
Autonomous Land Vehicle Navigation using Artificial Neural Networks

Muthu Ganesh P.
R.M.K. Engineering College

Department of Information Technology
Chennai, Tamil Nadu, India

muthuganesh_p@hotmail.com

Abstract

Autonomous land vehicle navigation is used to
assist the driver partially or completely with the
help of modern technology in a non-intrusive
manner. This work concerns with the addition of
an additional neural network which works
separately and takes care of the road signs and
other such entities. It detects obstacles and
tracks them till it is safely passed. The
information about the obstacle is passed on to
the driving network which deals with the
obstacle by steering the vehicle away, or
deciding some other means of avoiding the
obstacle. Thus, the safety of the system is
enhanced.

1. Introduction

1.1 Artificial Neural Networks (ANN):
Artificial Neural Networks, also called parallel

distributed processing systems (PDPs) and
connectionist systems, are intended for modeling
the organizational principles of central nervous
system, with the hope that the biologically
inspired computing capabilities of the ANN will
allow the cognitive and sensory tasks to be
performed more easily and more satisfactorily
than with conventional serial processors. In
simple terms ANN is an attempt to mimic the
functionality of the human neural network
system (brain).

1.2 Autonomous Land Vehicle
Navigation:

Autonomous land vehicle navigation is used to
assist the driver partially or completely with the
help of modern technology in a non-intrusive
manner. Currently, the most discussed
technology with respect to autonomous land

Sai Nithin Singh C.
R.M.K. Engineering College

Department of Information Technology
Chennai, Tamil Nadu, India

sainithin@hotmail.com

vehicle navigation is the use of impregnated
magnets along a path to guide the vehicle. But
the drawback of this system is the cost and the
practicality of implementation. Autonomous land
vehicle navigation using ANN addresses all
these drawbacks along with the added
functionality of learning the different driving
styles under different circumstances using on-
the-fly training [1]. This system uses active
sensors to interact with the environment and
concurrently learn from the user using a non-
intrusive gaze tracking system through ANN.
The issues addressed by this system are:

 Rapidly Adapting the Lateral Position of the

 Vehicle.
 Kinematical Control of Vehicle using

 Simulated Highways for Intelligent Vehicle
 Algorithms.
 Inter-Vehicle Interaction using Visibility

 Estimation Techniques.
 Simultaneous Localization and Mapping

 with Detection and Tracking of Moving
 Objects.
 Path Intersection Detection and Traversal.
 Predicting Lane Position for Roadway

 Departure Prevention.
 Driving in traffic: Short-Range Sensing for

 Urban Collision Avoidance

1.3 Active Sensor Control for Autonomous
Driving System:

The Autonomous Land Vehicle (ALV) is a
neural network based system which has been
successful in driving robot vehicles in a variety
of situations. However, since ALV maintains no
state information about the world, but processes
each sensor frame individually, it can become
confused on sharp curves when the field of view
no longer displays the important features in the
scene. A steerable sensor allows the perception
system to select the desired field of view to
maximize the information content of a sensor

frame. For a vision system that builds a map of
the road, it is straightforward to point the camera
in the desired direction, but ALV directly outputs
a steering command, without generating an
intermediate road representation. The system
interprets this steering command as a point on
the road and pans the camera in the desired
direction. However since ALV is trained with a
fixed sensor orientation, the position of the
sensor during training is implicitly encoded in
the weights and moving the camera results in the
outputs of the network being invalid for the
given configuration. The system solves this
problem by post-processing the steering response
of the neural network as a function of the current
sensor configuration. A significant advantage of
this approach is that existing networks can run
under this new system without any modification
or retraining.

The system's basic architecture is a three
layered artificial neural network shown in figure.
A reduced resolution camera image is fed into a
30x32 array of input units, which are fully
connected to a hidden layer of 4 units. The
hidden units are fully connected to a vector of 30
output units, and the steering response is given
as a Gaussian activation level centered on the
correct steering curvature. ALV's neural net is
trained "on-the-fly", and the human driver's
steering responses are used as the teaching
signal. ALV is able to learn from this limited
data by artificially expanding its training set.
Each original image is shifted and rotated in
software to create 14 additional images in which
the vehicle appears to be situated differently in
relation to the road. The training signal for each
of these new images is calculated by assuming a
pure pursuit model of driving and transforming
the original steering response accordingly [1].

1.4 Inter-Vehicle Interaction using
Visibility Estimation Techniques:

Reduced visibility is one of the key factors in
many traffic accidents. It is very difficult to
consistently find high contrast targets at various
known ranges from a moving vehicle. This
system overcomes this difficulty when detecting
the position and curvature of the road ahead in
camera images by utilizing whatever features are
visible on the roadway, including lane markings,
road/shoulder boundaries, tracks left by other
vehicles, and even subtle pavement
discolorations like the oil stripe down the lane
center when necessary.

In order to estimate visibility the road feature
should be detected. In this process an aerial

image of the road is taken and a cross-section of
the aerial image perpendicular to the road, called
the road template is created.

Fig. 1 – Image used to study the road using
intensity as a parameter [4].

All the particulars necessary are taken from
the road template and finds out the road ahead.
The system adjusts the template left or to the
right until it matches the particular row’s cross-
section. The amount of shift gives the lateral
displacement.

1.5 Driving in traffic: Short-Range
Sensing for Urban Collision Avoidance

This system addresses the issues involved in
traffic driving. The requirements for an effective
collision avoidance and warning system for
urban environments, include the following as a
minimum standard:

• Sensing
o State of own vehicle
o State of nearby objects
o Environment

• Knowledge Base
o Model of the own vehicle and

driver
o Model of other objects
o Model of environment
o Model of interaction between all of

the above
• Processing and Algorithms

o What situation we are in?
o How likely is a collision?
o How dangerous is the situation?
o Is an action needed?

• System Response
o Aware : Baseline Situational

Awareness
o Alert : Potential Obstacles
o Warn : High Likelihood of

Collision
o Evade : Imminent Collision
o Notify : Collision has occurred

One method of sensing the nearby objects in

an urban environment is using a laser line striper
shown in the figure below [2].

Fig. 2 - Laser and Camera configuration used
for short range detection of objects.

1.6 Overtaking Vehicle Detection

To detect vehicles, we do the following: first,
we sample the image, perform edge detection,
and use our planar parallax model to predict
what that edge image will look like after
traveling a certain distance. Next, we capture an
image after traveling our assumed distance, and
compare it to the prediction. For each edge point
in the predicted image, we verify that there is a
corresponding edge point in the actual image. If
there is a match, then our prediction (based on a
flat earth assumption) is verified. Otherwise, we
know that the cause of the horizontal line in the
predicted image was an obstacle (i.e., above the
ground plane). There are 4 components to the
system:

• Sampling and Preprocessing,
• Dynamic image Stabilization,
• Model-Based Prediction, and
• Obstacle Detection.

The figure 3 on the right is the difference
image obtained by taking the difference of the
images actually sampled and the image predicted
by the system. When the noise is analyzed, the
vehicle on the right easily stands out, since its
predicted path of motion is varying greatly from
its actual path of motion. Thus it is concluded
that it is overtaking.

Fig. 3 - Rear View Road Image [3]

Fig. 4 - Same image after 120 ms [3]

Fig. 5 - Difference Image [3]

Fig. 6 - Obstacle Image [3]

2. Obstacle Tracking
Our work is extending the above working

model developed by NAVLAB, Carnegie Mellon
University by adding an obstacle tracking
system. We have taken up a two dimensional
case, for greater flexibility in case of contour
changes on the road. With the initial positions of
the obstacle and the autonomous vehicle, the
bearing information is simulated using sensor
simulator, the output of which is fed to the Least
Square Estimator (LSE) filter which gives the
estimated obstacle parameters. The errors
between the estimated and the simulated obstacle
parameters are compared. To reduce estimation
error, the backpropogation neural network is
incorporated with the LSE filter. The network is
trained for a set of inputs and after testing, the
network estimates the obstacle parameters. The
errors between the simulated and the estimated
values are compared with the errors obtained
without the aid of the network.

2.1 Tracking Model Derivations

2.1.1 Mathematical Model:

System model at state k+1:

X(k+1) = A.X(k) + B.U(k) + W(k)

where

X(k) = r.x(k) = State Vector
 r.y(k)
 v.x(k)
 v.y(k)

 = Range in x-direction at time k
 Range in y-direction at time k
 Velocity in x-direction at time k
 Velocity in y-direction at time k

U(k) = v.x(k)
 v.y(k)

 = Change in relative velocity in x-

direction between time k and k+1.
 Change in relative velocity in x-

direction between time k and k+1.

W(k) = System Noise

A = 1 0 kT 0 = State Transition
 0 1 0 kT Matrix
 0 0 1 0
 0 0 0 1

 -1
B = 0 1 0 0 = Input Matrix
 0 0 0 1

T = Sampling Period

k = Sample Number

U(k) is concerned with vehicle dynamics with
respect to the obstacle. Since the vehicle is
assumed to be moving with a uniform velocity
within the infinitesimal period between k and
k+1, B.U(k) term can be taken as zero for
theoretical verification purposes. By assuming
the system noise as zero, the system model
becomes:

X(k+1) = A.X(k)

2.1.2 Measurement Model:

Y(k) = H.X(k) + υ(k)

where,
 Y(k) : Measured bearing at time k
 H : [cos b -sin b 0 0]
 : Measurement Matrix
 b : Bearing
 υ(k) : Measurement noise component of the

appropriate order.

2.1.3 System Dynamics Model:

The Cartesian state vector formulation
is as follows:

Let ‘k’ be any arbitrary time instant,

X(k) = rx(k)
 ry(k)
 vx(k)
 vy(k)

rx(k) = rtx(k) – rox(k)
ry(k) = rty(k) – roy(k)

where,

rx and ry are relative ranges along x and y
directions between the vehicle and the obstacle.

t : refers to the obstacle (target)
o : refers to the vehicle (observer)

The measurement process is described by non-
linear elation:

b(k) = arctan(rx/ry)

where,
b(k) represents the measured target (obstacle)

bearing at the kth instant of time and taking tan
on both sides we have,

tan(b(k)) = (rtx(k) – rox(k)) / (rty(k) – roy(k))

or,

sin(b(k)) (rty(k) - rox(k)) = cos(b(k))
 (rtx(k) - rox(k))

but,

b(k) = bm(k) + v(k)

where,

 bm(k) is the actual measured bearing at kth

instant and v(k) is the measurement noise at kth

instant.

 This can be formulated as follows avoiding the
subscript ‘k’:

(rtx - rox) cos (bm) – (rty - roy) sin (bm)
 = – rs(k).sin(v(k))

where,

 rs(k) = (rtx - rox) sin (b) – (rty - roy) cos (b)

i.e,

rox.cos (bm) – roy.sin (bm)
 = rtx.cos (bm) – rty.sin (bm) + rs(k).sin(v(k))

In the above equation the left hand side
denotes the measurement vector H(k), and is
chosen as,

H(k) = [cos(bm) –sin(bm) 0 0]

Therefore the observation sequence is as follows,

z(k) = H(k).Xo(k) = H(k).Xt(k) + n(k)

i.e,

z(k) is the measurement at kth instant,
Xo(k) is the observer(vehicle) state at the kth

instant,

Xt(k) is the target(obstacle) state at the kth

instant and
n(k) is the noise sequence at the kth instant.

Hence the measurement scalar model

z(k) = H(k) . X(k) + n(k)

2.2 Backpropogation Neural Network
Training

2.2.1 Forward Pass. Calculation in multilayer
network is done layer by layer. The NET of each
neuron in the first hidden layer is calculated as
the weighted sum of all its neuron inputs. The
activation function ‘F’ then squashes NET to
produce the OUT value for each neuron in that
layer. Once the set of outputs for a layer is
found, it serves as the input for the next layer.
The process is repeated , layer by layer, until the
final set of network outputs is produced.

2.2.2 Backward Pass. The networks actual
output from the forward pass is compared with
the desired output and error estimates are
computed for the output units. The weights
connected to the output units are adjusted to
reduce those errors. The error estimates of the
output units are used to derive the error estimates
for the units in the hidden layer. Finally, the
errors are propagated back to the connections
stemming from the input units.

Before starting the training process, all the
weights must be initialized to small random
numbers. This ensures that the network is not
saturated by large values of weights.

2.3 Least Square Estimator Filter

The Least Square Estimator is one the methods
providing Target Motion Analysis (TMA). We
propose to incorporate this in our ALV model.
Here instead of the target moving, the ALV
model moves, and the obstacle remains
stationary. The basic task is to estimate
accurately to the extent possible, the relative
position (Rx, Ry) and the relative velocities (Vx,
Vy) of the obstacle, from either the Short Range
Sensors or sonar noisy measurements of range
and bearing. The obstacle can be a stone, a
vehicle (parked or in motion), a signboard, etc.
The state vector plays a key role in LSE
diverging/converging cases.

The statistical characteristics of the noise
depend upon the measuring equipment. It is
observed that the LSE is optimum only for the

case of Gaussian noise. The LSE is an unbiased,
stable, and optimal estimator with minimum
variance, if the system is stochastically
controllable and observable, with some noise
assumptions being satisfied.

The recursive LSE is a linear, discrete time,
finite-dimensional and sequential recursive
system. It assumes the availability of a state
model and an observational model. The input to
the filter is a sensor or a sonar bearing
contaminated with noise and the output is the
obstacle parameters.

2.4 Block Diagram of Network Aided LSE

Fig. 7 - Block Diagram of Backpropogation
Neural Network (BPNN) aided LSE (Least
Square Estimator).

The block diagram shown above illustrates
how the LSE functions in combination with the
Backpropogation neural network. The compared
results of the network and the LSE are fed back
and thus the error is deducted.

3. Conclusion

Intelligent vehicles are beginning to appear on
the market, but so far their sensing and warning
functions only work on the open road. Functions
such as run off road warning or adaptive cruise
control are designed for the uncluttered
environments of open highways. Current
sensing/warning/controlling systems generally
work only in relatively simple environments.
Applications developed for open highways

include Adaptive Cruise Control (ACC), which
controls the throttle to keep a safe gap behind
other vehicles; run-off-road collision warning
systems, which alert a driver if the vehicle starts
to drift out of its lane; and blind-spot sensors on
heavy trucks to warn the driver if they start a
lane change without seeing a car in the next lane.
Some applications are also on the market for
slow speed driving: rear-facing sensors as
parking aids, for example. This work of ours
gives a spin-off to further studies. Other neural
networks such as the Hopfield network can be
employed instead of the Backpropogation
network.

The Autonomous Land Vehicle Navigation
using Artificial Neural Networks puts forward a
very promising technology which might change
the very way vehicle navigation is perceived as
of today. Although still under research, its results
are very encouraging and in conjunction with
other modern technologies like GPS, ACC, etc.
can easily pull down the rate of causality which
is very high in today’s roadways. The future is
very bright for Autonomous Land Vehicles.
They have come here to stay and stay they will.

References

[1] Rahul Sukthankar, Dean Pomerleau and Charles

Thorpe, Robotics Institute (NAVLAB) - Carnegie
Mellon University. Panacea: An Active Sensor
Controller for the ALVINN Autonomous Driving
System.

[2] Mertz, C., Kozar, J., Miller, J.R., and Thorpe, C.,
Eye-safe Laser Line Striper for Outside Use.
Paper submitted to: IV 2002, IEEE Intelligent
Vehicle Symposium, June, 2002.

[3] Parag H. Batavia, Dean A. Pomerleau, Charles E.
Thorpe, Robotics Institute, Carnegie Mellon
University. Predicting Lane Position for
Roadway Departure Prevention.

[4]. Dean Pomerleau, Carnegie Mellon University.
Inter-Vehicle Interaction using Visibility
Estimation Techniques.

	P445:
	Numb:
	Numbx:
	C: 445
	L:
	R:

	P446:
	Numb:
	Numbx:
	C: 446
	L:
	R:

	P447:
	Numb:
	Numbx:
	C: 447
	L:
	R:

	P448:
	Numb:
	Numbx:
	C: 448
	L:
	R:

	P449:
	Numb:
	Numbx:
	C: 449
	L:
	R:

	P450:
	Numb:
	Numbx:
	C: 450
	L:
	R:

