
On the Implmentation of a Fuzzy CMAC

Yu Changbin and Abdul Wahab
School of Computer Engineering

Nanyang Technological University
Singapore 639798

{Brad, Abdulwahab}@pmail.ntu.edu.sg

Abstract

This paper presents a Novel Fuzzy Cerebellar Model
Articulation Controller (CMAC) implementation using
Field Programmable Gates Array (FPGA) available in a
flexible software/hardware co-design platform. The novel
fuzzy quantization technique used for reducing CMAC
memory requirement is similar to Discrete Incremental
Clustering (DIC), with modifications to meet the hardware
constraint.

The objective of the project is therefore twofold: to
propose a hardware-friendly fuzzy clustering technique
based on DIC, to implement the Fuzzy CMAC in hardware
cost-saving manner and exploit realization of its inherent
parallelism in FPGA architecture.

Test result for classification of 2-spiral problem is
presented, which demonstrates the validity and
generalization capability of proposed architecture and its
advantage of reduced memory requirement.

I. Introduction

Inspired by how brain works: artificial neural

networks (NN) have attracted the growing interest of
researchers, scientists, engineers and students in many
different scientific and engineering areas. Many NN
architectures were proposed over the years, among which
we will look at the Cerebellar Model Articulation
Controller (CMAC) [1, 2], first developed by Albus in an
attempt to develop an efficient computational algorithm
for use in manipulator control. Functionally, CMAC is a
generalized Look-Up Table which able to perform
multivariable approximation. Structurally, it is a
three-layer feed-forward associative memory neural
network. These features enable the CMAC very unique
characteristics such as fast speed training and local
generalization, which makes it particularly suitable for
control applications, signal processing and pattern
recognition.

The performance of CMAC is largely dependent on
quantization of each input dimension, fine resolution is
desired to ensure satisfactory performance, but results in
large size of memory to be used and naturally, higher cost

incurred. In many cases, CMAC are made impracticable
due to its high memory requirement, such as for
small-embedded systems, in which both space and/or cost
of memory are of major concern.

Motivation to make CMAC used in embedded system
such as commercialized electronics has come into sight of
many researchers. Producing an affordable yet storage
efficient FPGA based Novel CMAC hardware is the main
objective of this project.

In order to exploit the parallel processing capability of
the CMAC net, the CMAC can be implemented by means
of FPGA chips, together with banks of RAM chips. In
previous works, emphasis had been made on efficient
migration of CMAC from software simulation to hardware
realization [3, 4] without the fundamental changes to
CMAC structure itself. It was concluded that more
memory to be used to increase the input resolution, then
better performance could be achieved. The CMAC input
quantization and memory size dilemma still exist and yet
to be solved. For small-embedded system, addition of
RAM chips means both increase in cost and space, which
may again yield CMAC-based application impracticable.
Instead of reducing input resolution to avoid high memory
requirement, we could be solved the problem in a different
approach: non-linear quantization of input, which is used
to make better memory utilization without lost to dynamic
resolution.

Many clustering techniques can be used for non-linear
quantization. A novel fuzzified quantization technique
based on Discrete Incremental Clustering (DIC)[5] was
chosen for its simplicity and effectiveness demonstrated in
CVT control application [6]. However, DIC itself is a
complicated algorithm with full real numbered arithmetic
and requires large hardware for implementation. Hence,
this project is specially addressed the problem and
proposed the modified algorithm named Sim-DIC which is
more suitable for hardware implementation. Finally,
Sim-DIC clustering and CMAC are integrated to a Fuzzy
Novel CMAC, which is highly hardware realizable and
allows on-chip learning and flexible configuration. The
proposed architecture is also implemented on low-end
FPGA chip and benchmarked by classification problem.

Section II briefly presents the neural network model
-CMAC, which maybe implemented in a hash mapping
method or conventional Look-Up Table (LUT). Both

methods are briefly introduced and compared. Section III
explains how fuzzy quantization is achieved through
discrete incremental clustering (DIC) and why it cannot
directly prototyped to FPGA. Implementation is presented
in section IV with special addressing to multiplier-free
implementation for fast processing as well as testing Result
for 2-spiral classification problem. The paper is concluded
in Last Section.

II. The neural network model

The CMAC architecture can be considered as
consisting of a single layer of memory locations, a memory
addressing unit, weights adjusting unit and an
output-summer. Simply speaking, the content of addressed
memory locations (i.e. weights) are summed to provide
network response to the input. Some applications might
require input signals to be transformed to CMAC Input
Space. CMAC is then defined by a series of mappings,
 yWMX ⇒⇒⇒
Where X is transformed input vector from external
CMAC environment, M is the set of addressed memory
locations, W is the set of contents (weights) of M, y is an
one dimensional output. A function of
 y = h (X)
is a well representation of overall mapping yX⇒ . In the
case CMAC nets consisting set of N CMACs operating on
the same input to produce a vector mapping
 YX⇒
This, similarly, has all properties of the vector function
 Y = H (X).
Hash Mapping

For Albus proposed CMAC, hash mapping scheme is
used for indexing multiplayer CMAC, i.e mapping.
To explain the concept of Hash Mapping, the case of a
single input and single output (SISO) is considered. The
variable of the transformed input space is denoted by x.

MX ⇒

In the first layer, the input space is parted into five
divisions, which division is the so-called Cell. Now, five
weights from W11 to W15 are allocated to each Cell. Then,
the second layer can be added by shifting the first layer to
S21. The Slk means the amount of shift in the direction of
the kth degree of freedom (DOF) on the lth layer.
Therefore, S11 necessarily becomes zero because the first
layer is the basis. Subsequent layer can be added in a
similar manner. The result to input x would be summation
of weights of all indexed cells, one from each layer.

The more layers are used, the better the output
resolution can be achieved; but the required size of
memory increases according to the number of layers. One
should be careful when adds in more layers so that none of
the shifted layers coincide with one another.

Multiple Layers of weight matrix also enables
generalization property and hence speed up learning
process. This is easy to see as one weight in a specified
layer can be indexed by a number of different inputs close
to each other, or neighborhoods.

Conventional Look-Up Table
Since the basic idea of CMAC is to store information

in a Look-Up Table (LUT) manner, one can simply use
conventional LUT scheme, which simply has one cell for
each and every possible input index in every dimension.
To compare the memory requirement of both approaches,
we have the ratio of the two memory structures,

11

)(

)()/(−− === NN

hash

TLU KCR
N
Nδ

with the assumption that the N input dimensions are of the
same resolution, each can produce R different outputs, the
number of layers is K, assume that the number of cells in
each layer is the same:

kCCCC ==== Λ21
One can easily know from this ratio that the hash mapping
becomes more effective as the dimensionality of the input
space increases. It is also worth to point out that memory
requirement for hash mapping is further reduced when
more layers are used (increasing K), but this also increases
the complexity of the addressing algorithm, which makes it
hardware expensive. In addition, such an algorithm is
usually topologically non-adaptable to hardware
implementation, when number of layers changes, the
whole addressing scheme need to be changed.

Thus LUT scheme was chosen for its simplicity and
flexibility in hardware realization. And the indices could
be calculated as follows[10]:
Given a two-dimensional input , the winning
neurons’ locations can be calculated in

(ji xx ,)

 ⎥⎥
⎤

⎢⎢
⎡ +

−
⎥⎥
⎤

⎢⎢
⎡ +

−
= kx

x
Kjkx

x
Kiaa j

j
i

i

k
j

k
i

maxmax

)(,)((),(maxmax)

Where are the calculated index for the i and j
axis for layer k,

),(k
j

k
i aa

maxix and maxjx are the maximum value of
the inputs in respective dimension, k = { 1, 2 … K} is the
Layer number, and maxi maxj are the maximum
addressable memory locations in respective axis, K is the
number of Layers used, ⎡ ⎤ is the ceiling function,
denotes least integer that is greater than or equal to

x

x
It is important to point out that the expressions ()Ki −max
and ()Kj −max ensure when the input (is at
maximum, the addressing scheme will not allow any
memory overflow. The overflow problem can also be
solved from hardware prospective, by adding the memory
locations in each axis to

)ji xx ,

1' −+= KRR
Then the calculation for determining winner neurons is
further simplified to

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡ +⎥⎥

⎤
⎢⎢
⎡ += k

x
xk

x
xaa

j

j

i

ik
j

k
i

maxmax

,,

The number of layers and localization topology can simply
be adapted by varying the value of K and how it is selected.
Therefore In this project, the LUT addressing scheme with
multiple winning neurons is used for its simplicity in
hardware implementation.

III. Fuzzy quantization

The uniform quantization problem remains in the
conventional CMAC presented in previous section. It can
be described such that the CMAC input space is quantized
into equal-size regions while inputs at problem space are
not necessarily uniform. When problem inputs appear with
uneven degree of variation, or clustering effect, then
uniform quantization of such inputs could be associated
with large quantization error and not efficient for storage.

Moody [7] uses multiple CMACs with different
resolution to resolve the quantization error problem. His
idea is to start learning with Low Resolution CMAC, and
CMAC with higher resolution is then used in same input
space if the result is unsatisfied. This expansion process
stops only when error rate is reduced to an acceptable level,
and output of this structure is the summation of all
CMACs’ outputs. This approach solved minimum
acceptable resolution problem but fundamentally the
uniform quantization characteristic remains unchanged,
further more, memory requirement increases and becomes
unpredictable at first instance when problem is given.

Kim and Lin [8] proposed an adaptive quantization
technique for input space by using mapping function. In
this approach, training of CMAC stills starts with uniform
quantization, and subsequently input intervals with large
variation are compressed and those with small variation are
extended. Hence learning accuracy is improved and
storage requirement is reduced. However, the mapping
function used to convert inputs is globally adjusted and it
requires prior knowledge of the problem inputs in order to
determine which are the intervals to be compressed or
extended.

A fuzzified MCMAC (Modified CMAC) proposed by
Shu [6] employs Fuzzy Quantization to replace uniform
quantization. This is achieved by the use of a novel
clustering technique named Discrete Incremental
Clustering (DIC) [5], which dynamically forms the fuzzy
clusters by using only input information from same
neighborhood (or intervals). The theory is stated as:

“The input space is divided into several regions, and
quantization ratio in that region is proportional to the
number of fuzzy sets that covers the region.”
It can be illustrated using figure 1.

Uniform
Memory
Space

Fuzzified
Memory
Space

Figure 1. Memory Space Structures

Note the trapezoidal-shaped fuzzy sets for both input
dimension are created as indexing rule base by DIC. The
DIC is a novel clustering techniques that requires only raw
numerical values of training inputs without any
pre-processing. In most DIC implementations,
trapezoidal-shaped fuzzy sets are used and each fuzzy set
belonging to the same input dimension has little or no
overlapping in kernels with its immediate neighbors. The
DIC performs clustering on a local basis, that is, the
number of fuzzy sets created is dimensional specific. This
concept is similar to ART clustering techniques but in DIC
will not “recreate” any existing fuzzy set for a particular
dimension. Hence, DIC ensures that fuzzy set can uniquely
identify fuzzy labels which formulate a consistent rule base
for Fuzzy CMAC.

DIC technique overcomes several limitations
encountered in many other partition-based clustering
techniques. It does not require prior knowledge about
number of clusters to be created for a given set of data. DIC
performs clustering on a local basis and can significantly
increase the memory efficiency yielding reduced the
memory requirement. Moreover, DIC provides a platform
for Fuzzy CMAC to formulate consistent fuzzy rule base.

However, DIC itself is NOT a hardware friendly
algorithm, for it has large computational overhead and
difficult-to-implement non-linear functions. With limited
precision, limited computational resources and restricted
arithmetic that can be performed on FPGA, it is really
challenging to have DIC, or rather, DIC-like algorithm to
be implemented from a hardware prospective.

There are many costly computations (other than
addition, subtraction and bit-wise operations) involved in
DIC algorithm, to name a few, non-linear sinusoidal
function, division, multiplication. One of the major
problems of FPGA implementing Neural Networks,
affecting both performance and number of gates used, is
the presence of multiplier. Thus the preliminary feature of
proposed Sim-DIC is that it must be multiplier free.

• Some multiplication can be replaced by bit-wise

operation, such as bit shift which equivalent to
multiply (or divide) a Power of 2 Number.

• The nonlinear functions are implemented using
Look-Up Tables (LUT) with proper discretization of
entries.

• The Membership Function is also implemented in
LUT with consideration for data precision.

Three major effects of these simplifications and
modifications are founded in the testing result. They are:

• Reduced Accuracy and precision
• Reduced flexibility in fine tuning of parameters
• Increased Learning Speed on very small circuit

We shall address these effects again in next section.

IV. Implementation & Result

The Fuzzy CMAC with Sim-DIC was implemented on
Student RC100 Development Board (Celoxica) featured
with one Spratarn II 20K gates FPGA chip from Xilink[9].
The project was conducted in software/hardware co-design
manner, as in, the proposed novel architecture was first
implemented using C language, tested and tuned for
performance; then the C code was migrated to Celoxica
Handle-C language, which is a C-like High Level
Language can subsequently be compiled and translated
into HDL; then the Bitmap is generated from HDL file by
Xilink Design Manager for running in specific FPGA.

Note that this project is to demo the novelty and
feasibility of implementing a Fuzzy CMAC on FPGA, so
the data transfer from PC to RC100 Board was not of main
concern. Thus we prepared the input data in raw file and
pre-load to onboard Flash RAM for use. And for the result,
which is also in raw format, is loaded to PC and converted
to Text file for easy viewing and analysis.

The Sim-DIC clustering Phase and CMAC Learning
Phase of Fuzzy CMAC is performed by FPGA, however,
due to large hardware created for both Sim-DIC and
CMAC, two phases are time-partitioned in the design. So
FPGA is first configured for creating clusters and store
them back into RC100 onboard Flash RAM, and the
re-configured to a CMAC enabled Fuzzy Quantization
which is realized by indexing through clusters. This way
we enhanced the functional density of FPGA, which is
effective for further cost saving

Note that this project is to demo the novelty and
feasibility of implementing a Fuzzy CMAC on FPGA, so
the data processing was not of main concern. Thus we
prepared the input data in raw file and pre-load to onboard

Flash RAM for use. And the result, also in raw format, is
loaded to PC and converted to Text file for easy viewing
and analysis. Figure below illustrates the overall
implementation strategy in block diagram (Figure 2).
Our implementation of Sim-DIC uses 73% of slices (logic
elements) of the Spartan II (FG456) with a highest
frequency at 21.44MHz. The Fuzzy CMAC (learning
phase) with indexing through clusters is made up 41% of
slices and runs at 31.74MHz. In contrast, conventional
CMAC with uniform quantization can be implemented
using only 36% slices but runs at close frequency of
33.05MHz. Table 1 below shows a summary of important
implementation statistics running on a P4-2.4 512M PC

Table 1. Statistic of Current Implementation

 Sim-DIC Fuzzy
CMAC

CMAC
(pure)

Size (# of Gates) 74,132 34,946 29,037

Device utilization
(%slices) 73% 41% 36%

Max clock 21.439
MHz

31.736
MHz 33.050 MHz

Period 46.643 ns 31.510 ns 30.257ns

Build Time 47.1 sec 23.6 sec 20.5 sec

Netlist->.BIT time 1 min 28.4
sec 42.5 sec 40.2 sec

Runtime
Reconfiguration

Configuration Bitmap
i/p data

 set of clusters

Configuration Bitmap
i/p data & clusters
 trained FCMAC

& test results

P
C

RC100

On board

Flash RAM

FPGA
Configured
for Sim-DIC

FPGA
Configured
for FCMAC

Load bitmaps &
LUTs & i/p data

Output Data

Figure 2. FCMAC Implementation Diagram

The classification of two intertwined spirals problem,

first developed by Alex Wieland, is a complex task for
neural networks. We adopted this problem as a validation
benchmark for feasibility of using FPGA implemented
Fuzzy CMAC for practical applications with defined error
rate. The standard training set contains 194 points (set A)
with 97 points for each spiral and testing set consists of 770
points (set B) with 385 each. The recall capability of
proposed novel FCMAC is investigated. We conducted
Supervised Training for CMAC or Fuzzy CMAC with
desired value to be either 0 (for class 0) or 1 (for class 1).

We first benchmark the problem using an FCMAC
simulated on P4-2.0G Personal PC, with precision set to
Double. In this case, both set can be classified correctly,
but both running time and memory consumption are
relatively large. Then we tested the FPGA implemented
CMAC and found out that using 16bit integer
representation, the problem can be solved using 64x64
CMAC. Since the purpose is to further reduce the memory
requirement on FPGA, and such a reduction will become
more significant as input dimensions increases. We then
reduced the CMAC size, by having 40, 30, and 20 cells in
each dimension, and as predicted, the classification rate
drops. And if the problem requires a classification rate
above 95%, the minimum CMAC size required is 30x30.
 With aid of Sim-DIC, the proposed Novel Fuzzy
CMAC is able to classify the data correctly when cells
drop to maximum 30 per input dimension, and still sustain
a classification rate above 98% when cells were further
reduced to max 20 per input dimension. We can see that
Fuzzy CMAC still functions when cells go as low as 11x13,
given classification rate about 90%. In same case for
12x12 CMAC, only about 80% data can be classified due
to poor resolution (Table 2).

More experiments are now in progress. To further
demonstrate the viability of proposed Fuzzy CMAC and its
advantage over conventional CMAC in clustering effect,
hardware cost saving and reduced memory requirement.
Test for higher dimensional problems will also be
conducted.

V. Conclusion

In this paper, we proposed a hardware-friendly fuzzy
clustering technique based on DIC, namely Sim-DIC. We
also implemented a novel Fuzzy CMAC in FPGA using
simple prototyping platforms. Handle-C is used for fast
migration of C-simulation on PC to hardware. The
architecture and implementation is tested using two-spiral
problem and proved to be of better performance over
conventional CMAC of same size. The FPGA
implementation of Fuzzy CMAC proved that the
integration of Fuzzy Techniques and Neural Network can
be realized in simple hardware form (Student RC100
Development Board). And such hardware FNN can
subsequently be used in real-time, embedded systems
and/or for the sole purpose of fast processing through
FPGA’s internal true parallelism.

Refernces

[1] J.S.Albus, “A new approach to manipulator control: The

cerebellar model articulation controller (CMAC),”
Transaction of ASME, Journal of Dynamic System,
Measurement, and Control, Vol. 97, pp. 220-227, 1975

[2] J.S.Albus, “Data Storage in the Cerebellar Model
Articulation Controller(CMAC)”. Transaction of ASME,
Journal of Dynamic System, Measurement, and Control, Vol
97, pp.228-233, 1975

[3] G.Horváth & F.Deák, "Hardware Implementation of Neural
Networks Using FPGA Elements", Proc. of The International
Conference on Signal Processing Application and
Technology. Vol. II. pp. 56-63, Santa Clara, Ca. 1993.

[4] G.Horváth & T.Szabó, “Higher order CMAC and its efficient
hardware realization " , Proc. of the International ICSC/IFAC
Symposium on Neural Computation, pp. 72-78, Vienna, 1998.

[5] W.L.Tung & C.Quek, “DIC: a novel discrete incremental
clustering technique for the derivation fuzzy membership
functions”, Proc. Of 7th Pacific Rim International
Conference on Artificial Intelligience, Tokyo, 2002.

[6] Z.G.Shu, “Fuzzy Associative Memory for the automatic
control of a CVT control in an Automobile”, HYP report,
SCE, NTU, 2002.

 Test Set A (194) Test Set B (770)

Architecture Correct Errors Classification
Rate Correct Errors Classification

Rate
FCMAC on PC
(double precision) 194 0 100% 770 0 100%

64X64, CMAC 194 0 100% 770 0 100%
40x40 , CMAC 188 6 96.91% 766 4 99.48 %
30x30 , CMAC 189 5 97.42% 766 4 99.48 %
20X20, CMAC 180 14 92.78% 675 95 87.66 %
12x12 , CMAC 154 40 79.38% 625 145 81.17%
11x13, FCMAC 178 16 91.75% 691 79 89.74%
17x20, FCMAC 191 3 98.45% 769 1 99.87%
28x27, FCMAC 194 0 100% 770 0 100%

Table 2. Test Result on Recall Performance

[7] J.Moody, “Fast Learning in Multi-resolution hirecharies”,
Advances in Neural Information Processing System, Vol. 1,
pp.29-38, D.S Touretzky, Morgan Kaufmann Publishers,
1989.

[8] H. Kim & C.S Lin, “ use of adaptive resolution for better
CMAC Learning”, International Joint Conference on Neural
Networks, IJCNN, 1, pp.517-522, 1992

[9] S.M, R.G & S.B, "RC100 Hardware Manual", Ver. 1.2,
Celoxica Ltd., 2001.

[10] A. Wahab and C. Quek, “Novel Noise Modeling
Using AI Techniques ”, in Intelligent Systems:
Technology and Applications, Cornelius T. Leonades,
N.W: CRC press, 2003, III, ch.9, pp.297-327.

	P265:
	Numb:
	Numbx:
	C: 265
	L:
	R:

	P266:
	Numb:
	Numbx:
	C: 266
	L:
	R:

	P267:
	Numb:
	Numbx:
	C: 267
	L:
	R:

	P268:
	Numb:
	Numbx:
	C: 268
	L:
	R:

	P269:
	Numb:
	Numbx:
	C: 269
	L:
	R:

	P270:
	Numb:
	Numbx:
	C: 270
	L:
	R:

