

Roelof K. Brouwer
Department of Computing Science
University College of the Cariboo
Kamloops, BC, Canada, V2C 5N3

rkbrouwer@ieee.org

Abstract

The data on which a MLP (multi-layer perceptron) is to
be trained to approximate a continuous function may
include inputs that are categorical in addition to numeric
or quantitative inputs. An approach examined in this
paper is to train a hybrid network consisting of an MLP
and a encoder with multiple output units; a separate
output unit for various combinations of values of the
categorical variables. Input to the feed forward sub
network of the hybrid network is restricted to truly
numerical quantities.

Results show that the method discussed here of
separating numerical from quantitative is quite effective.

1 Introduction

Often the data on which a multiplayer perceptron
(MLP) is to be trained to approximate a continuous
function has inputs that are categorical rather than numeric
or quantitative. A MLP [1,2] with connection matrices that
multiply input values and sigmoid functions that further
transform values however represents a continuous
mapping in all input variables. The values of categorical
variables even if they are ordinal should not be passed
through the MLP as if they were continuous in nature
since Kolmogorov’s theorem is only proven for a network
that is used to represent a continuous mapping. The
underlying function to be represented may really be
several distinct functions with the values of the categorical
variable labeling these functions. As an alternative then
we could consider a separate MLP for various
combinations of values for the categorical variables found
in the training data and expected during prediction.

Another method that makes use of several networks in
combination is the mixture of experts [3]. Other work
using neural networks in case where categorical variables
are present is by Barton and Burgess [4]. Burgess [5]
describes a methodology, based upon the statistical
concept of analysis of variance (ANOVA), which can be

used both for non-linear model identification and for
testing the statistical significance of categorical inputs to a
neural network Bishop [6,7] introduces a new class of
neural, network models obtained by combining a
conventional neural network with a mixture density
model. The complete system is called a Mixture Density
Network. Lee and Lee [8] also address the problem of
multi-value regression estimation with neural network
architecture.

This paper is organized as follows. It commences with
a description of a neural network construction and its
amended training algorithm. This is followed by the
results of simulations that demonstrate the validity of the
approach suggested in this paper.

2 Alternative Approach

2.1 Introduction

A commonly used approach is to convert the
categorical values into real numbers and to feed them
together with the other numerical input into a single MLP
without distinction from the numerical input. Let us
instead consider a more general approach as shown in
Figure 1. In this case the categorical input is treated
separately from the numerical input.

MLPsnumeric
feature
vectorx

categorical
feature
vector c

encoder

FFNN output

s

z

Figure 1 General network with categorical input
treated seperately

If we represent the output of the neural network by z
then the complete network calculates the output as

cfookes
A Hybrid Network for Input that is both Categorical and Quantitative

y = f (, (,))z w s (1)

with (w,s) = (i (w,si) i = 0,1..h-1) and where i

(w,si) could be Boolean functions with values from {0,1} .
The parameter vector w would be trainable. si i = 0,1..h-1
are elements of {0,1} and are the components of output of
the encoder network. We may now consider various
options since we have choices regarding the function
performed by the FFNN, the encoder and the MLPs.

2.2 The FNNN

The first simplification is to set i (w,si) = si and let f
be the dot product. The output of the combined network is
the dot product of the output of the MLP, z, with the
output of the encoder, s i.e

y= .z s (2)

If s is a 1 of n vector with the position of the 1
identifying the output unit of the MLP then s behaves like
a selector by selecting the ouput that applies.

2.3 The MLPs

As far as the MLPs are concerned we could consider a
separate MLP for each combination of values for the
categorical variables, c, found in the training data and
expected during prediction. In statistical terms the ANN
consists of several MLP’s with a dedicated MLP for each
regression equation as shown in Figure 2. Each regression
equation corresponds to a subset of different combination
of values of categorical variables.

(1) (0)y=(.(f(.)).W W x s (3)

categorical feature vector c

numeric feature vector x

output selector s

encoder

z

y

MLP

MLP

MLP

FFNN

Figure 2 Separate MLP’s

The nominal input through selector, s, then determines
which MPL has the correct result for the continuous input.
The encoder will generate a 1 of n binary vector, s, that is
combined with the output of the MLP in a dot product.
The FNN selects the MLP that provides the correct output.
For example each of the three MLP’s in Figure 2
represents a different regression equation. This means that
the categorical feature vectors are used as function
identifiers rather than as values of a quantitative variable.
In the case of one category variable with 3 values 3
separate networks each with a single output unit would be
trained. In case of the Boston housing data discussed in
this paper up to 12 networks would be required depending
upon the allowable number of combinations of categorical
values.

The problem with the preceding method of including
categorical input separately is that the number of output
units required for the network is equal to the number of
categorical feature values or even combinations of feature
values (not the number of categorical features). The
training data is effectively segmented with a segment for
each categorical feature value. This may leave some
segments with very few training elements and some with
no training elements at all. It is quite possible that some
categorical feature value combinations do not occur in the
training data set because they are not at all possible in
reality.

However a collection of MLPS, each with the same
input and each with one output unit is equivalent to a
single MLP that is not fully connected between the hidden
layer and the output layer. Each output unit will only be
connected to the subset of hidden units that correspond to
the same component MLP.

If we now allow the single MLP to be fully connected
from hidden layer we get a MLP with more expressive
power, because of additional degrees of freedom, to
represent each of the two regression equations We may
reduce the number of hidden units. Based on this the
approach examined in this paper is to train a single MLP
with multiple outputs; a separate output unit for each rule
or condition.

The transfer function corresponding to the complete
feed-forward network that accepts both the quantitative
and categorical input is then

(1) (0)y=(.(f(.)).W W x s (4)

The matrices W(0) and W(1) correspond to the
connection matrices for the first and second layer
respectively in the MLP. For simplicity sake the additional
unit in the input layer and hidden layer of the MLP sub-
network that has a constant input of –1 to be multiplied by
a weight representing bias has been left out.

2.4 The Encoder Network

Next the encoder network operation will be described.
The encoder network accepts the categorical input portion
of the total input and produces a selector vector, s. The dot
product of this 1 of n selector vector with the output of the
MLP, z, produces the final output, y. The encoder network
converts the categorical input into a partitioned 1 of n code
as illustrated in (5). The coded categorical input is then
compared to entries in a table, S.

For a particular categorical variable a category is
represented by a binary vector using 1-of-n encoding. (n is
the number of categories). Each category for a category
variable is then represented by a position in a binary
vector. These 1 of n arrays are combined to form a 1-
dimensional array of 1-dimensional arrays. The benefit of
this representation is that conditions for rules are easier to
express as subsets of coded inputs. An example is shown
in (5).

[(0, 1, 0), (1, 0), (1, 0)] (5)
A condition for selection an output unit would then be

expressed as

[(1, 1, 0), (0, 1), (1, 0)] (6)

There may be several conditions or rules like this with
each condition corresponding to a regression equation.
Each rule consists of a condition and the identifier of a
regression equation. An example of a set of rules, S, is in
Table 1.

Table 1 An example of S

Condition 1 of n representation
of output unit
identifier and selector s

[(1,0,0), (1, 1), (0, 1)] 0 0 1
[(0,1,0), (0, 1), (1, 0)] 0 0 1
[(0,0,1), (1, 0), (0, 1)] 0 0 1
[(1,0,1), (0, 1), (1, 0)] 0 1 0
[(0,1,0), (1, 0), (0, 1)] 0 1 0
[(0,0,1), (1, 0), (1, 0)] 0 1 0
[(1,1,0), (1, 0), (1, 0)] 1 0 0
[(0,1,1), (0, 1), (0, 1)] 1 0 0

2.5 Training

Training is done by using gradient descent as is
normally done on a feed forward network with some
additional operations that will be described next.

There are several output units for the MLP while in the
training data there is only one scalar output value for each
input. To obtain an error value for training, the output unit

of the MLP that produces the value closest to the target
output for the given training pattern is used to update the
connection matrices, W(0) and W(1), of the MLP. It is
important to note that the connection matrix, W(1),
between the hidden layer and the output layer has only the
row corresponding to the winning output unit modified.
The categorical input concatenated with the identifier of
the output unit producing the smallest error, through
selector s, is then either added to a table, S, or replaces an
entry in the table or does nothing to the table. Note that
this in general will be a many to one mapping. As a final
step in training, table, S, is reduced by combining rows
that contain the same value for s whenever possible. The
entries in the first column will then be conditions.

Formally let t be the target output of the entire network,
y the output of the entire network and z the output of the
MLP. Then

e=y-t (7)

and

= (- t)e z (8)

Note that bolded e is a vector and un-bolded e is a
scalar.

e= y-t = . -t = .(-t) =s z s z s.e (9)

A performance measure we may use during training is
as in eqn. (10)

2 2(y t) e
C

2 2
 (10)

Then

C e yU U (11)

U represents any parameter of the network to be
learned. Now

y= . + .U Us z z Us (12)

U is replaced by the connection matrices W(0) and W(1).
s is a function of the categorical input, q, and does not
depend on the connection matrices in the trained network
even if it does during training as we will see later.
Therefore the second term on the right side in (12) can be
dropped. Then

(0)
(1) (0)(×

W
z W W .x I x (13)

(1)
(0)

W
z (14)

We get

(0)
(1) (0)(.

W
s. z = s W x

)

x

 (15)

(1)
(0).

W
s z s (16)

(0)s (17)

f(x) is equal to tanh(x). Note that component-wise
multiplication of arrays is defined as long as the
dimensions of one of the arrays form a prefix of the
dimensions of the other array. Thus the component wise
multiplication between a 3*4 array and a 3*4*6 array is
defined. I is the identity matrix with the same rank as s.

The complete training algorithm consists of applying
the following:

(1) (0)= .f(.z W W x (18)

pmin(-t) =1 and 0 otherwisezs (19)

pm in (z-t) means position of maximum in z-t.

(0) (1) (0)
0 e (.W s W (20)

(1) (0)
1 eW s (21)

In addition to the above the table S is updated at each
step.

3 Simulations

Following are the results of carrying out simulations to
permit comparisons of the approaches discussed
previously.

3.1 Simulation 1 -Boston Housing Data

The data for this simulation is from the StatLib library
that is maintained at Carnegie Mellon University. The
creator is Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ.
Economics & Management, vol.5, 81-102, 1978. Date:
July 7, 1993. The data set is available at

http://www.ics.uci.edu/~mlearn/ MLRepository.html. It is
concerned with housing values in suburbs of Boston. The
feature vectors consist of 12 continuous attributes, one
non-ordered binary-valued attribute and one ordered
categorical attribute. Thus we have two kinds of
categorical features. The value to be predicted is the
median value of owner-occupied homes in $1000's.

The first categorical variable has the values 0 and 1
while the second has the values 1, 2, 3, 4, 5, 6, 7, 8, and
24. Using 1 of n encoding the first variable requires 2 bits
and the second 9 bits for a total of 11 bits. The total
number of combinations for categorical input is 2*9=18
although only 15 show up in the simulation. The number
of hidden units per output unit is set at 5. The mean square
error on training data before training was 1051.2. While
the mean square error on test data before training was
1034.8.The learning rate was 0.0001 for both connection
matrices. The number of output units made available is 15
while the number actually used is 11. Figure 3 shows the
progress in training. The error on the test data is very close
to the error on the training error at each epoch.

Figure 3

The table, S, obtained by training and sorted by the last
column is

Table 2 Categorical input versus selector

R Categorical input s
1 [(0 1), (1 0 0 0 0 0 0 0 0)] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
2 [(1 0), (0 0 1 0 0 0 0 0 0)] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3 [(1 0), (0 0 0 0 0 0 1 0 0)] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4 [(0 1), (0 0 0 0 1 0 0 0 0)] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
5 [(0 1), (0 0 0 0 0 1 0 0 0)] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
6 [(1 0), (0 1 0 0 0 0 0 0 0)] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
7 [(1 0), (0 0 0 0 0 0 0 0 1)] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
8 [(1 0), (0 0 0 1 0 0 0 0 0)] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
9 [(0 1), (0 0 0 0 0 0 0 0 1)] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 [(0 1), (0 0 1 0 0 0 0 0 0)] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 [(1 0), (0 0 0 0 0 0 0 1 0)] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
2 [(0 1), (0 0 0 1 0 0 0 0 0)] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 [(1 0), (1 0 0 0 0 0 0 0 0)] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
4 [(0 0), (0 0 0 0 0 1 0 0 0)] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 [(0 0), (0 0 0 0 1 0 0 0 0)] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The first column is there to identify the rows for the
purpose of the reader. This table is reduced to

Table 3 Condition versus selector value

Condition Selector
[(1 0), (0 0 0 0 1 1 0 0 0)] 1 0 0 0 0 0 0 0 0 0 0
[(1 1), (1 0 0 1 0 0 0 0 0)] 0 1 0 0 0 0 0 0 0 0 0
[(1 0), (0 0 0 0 0 0 0 1 0)] 0 0 1 0 0 0 0 0 0 0 0
[(0 1), (0 0 1 0 0 0 0 0 1)] 0 0 0 1 0 0 0 0 0 0 0
[(1 0), (0 0 0 1 0 0 0 0 0)] 0 0 0 0 1 0 0 0 0 0 0
[(1 0), (0 0 0 0 0 0 0 0 1)] 0 0 0 0 0 1 0 0 0 0 0
[(1 0), (0 1 0 0 0 0 0 0 0)] 0 0 0 0 0 0 1 0 0 0 0
[(0 1), (0 0 0 0 0 1 0 0 0)] 0 0 0 0 0 0 0 1 0 0 0
[(0 1), (0 0 0 0 1 0 0 0 0)] 0 0 0 0 0 0 0 0 1 0 0
[(1 0), (0 0 0 0 0 0 1 0 0)] 0 0 0 0 0 0 0 0 0 1 0
[(1 1), (1 0 1 0 0 0 0 0 0)] 0 0 0 0 0 0 0 0 0 0 1

3.2 Simulation 2-Abalone Data

The source of the data for this experiment is the Marine
Resources Division, Marine Research Laboratories –
Taroona, Department of Primary Industry and Fisheries,
Tasmania GPO Box 619F, Hobart, Tasmania 7001,
Australia. The data set is available at
http://www.ics.uci.edu/~mlearn/MLRepository.html. The
data is for predicting the age of abalone from physical
measurements. The number of attributes is 8 with all but
one being continuously valued. The output data is
normalized before training. Of 4177 feature vectors 1/2
were used for training and the other 1/2 was used for
testing.).
The simulation was done with 3 output units and 3 hidden
units per output unit. The mean square error based on
training data before training commenced was 2.328320995
and the mean square error on test data before training
commenced was 2.502301048. The number of epochs
allowed was 25. he learning rates for the two connection
matrices was 0.0001. The actual number of output units
used was 3. The training error and testing error at the end
of 25 epochs was 0.232212 and 0.247859.

Figure 4 Training on Abalone Data

The table identifying the output unit corresponding to a
category value is as shown in Table 4. Three output units
were made available and 3 were utilized with one unit for
each category variable

Table 4 Selector of output unit

Category Category in 1 of n Output unit Output unit in 1 of n
M 0 0 1 1 0 1 0
F 0 1 0 0 1 0 0
I 1 0 0 2 0 0 1

4 Conclusion

We have shown how the categorical features may be
segregated from the numeric features when using an MLP
for prediction. The numeric feature vector is processed by
an MLP with several outputs that are then combined with
the coded form of the categorical feature vector. This is
somewhat similar to the statistical approach except that
non-linearities are used instead of linearities [9]. The only
correct way is to have a separate function and separate
MLP for each categorical feature vector but this is not
feasible unless there is sufficient data for feature vector
instance. Including several outputs in the MLP is an
attempt to approximate the method of having a separate
function approximator MLP for each categorical feature
vector instance. Since the connection matrix from the
input layer to the hidden layer is fixed this approximation

is limited. Further work includes finding a Boolean
function to replace the table, S.

5 References

[1] P. J. Werbos, Beyond Regression: New Tools for
Prediction and Analysis in the Behavioral Sciences,
Doctoral Dissertation, Appl. Math., Harvard University,
Mass. 1974.
[2] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland.
A general framework for parallel distributed processing. In
Parallel Distributed Processing, pages 45-76, D. E.
Rumelhart, J. L. McClelland, and the PDP Research
Group, Editors, The MIT Press, Cambridge, MA, 1986.
[3] R. A. Jacobs, M.L. Jordan S. J. Nowlan and G. E.
Hinton Adaptive Mixtures of Local Experts Neural
Computation 3/1 (1992) 79-87.
[4] J. G. Barton and A. Lees. “Comparison of shoe insole
materials by neural network analysi”s. Medical-and-
Biological-Engineering-and-Computing. 34 (6) Nov
1996, p 453-459.
[5] A. N. Burgess, “Non-linear model identification and
statistical significance tests and their application to
financial modeling” IEE, Stevenage, Engl. p 312-317
Proceedings of the 4th International Conference on
Artificial Neural Networks 1995. Cambridge, UK
[6] C. M. Bishop “Mixture Density Networks”
NCRG/94/004 Available from
http://www.ncrg.aston.ac.uk
[7] C. M. Bishop Neural Networks for Pattern Recognition
Clarendon Press Oxford 1995.
[8] K. Lee and T. Lee. “Design of Neural Networks for
Multi_value Regession. International Joint Conference on
Neural Networks (2001) 93-98.
[9] J. Neter, William Wasserman, W. and Michael H.
Kutner, M. H. Applied Linear Statistical Models Irwin
1990 pp 349- 385.

	P179:
	Numb:
	Numbx:
	C: 179
	L:
	R:

	P180:
	Numb:
	Numbx:
	C: 180
	L:
	R:

	P181:
	Numb:
	Numbx:
	C: 181
	L:
	R:

	P182:
	Numb:
	Numbx:
	C: 182
	L:
	R:

	P183:
	Numb:
	Numbx:
	C: 183
	L:
	R:

	P184:
	Numb:
	Numbx:
	C: 184
	L:
	R:

