values from the neural 
network. The motive for using fuzzy logic reasoning in this 
model is to take advantage of its ability to deal with impreci-
sion terms which fit ideally in the parameter-based control 
situations where terms such as “rib spacing could be in-
creased slightly” are used. Furthermore, the vagueness and 
uncertainty of human expressions is well modeled in the 
fuzzy sets, and a pseudo-verbal representation, similar to an 
expert’s formulation, can be achieved.  

During fuzzy reasoning process, the input and output val-
ues of the neural network are generally fuzzified into linguis-
tic terms so that fuzzy rules can be developed. The method 
of obtaining the corresponding output membership values 
from the “fired” fuzzy rule is called fuzzy logic re asoning. 
Many reasoning strategies have been developed, including 
Sup-bounded-product, Super-drastic-product, Sup-min and 
Sup-product [4]. Since it is not the intention of this paper to 
present a review of fuzzy logic reasoning strategies, the 
mentioned reasoning strategies are not further explained in 
this paper. In this paper, the Sup-product stra tegy is 
adopted due to its simplicity and relatively less calculation 
time. 

After the fuzzification process with the generation of fuzzy 
rules, it is necessary to have a defuzzification process. The 

defuzzification process is a process of mapping from a 
space of inferred fuzzy control results to a space of non-
fuzzy control action in a crisp form. In fact, a defuzzification 
strategy is aimed at generating a non-fuzzy control action 
that best represents the possibility distribution of the in-
ferred fuzzy control results.  The Mean of Maximum (MOM) 
and Centre of Area (COA) are two common defuzzification 
methods in fuzzy control systems, and the latter method is 
selected in this neural-fuzzy model to defuzzify the reasoned 
fuzzy output (the parameters value). Proposed parameter 
change is carried out and the dimensional outcome, result-
ing from the change is checked against the expected dimen-
sion.  
 

Conclusion 
This paper introduces a neural-fuzzy model for solving 
MIMO parameter-based control situation supplemented 
with a case example related to therma l system design in or-
der to demonstrate the feasibility of this approach. The 
benefits of using two computational intelligence techniques 
including neural network and fuzzy logic reasoning to form 
an integrated model for handling heat transfer parameters 
are demonstrated.  The test of this model indicates that it 
improves significantly the heat transfer situations although 
the results can be yet considered as perfect. Further re-
search on the structural configuration of the model is 
needed in order to further enhance its benefits. In general, 
this model serves to enhance the progressive introduction 
of machine intelligence to the whole control system and 
provides a platform for further research in terms of intelli-
gent control of heat transfer processes.  
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