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Abstract

Area opening is an important morphological connected
set operator that features in removing upper level sets from
an image whose area properties are smaller than a thresh-
oldλ. Existing algorithms found in the literature that imple-
ment the area opening operator are based on either priority
queues, the max tree or the union-find approach. In this pa-
per we explore the advantages of using the max tree based
approach for iterative area opening. Iteratively applying
an area opening is the central idea underpinning all scale
based image decompositions. An efficient implementation
strategy for iterative area opening is therefore very impor-
tant if scale based image processing algorithms are to be
successfully applied in real time computer vision applica-
tions. This paper builds on recently published work com-
paring approaches for implementing area openings, and
improves on the method proposed for image reconstruction
via a max tree. Experimental results are presented that
show the new approach proposed in this paper obtains a
performance gain of 25% with images of reasonable big size
(320× 256).

1 Introduction

Connected set operators [9, 8, 1] are fundamental to
many non-linear morphological image filters having a num-
ber of desirable properties, most importantly preservation
of shape or the scale casualty [4]. A connected set operator
only deals with flat zones (largest connected set of the space
where the image grey-level is constant) in the image. When
a connected operator is applied to an image, each flat zone
will either be merged to one of its neighbouring flat zones
or be left intact. As this does not introduce any new con-
tour, it simplifies the image as well as preserving the scale
casuality.

Area opening [11] (area closing as its dual operator) is
one such operator that features in removing connected up-
per level sets (brighter intensity image objects) whose area
properties are smaller than a thresholdλ. Examples of ap-
plying the area opening operator to both a binary and a
gray scale image are shown in figure 1 and figure 2, re-
spectively. Figure 1 illustrates the area opening operator
removes only those flat zones whose area properties are
smaller than seven pixels, leaving the other larger regions
untouched. From a signal processing point of view, area
opening and area closing operators form a pair of non-linear
filters.

(a) the original im-
age

(b) the image after
area opening

Figure 1. An example of binary area opening:
image size = 144 × 192, λ = 7

Binary area opening is based on binary connected open-
ing. Let the setX ⊆ M denote a binary image with do-
main M . The binary connected openingΓx(X) of X at
point x ∈ M yields the connected set ofX containingx if
x ∈ X and∅ otherwise. ThusΓx extracts the connected set
to whichx belongs, discarding all others.

The binary area opening can now be defined as:



(a) the original image (b) the image after area
opening

Figure 2. An example of gray scale area open-
ing: image size = 160 × 128, λ = 100

Definition 1. Let X ⊆ M andλ ≥ 0. The binary area
opening of X with scale parameterλ is given by

Γa
λ(X) = {x ∈ X|Area(Γx(X)) ≥ λ}. (1)

The binary area closing can be defined by duality

Φa
λ(X) = [Γa

λ(Xc)]c. (2)

The definition of an area opening of a gray-scale image
f is usually derived from binary imagesTh(f) obtained by
thresholdingf ath. These are defined as

Th(f) = {x ∈ M | f(x) ≥ h}. (3)

Definition 2. The area opening for a mappingf : M → R̄
is given by

(γa
λ(f))(x) = sup{h|x ∈ Γa

λ(Th(f))}. (4)

The gray-scale area closingφa
λ is defined by using a

duality relationship similar to equation (2).

φa
λ(f) = −(γa

λ)(−f). (5)

The above definitions of area opening and closing are
both adopted by Vincent et. al. [11] and Meijster et. al. [5].
Although morphological opening and closing are usually
applied in the context of level sets the concept has been ex-
tended and generalised by Breen et. al. [2] to operate on
other image attributes including length, diameter, radius,
perimeter and other shape features.

Existing algorithms found in the literature that imple-
ment the area opening operator are based on either pri-
ority queues [11], the max tree [7] or the union-find ap-
proach [10]. Recently, Meijster et. al. [5] published a com-
prehensive comparison of these three algorithms and con-
cluded that the union-find approach outperformed the other

two algorithms in terms of CPU execution time and memory
efficiency. However, this conclusion was based on the as-
sumption that only one area opening/closing (at predefined
λ) needs to be performed. In another words, the threshold
λ should be known a-priori. In most scale based image de-
compositions one is interested in applying the area opening
operator iteratively at varying scaleλ to the same image.
The experiments reported in section 4 concludes that in this
case the method of area opening used by the max tree is a
better option. This is because no matter how many times
one wants to apply the area opening operator to the same
image , the tree only needs to be constructed once. How-
ever, with the other two approaches area openings need to
be re-computed wheneverλ changes.

This paper discusses several issues relating to how to im-
plement more efficiently iterative area openings via the max
tree. The paper is organised as follows: Section 2 briefly
describes the max tree and introduces an efficient way of
building a max tree from an image. Section 3 describes two
different strategies for iterative area openings in the context
of a max tree and compares these two strategies theoret-
ically. Experimental results, shown in section 4, confirm
that the strategy adopted in this paper is more efficient than
that proposed by other researchers. Conclusions are drawn
in the final section.

2 The Max Tree

The max tree proposed by Salembier et. al. [7] is a multi-
scale image representation formed by considering a hier-
archy of connected upper level sets of pixels in an image.
This representation was developed to deal with classical
anti-extensive connected operators (such as area opening),
as well a new ones, in an efficient manner. The max tree has
been applied to image filtering, segmentation, tracking and
information retrieval [6].

To understand the tree, the image is considered to be a
3D relief. The nodes of the tree represent the connected up-
per level sets for all possible gray-level values. The leaves
of the tree correspond to the regional maxima of the image.
The links between the nodes describe the inclusion (father-
child) relationship of the connected sets. An example of a
max tree created from a simple image is shown in figure 31.

Three sub-problems need to be addressed before the max
tree can be successfully constructed:

A. Find all possible tree nodes from the original image

B. Create the father-child relationships (links) between
each possible pair of tree nodes

C. Create an efficient data structure to store information
(region attributes) at nodes in the max tree.

1This figure is reproduced from [6]
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Figure 3. left: a simple image only with seven
flat zones, right: the max tree for the image
on the left

The first sub-problem has been successfully addressed
by a recursive flooding algorithm proposed in [6], how-
ever a number of approaches to the remaining sub-problems
have been described. The max tree built by Meijster
et. al. adopted an array as the underlying data structure for
the tree. The advantage of using the array is that it provides
direct access to its elements i.e. the complexity of visiting
a random element in an array isO(1). However, there are
two major problems in using an array as the underlying data
structure. Because the size of a max tree is unknown before
the tree is built using a static array is not memory efficient.
For example, Meijster el. al. used the image size (number
of pixels) to parameterise the length of their array. This
approach is very wasteful of memory as in most cases the
number of max tree nodes is far less than the number of pix-
els in the image. Secondly, when a node is deleted from the
tree its corresponding element must also be removed from
the array. Maintaining the array structure can become very
cumbersome.

A more efficient data structure using a linked list asso-
ciated with a hash table has recently been proposed by the
authors of this paper [3]. The linked list provides dynamic
allocation of computer memory thus the memory allocated
for the max tree is just enough. However, the nodes in a
linked list must be accessed serially so the complexity of
visiting a random node in a linked list isO(N). To over-
come this problem a hash table is built immediately after
the recursive flooding step. Using this table, the elements in
the linked list are accessed directly so that the complexity is
reduced toO(1) . The linked list structure also allows more
flexible management of the tree nodes, they can be easily
deleted and the memory recovered. Further details and ex-
perimental results comparing the efficiency of the technique
to other published implementations may be found in [3].

Once the underlying data structure of the max tree has
been decided, one needs to consider what information
should be stored at a tree node. A minimal set of attributes
should include

A. ID: node identification number

B. father’s ID

C. a list of children IDs

D. a list of pixel coordinates

E. area: number of pixels belonging to a node

Obviously, each node in a tree needs a unique identifi-
cation number. As a tree is a hierarchical data structure,
each node is linked to its father and children nodes. The
area attribute records the total number of pixels belonging
to a node (i.e. the size of a granule or region). A node
would also need to store information of pixels belonging
to its support region so that an image can be reconstructed
from a tree. Note that the list of children’s ID and the list of
pixel coordinates are also implemented by the linked list.

During the recursive flooding step of the creation of the
max tree, Salembier et. al. use a number of arrays to store
information important in later steps. The remainder of this
section provides a brief overview of these attributes, how-
ever we refer the reder to [7] and [6] for a more complete
description.

Salembier et. al. has proposed a very efficient way of
finding scale tree nodes using a recursive flooding algo-
rithm. The flooding algorithm begins at the root node of the
tree (this is, the lowest gray value of the image) and recur-
sively constructs each of the branches of the tree. They use
hierarchical first-in-first-out queues ofNG levels, withNG
the possible number of gray levels (usuallyNG = 255).
These queues are used to define the scanning and processing
order of pixels comprising the image. An arraySTATUS
of the same size as the image is used to determine to which
node a pixel belongs to. A pixelp with gray-levelh belongs
to the nodeCk

h if STATUS[p] = k. Initially, all elements
in STATUS are set toNOTPROCESSED(< 0). One
array ofG integers calledNumber −Nodes(h) is used to
store the number of max tree nodes detected so far at each
gray levelh. The values of Number-Nodes is updated when-
ever new nodes are created at gray-levelh. A further array
of G BooleanNode − at − Level(h) stores at which lev-
els below the current gray-level nodes have been detected in
the path from current node to the root.

A node in a max tree is presented uniquely byCk
h . For

instance, a node presented byC3
20 means this node’s gray

value is 20 and it is the third node found in the level of 20
during the recursive flooding algorithm. Note that a node
Ck

h corresponds to a connected componentP k
h . However,

Ck
h contains only those pixels inP k

h which have gray-level
h for the purpose of memory efficiency. In the next section,
we proceed to explain why and how efficient iterative area
openings can be achieve using the max tree.

3 Iterative Area Opening via the Max Tree

Both Salember [7] and Meijster [5] claimed that once
a max tree of an image has been constructed, computing
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an area opening at scaleλ reduces to removing all nodes
representing regions which have an area smaller thanλ from
the tree, and then reconstructing the image at the new scale.

The area opening operator is often applied as a non-
linear filter for preprocessing an image. In most cases, one
is interested in applying an area opening operator at differ-
ent scalesλ to the same image. In this case, it is beneficial to
retain the max tree structure unchanged after computing an
area opening operation. Thus, once a max tree of an image
has been constructed, computing an area opening reduces to
analysing the max tree nodes and reconstructing the opened
image only by those tree nodes which have an area greater
than or equivalent toλ.

The strategy proposed by Meijster et. al. to reconstruct
the opened image is described as follows. Here, as stated
earlier in section 2, a nodeCk

h corresponds to a connected
componentP k

h . However,Ck
h contains only those pixels

in P k
h which have gray-levelh. For each node, Meijster

et. al. check whether its area is smaller thanλ. If so, its
output gray level is set to that of its parent (which has al-
ready been assigned the correct gray). The output image
O is made by visiting all pixels in the image, determining
its node from the input imageI[p] andSTATUS[p], and
assigning the output gray level of that node toO[p]. Their
strategy actually consist of two steps. First, they assign the
correct value for the output gray level of each node accord-
ing to their area properties. Second, they assign each pixel
the correct gray value according to the node the pixel be-
longs to. These two steps are processed serially.

We use different strategy to reconstruct the output image.
The area property of a node is always smaller than that of
its father (except the root node as it does not have a father
node). Thus if a node is determined to have a smaller area
value than the thresholdλ, there is no need to check its de-
scendant nodes at all. Therefore, we start checking the root
node and proceed to recursively check each of its children
nodes. During each check, the pixel in the output imageO
is assigned the gray level value of the node it belongs to as
long as the area property of the current node is smaller the
λ. When a node whose area property is greater than theλ is
found, the current checking stops and all the pixels belong-
ing to this node and its descendant nodes are output directly
into the reconstruction image with the gray level value of
the father node of the current node. With the help of the
father-child relationships embedded in the tree, the descen-
dant nodes of the current node can easily be visited in a
recursive way.

The main differences between our strategy and that of
Meijster et. al. ’s is firstly not all max tree nodes are checked
and secondly the checking and the reconstruction of the out-
put image are done in a parallel way. Also the strategy is
more memory efficient. Both strategies are data structure
independent. In another words, both the strategies could

work either using the array [5] or using the linked list com-
bined with hash table [3] as the underlying data structures.

4 Experiments

Both the above strategies are evaluated in our experi-
ments. The max tree is implemented by combining the
linked list and the hash table as the underlying data struc-
ture [3]. The max tree and the iterative area opening op-
erator are implemented in C++ using Microsoft Visual C++
IDE (version 6). The specification of the computer in which
all experiments are carried out is as follows: OS: Windows
2000, CPU: Pentium 1.7GHZ, Memory: DDR 1.0G Bytes.
The multi-resolution test images used in our experiments
are shown in figure 4. Here, image 5 in figure 4 is the orig-
inal image and the others are the resized versions of it. The
time costs associated with area openings of these images
that are reported as mean values found by repeating the ex-
periment 100 times.

(a) image 1: (40×
32)

(b) image 2: (80×
64)

(c) image 3: (160
× 128)

(d) image 4: (320
× 256)

(e) image 5: (640× 512)

Figure 4. The first group of our test images

Three sets of experiments have been conducted. The
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aim of the first experiment is firstly to compare the perfor-
mance of the two filtering strategies described in section 3
and secondly to find out if the iterative area opening via the
max tree is scale independent. Image 4 in figure 4 is cho-
sen for this experiment as its size (320 × 256 = 89920)
is reasonably large. The time cost for building the max
tree and then computing an area opening (λ = 100) is 265
milli-seconds and 12.82 milli-seconds respectively (approx-
imately 4 milli-seconds faster than that (16.7) by the strat-
egy from Meijster et. al).

For a more comprehensive evaluation of the two strate-
gies all the possible values forλ (from 1 to 81920) are com-
puted (in steps of 10). For each of the 8191 different values
of λ, area openings are found using both strategies and 9
time cost averages computed from blocks of 1000 results
(the final group contains 191 samples). The nine values
from each strategy are plotted in figure 5.

Each point in the plot stands for the average time cost
of applying the area opening to the image with a limited
range ofλ. The range is defined between the values of a
pair vertical lines, one is the line that the point just sits on,
another is the nearest line to the left side of the first line.
The mean time cost is shown in the Y axis of figure 5.

These experiments clearly show the strategy for imple-
menting the iterative area opening reported in this paper
runs about 25 percent faster than that from Meijster et. al.
This is because the Meijister’s strategy requires extra work
to assign the correct output gray level to a pixel in the output
image. In the new strategy the checking and reconstruction
of the output image are done in a parallel way. In addi-
tion, we used a recursive approach to identify the descen-
dant nodes of the current node, which is also very efficient.
The iterative area opening implemented by both strategies
is almostscale independent. However, there is a small (al-
most unnoticeable) variation of the time cost using either of
the two strategies (see figure 5. Investigating the underlying
reasons for these variations is part of our further work.

The comparison work done by Meijster et. al. showed
that the union-find approach is the fastest algorithm to im-
plement a one-off area opening and runs no more than two
times faster than the max tree based approach (using their
filtering strategy) for real images. However, when a max
tree is built up, the time cost of recovering an area open-
ing using the tree is almost negligible. For example it costs
265 milli-seconds to build the max tree for image 4 and the
average time cost of recovering an area opening to image 4
takes no more than 13 mil-seconds. Thus we conclude that
the max tree approach outperforms the union-find approach
is the case of iterative area opening.

The aim of the second experiment is to see, if the value
of λ is kept the same, how the time cost varies when the im-
age size changes. Table 1 showed the results of our second
experiment using the test images from figure 4 andλ set

Figure 5. Our first experimental results

equal to 100. The results clearly show that both the strate-
gies are not linear in terms of image size. However, our
strategy is more linear than that from Meijster. This means
that the performance gain of our strategy compared to that
from Meijster et. al. should increase against image size. For
instance, 25% performance gain is achieved with image 4
and 31% with image 5 using our filtering strategy (see ta-
ble 1). Investigating the non-linearity is also part of our
future work.

Image NumberStrategy
1 2 3 4 5

Ours N/A N/A 2.97 12.82 59.37
Meijster’s N/A N/A 3.75 16.70 86.40

Table 1. Time cost (in term of milli-seconds)
of applying area opening with λ = 100 to all
images from figure 4.

More images (see figure 6) have been evaluated with dif-
ferent value ofλ. The results also show that our strategy
runs about 25% faster than Meijster et. al’s strategy.

5 Conclusions and Further Work

In this paper, the term ‘iterative area opening’ has been
developed to describe the operation that is at the heart of
many morphological scale based decompositions. Based
on our experiments, we proposed a new strategy for recon-
structing the image at scaleλ and compared this to that re-
cently published by Meijster. The experiments show that
our strategy runs about 25 percent fast than that from Mei-
jster with images of reasonable big size.

Fast implementation of iterative area opening is impor-
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(a) image 1: (352× 288)

(b) image 2: (384× 256)

(c) image 3: (320× 240)

Figure 6. The second group of our test images

tant for a number of real time application in the field of
computer vision. These might include non-linear image fil-
tering, image segmentation, and object based image coding.

So far only a small number of image sets have been
tested in our experiments. We are planing to use more syn-
thetic and real images of different complexities for our fur-
ther experiments. Investigating the underlying reasons for
those small variations in figure 5 and the non-linearity in
table 1 is also worthy of further work.
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