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Abstract 
 

Autonomous land vehicle navigation is used to 
assist the driver partially or completely with the 
help of modern technology in a non-intrusive 
manner. This work concerns with the addition of 
an additional neural network which works 
separately and takes care of the road signs and 
other such entities. It detects obstacles and 
tracks them till it is safely passed. The 
information about the obstacle is passed on to 
the driving network which deals with the 
obstacle by steering the vehicle away, or 
deciding some other means of avoiding the 
obstacle. Thus, the safety of the system is 
enhanced. 

 
 

1. Introduction 
 

1.1 Artificial Neural Networks (ANN): 
Artificial Neural Networks, also called parallel 

distributed processing systems (PDPs) and 
connectionist systems, are intended for modeling 
the organizational principles of central nervous 
system, with the hope that the biologically 
inspired computing capabilities of the ANN will 
allow the cognitive and sensory tasks to be 
performed more easily and more satisfactorily 
than with conventional serial processors. In 
simple terms ANN is an attempt to mimic the 
functionality of the human neural network 
system (brain). 
 
1.2 Autonomous Land Vehicle 
Navigation: 

Autonomous land vehicle navigation is used to 
assist the driver partially or completely with the 
help of modern technology in a non-intrusive 
manner. Currently, the most discussed 
technology with respect to autonomous land 
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vehicle navigation is the use of impregnated 
magnets along a path to guide the vehicle. But 
the drawback of this system is the cost and the 
practicality of implementation. Autonomous land 
vehicle navigation using ANN addresses all 
these drawbacks along with the added 
functionality of learning the different driving 
styles under different circumstances using on-
the-fly training [1]. This system uses active 
sensors to interact with the environment and 
concurrently learn from the user using a non- 
intrusive gaze tracking system through ANN. 
The issues addressed by this system are: 
 
 Rapidly Adapting the Lateral Position of the 

       Vehicle. 
 Kinematical  Control  of  Vehicle  using  

       Simulated Highways for Intelligent Vehicle  
       Algorithms. 
 Inter-Vehicle Interaction using Visibility  

       Estimation Techniques. 
 Simultaneous Localization and Mapping  

       with Detection and Tracking of Moving    
       Objects. 
 Path Intersection Detection and Traversal. 
 Predicting Lane Position for Roadway  

       Departure Prevention. 
 Driving in traffic: Short-Range Sensing for  

       Urban Collision Avoidance 
 
1.3 Active Sensor Control for Autonomous 
Driving System: 

The Autonomous Land Vehicle (ALV) is a 
neural network based system which has been 
successful in driving robot vehicles in a variety 
of situations. However, since ALV maintains no 
state information about the world, but processes 
each sensor frame individually, it can become 
confused on sharp curves when the field of view 
no longer displays the important features in the 
scene. A steerable sensor allows the perception 
system to select the desired field of view to 
maximize the information content of a sensor 



frame. For a vision system that builds a map of 
the road, it is straightforward to point the camera 
in the desired direction, but ALV directly outputs 
a steering command, without generating an 
intermediate road representation. The system 
interprets this steering command as a point on 
the road and pans the camera in the desired 
direction. However since ALV is trained with a 
fixed sensor orientation, the position of the 
sensor during training is implicitly encoded in 
the weights and moving the camera results in the 
outputs of the network being invalid for the 
given configuration. The system solves this 
problem by post-processing the steering response 
of the neural network as a function of the current 
sensor configuration. A significant advantage of 
this approach is that existing networks can run 
under this new system without any modification 
or retraining. 

The system's basic architecture is a three 
layered artificial neural network shown in figure. 
A reduced resolution camera image is fed into a 
30x32 array of input units, which are fully 
connected to a hidden layer of 4 units. The 
hidden units are fully connected to a vector of 30 
output units, and the steering response is given 
as a Gaussian activation level centered on the 
correct steering curvature. ALV's neural net is 
trained "on-the-fly", and the human driver's 
steering responses are used as the teaching 
signal. ALV is able to learn from this limited 
data by artificially expanding its training set. 
Each original image is shifted and rotated in 
software to create 14 additional images in which 
the vehicle appears to be situated differently in 
relation to the road. The training signal for each 
of these new images is calculated by assuming a 
pure pursuit model of driving and transforming 
the original steering response accordingly [1]. 

 
1.4 Inter-Vehicle Interaction using 
Visibility Estimation Techniques: 

Reduced visibility is one of the key factors in 
many traffic accidents. It is very difficult to 
consistently find high contrast targets at various 
known ranges from a moving vehicle. This 
system overcomes this difficulty when detecting 
the position and curvature of the road ahead in 
camera images by utilizing whatever features are 
visible on the roadway, including lane markings, 
road/shoulder boundaries, tracks left by other 
vehicles, and even subtle pavement 
discolorations like the oil stripe down the lane 
center when necessary. 

In order to estimate visibility the road feature 
should be detected. In this process an aerial 

image of the road is taken and a cross-section of 
the aerial image perpendicular to the road, called 
the road template is created. 

 
Fig. 1 – Image used to study the road using 
intensity as a parameter [4]. 
 

All the particulars necessary are taken from 
the road template and finds out the road ahead. 
The system adjusts the template left or to the 
right until it matches the particular row’s cross-
section. The amount of shift gives the lateral 
displacement. 

 
1.5 Driving in traffic: Short-Range 
Sensing for Urban Collision Avoidance 

This system addresses the issues involved in 
traffic driving. The requirements for an effective 
collision avoidance and warning system for 
urban environments, include the following as a 
minimum standard: 
 

• Sensing 
o State of own vehicle 
o State of nearby objects 
o Environment 

• Knowledge Base 
o Model of the own vehicle and 

driver 
o Model of other objects 
o Model of environment 
o Model of interaction between all of 

the above 
• Processing and Algorithms 

o What situation we are in? 
o How likely is a collision? 
o How dangerous is the situation? 
o Is an action needed? 

• System Response 
o Aware : Baseline Situational 

Awareness 
o Alert : Potential Obstacles 
o Warn : High Likelihood of 

Collision 
o Evade : Imminent Collision 
o Notify : Collision has occurred 
 



 
One method of sensing the nearby objects in 

an urban environment is using a laser line striper 
shown in the figure below [2]. 

 

 
Fig. 2 - Laser and Camera configuration used 
for short range detection of objects. 
 
1.6 Overtaking Vehicle Detection 

To detect vehicles, we do the following: first, 
we sample the image, perform edge detection, 
and use our planar parallax model to predict 
what that edge image will look like after 
traveling a certain distance. Next, we capture an 
image after traveling our assumed distance, and 
compare it to the prediction. For each edge point 
in the predicted image, we verify that there is a 
corresponding edge point in the actual image. If 
there is a match, then our prediction (based on a 
flat earth assumption) is verified. Otherwise, we 
know that the cause of the horizontal line in the 
predicted image was an obstacle (i.e., above the 
ground plane). There are 4 components to the 
system:  

 
• Sampling and Preprocessing,  
• Dynamic image Stabilization, 
• Model-Based Prediction, and  
• Obstacle Detection. 
 

The figure 3 on the right is the difference 
image obtained by taking the difference of the 
images actually sampled and the image predicted 
by the system.  When the noise is analyzed, the 
vehicle on the right easily stands out, since its 
predicted path of motion is varying greatly from 
its actual path of motion. Thus it is concluded 
that it is overtaking.  

 
Fig. 3 -  Rear View Road Image [3] 
 

 
Fig. 4 - Same image after 120 ms [3] 
 

 
Fig. 5 - Difference Image [3] 
 

 
Fig. 6 - Obstacle Image [3] 
 
 



2. Obstacle Tracking 
Our work is extending the above working 

model developed by NAVLAB, Carnegie Mellon 
University by adding an obstacle tracking 
system. We have taken up a two dimensional 
case, for greater flexibility in case of contour 
changes on the road. With the initial positions of 
the obstacle and the autonomous vehicle, the 
bearing information is simulated using sensor 
simulator, the output of which is fed to the Least 
Square Estimator (LSE) filter which gives the 
estimated obstacle parameters. The errors 
between the estimated and the simulated obstacle 
parameters are compared. To reduce estimation 
error, the backpropogation neural network is 
incorporated with the LSE filter. The network is 
trained for a set of inputs and after testing, the 
network estimates the obstacle parameters. The 
errors between the simulated and the estimated 
values are compared with the errors obtained 
without the aid of the network. 
 
2.1 Tracking Model Derivations 
 
2.1.1 Mathematical Model: 
 
System model at state k+1: 
 

X(k+1) = A.X(k) + B.U(k) + W(k) 
 
where 
 
X(k) =  r.x(k)   = State Vector 
 r.y(k) 
 v.x(k) 
 v.y(k) 
 
        = Range in x-direction at time k 
 Range in y-direction at time k 
 Velocity in x-direction at time k  
 Velocity in y-direction at time k  
 
 
U(k) = v.x(k) 
 v.y(k) 
 
 
 
       = Change in relative velocity in x-

direction between time k and k+1. 
 Change in relative velocity in x-

direction between time k and k+1. 
 
 
 
W(k) = System Noise 

 
A =  1 0 kT 0 = State Transition  
 0 1 0 kT     Matrix 
 0 0 1 0 
 0 0 0 1 
 
             -1 
B =  0 1 0 0 = Input Matrix 
 0 0 0 1 
 
T = Sampling Period 
 
k = Sample Number 
 

U(k) is concerned with vehicle dynamics with 
respect to the obstacle. Since the vehicle is 
assumed to be moving with a uniform velocity 
within the infinitesimal period between k and 
k+1, B.U(k) term can be taken as zero for 
theoretical verification purposes. By assuming 
the system noise as zero, the system model 
becomes: 

 
X(k+1) = A.X(k) 

 
2.1.2 Measurement Model: 

 
Y(k) = H.X(k) + υ(k) 

where, 
 Y(k) : Measured bearing at time k 
 H      : [cos b     -sin b     0      0] 
          : Measurement Matrix 
 b       : Bearing 
 υ(k)  : Measurement noise component of the 

appropriate order. 
 
2.1.3 System Dynamics Model: 

The Cartesian state vector formulation 
is as follows: 
 
Let ‘k’ be any arbitrary time instant, 
  
X(k) =  rx(k)    
 ry(k) 
 vx(k) 
 vy(k) 
 
 
rx(k) = rtx(k) – rox(k) 
ry(k) = rty(k) – roy(k) 
 
where, 

rx and ry are relative ranges along x and y 
directions between the vehicle and the obstacle. 

t : refers to the obstacle (target) 
o : refers to the vehicle (observer) 



The measurement process is described by non-
linear elation: 

 
b(k) = arctan(rx/ry) 
 

where, 
b(k) represents the measured target (obstacle) 

bearing at the kth instant of time and taking tan 
on both sides we have, 

 
tan(b(k)) = (rtx(k) – rox(k)) / (rty(k) – roy(k)) 

 
or, 

 
sin(b(k)) (rty(k) - rox(k)) = cos(b(k))  
    (rtx(k) - rox(k)) 

 
but, 
 

b(k) = bm(k) + v(k) 
 
where, 
 
 bm(k) is the actual measured bearing at kth 

instant and v(k) is the measurement noise at kth 

instant. 
 
 This can be formulated as follows avoiding the 
subscript ‘k’: 
 
(rtx - rox) cos (bm) – (rty - roy) sin (bm)  
     = – rs(k).sin(v(k)) 
 
where, 
 
 rs(k) = (rtx - rox) sin (b) – (rty - roy) cos (b) 
 
i.e, 
 
rox.cos (bm) – roy.sin (bm)  
 = rtx.cos (bm) – rty.sin (bm) + rs(k).sin(v(k)) 
 

In the above equation the left hand side 
denotes the measurement vector H(k), and is 
chosen as, 
 

H(k) = [cos(bm)     –sin(bm)        0        0] 
 
Therefore the observation sequence is as follows, 
 
z(k) = H(k).Xo(k) = H(k).Xt(k) + n(k) 
 
i.e, 

z(k) is the measurement at kth instant, 
Xo(k) is the observer(vehicle) state at the kth 

instant, 

Xt(k) is the target(obstacle) state at the kth 

instant and 
n(k) is the noise sequence at the kth instant. 

 
Hence the measurement scalar model 
 

z(k) = H(k) . X(k) + n(k) 
 
2.2 Backpropogation Neural Network 
Training 
 
2.2.1 Forward Pass. Calculation in multilayer 
network is done layer by layer. The NET of each 
neuron in the first hidden layer is calculated as 
the weighted sum of all its neuron inputs. The 
activation function ‘F’ then squashes NET to 
produce the OUT value for each neuron in that 
layer. Once the set of outputs for a layer is 
found, it serves as the input for the next layer. 
The process is repeated , layer by layer, until the 
final set of network outputs is produced. 
 
2.2.2 Backward Pass. The networks actual 
output from the forward pass is compared with 
the desired output and error estimates are 
computed for the output units. The weights 
connected to the output units are adjusted to 
reduce those errors. The error estimates of the 
output units are used to derive the error estimates 
for the units in the hidden layer. Finally, the 
errors are propagated back to the connections 
stemming from the input units. 

Before starting the training process, all the 
weights must be initialized to small random 
numbers. This ensures that the network is not 
saturated by large values of weights. 
 
2.3 Least Square Estimator Filter 

The Least Square Estimator is one the methods 
providing Target Motion Analysis (TMA). We 
propose to incorporate this in our ALV model. 
Here instead of the target moving, the ALV 
model moves, and the obstacle remains 
stationary. The basic task is to estimate 
accurately to the extent possible, the relative 
position (Rx, Ry) and the relative velocities (Vx, 
Vy) of the obstacle, from either the Short Range 
Sensors or sonar noisy measurements of range 
and bearing. The obstacle can be a stone, a 
vehicle (parked or in motion), a signboard, etc. 
The state vector plays a key role in LSE 
diverging/converging cases. 

The statistical characteristics of the noise 
depend upon the measuring equipment. It is 
observed that the LSE is optimum only for the 



case of Gaussian noise. The LSE is an unbiased, 
stable, and optimal estimator with minimum 
variance, if the system is stochastically 
controllable and observable, with some noise 
assumptions being satisfied.  

The recursive LSE is a linear, discrete time, 
finite-dimensional and sequential recursive 
system. It assumes the availability of a state 
model and an observational model. The input to 
the filter is a sensor or a sonar bearing 
contaminated with noise and the output is the 
obstacle parameters.  
 
2.4 Block Diagram of Network Aided LSE 

 
Fig. 7 - Block Diagram of Backpropogation 
Neural Network (BPNN) aided LSE (Least 
Square Estimator). 
 

The block diagram shown above illustrates 
how the LSE functions in combination with the 
Backpropogation neural network. The compared 
results of the network and the LSE are fed back 
and thus the error is deducted.  
 
3. Conclusion 

Intelligent vehicles are beginning to appear on 
the market, but so far their sensing and warning 
functions only work on the open road. Functions 
such as run off road warning or adaptive cruise 
control are designed for the uncluttered 
environments of open highways. Current 
sensing/warning/controlling systems generally 
work only in relatively simple environments. 
Applications developed for open highways 

include Adaptive Cruise Control (ACC), which 
controls the throttle to keep a safe gap behind 
other vehicles; run-off-road collision warning 
systems, which alert a driver if the vehicle starts 
to drift out of its lane; and blind-spot sensors on 
heavy trucks to warn the driver if they start a 
lane change without seeing a car in the next lane. 
Some applications are also on the market for 
slow speed driving: rear-facing sensors as 
parking aids, for example. This work of ours 
gives a spin-off to further studies. Other neural 
networks such as the Hopfield network can be 
employed instead of the Backpropogation 
network. 

The Autonomous Land Vehicle Navigation 
using Artificial Neural Networks puts forward a 
very promising technology which might change 
the very way vehicle navigation is perceived as 
of today. Although still under research, its results 
are very encouraging and in conjunction with 
other modern technologies like GPS, ACC, etc. 
can easily pull down the rate of causality which 
is very high in today’s roadways. The future is 
very bright for Autonomous Land Vehicles. 
They have come here to stay and stay they will.  
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