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Abstract
In this study we propose a practical approach to increase 
the performance of electronic noses (E-noses) in cigarette 
brand identification. A portable E-nose was employed to 
collect and classify aroma signals from different brands of 
cigarettes. Artificial neural networks (ANN) were employed 
and trained with raw data and extracted features from the 
data collected by the E-nose to identify the cigarettes. The 
Chinese cigarette industry is losing millions of dollars per 
year due to counterfeit cigarettes. Detecting illegal ciga-
rettes in the field is difficult, but may be possible using 
portable E-noses. However, the differences between odours 
from counterfeit and genuine cigarettes are small and de-
tection may prove difficult. This preliminary investigation 
succeeded in identifying four different types of cigarettes in 
the laboratory. The identification results obtained from the 
intelligent E-noise trained with an ANN using the extracted 
parameters were better than the ones obtained directly 
from the E-nose. 
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INTRODUCTION
The Chinese cigarette industry is currently suffering multi-
million dollar annual lost revenues due to widespread pro-
duction and sale of counterfeit cigarettes [1]. It would be a 
great advantage in combating this very widespread illegal 
activity if the authorities had access to simple, straightfor-
ward means of determining the legality or otherwise of 
suspect cigarettes and which could be used at the time and 
site of detection. It has proved to be almost impossible to 
identify counterfeit cigarettes either by visual inspection or 
by the aroma detectable by the human nose. Emissions of 
volatiles from cigarette tobacco comprise a wide range of 
chemical components making up a complex odour which 
makes discrimination between brands and/or counterfeit 
cigarettes difficult. One potential solution to the problem is 
the use of portable electronic nose devices.  
While electronic nose technology has been available in 
bulky, laboratory-scale form for over twenty years, it is 
only since around 1999 that miniaturized, portable devices 
using various sensor technologies (conducting polymers, 
SAW, tin-oxide) have become available[2]-[4] and have 

gained renewed interest in both academic and industrial 
research areas [5,6]. There has been much recent research 
into the development of E-nose systems for odour detection 
and measurement [7]-[10].  
In the human olfactory system there are around 10,000 
sensors; these are non-selective but can be very sensitive to 
certain odours. Signals from these sensors, when they are 
exposed to a complex odour, are interpreted in the brain 
which identifies the characteristics of the odour. Recently, 
it has been shown that one odour sensor can recognise 
multiple odours but different odours are recognised by 
different combinations of odour sensors [11]. 
Electronic noses work in a similar manner to the human 
olfactory system. They usually consist of: an array of four 
to thirty two sensors which react in some repeatable way 
when exposed to an odour; a system (usually electrical) for 
polling and assembling the sensor responses; and, an asso-
ciated computer program which interprets resulting signals. 
An e-nose system will typically comprise a number of dif-
ferent components including the sensors, pumps, valves, 
flow controller, air conditioner, control buttons and display 
panel. It will have software for monitoring the hardware, 
data pre-processing, statistic analysis, and other built in 
functions.  
The tests described here were carried out using a Cyranose 
320 electronic nose at the Queen’s University of Belfast’s 
QUESTOR environmental research centre. This device 
contains 32 carbon black/conducting polymer sensors. 
When the sensors are exposed to an odour the polymers 
swell to a greater or lesser extent, changing the physical 
separation of the particles of the carbon black surface coat-
ing, and hence their electrical resistance changes. The ex-
tent of such change depends on the materials used and the 
composition of the odours to which they are exposed. The 
E-nose will provide a characteristic “fingerprint” for 
odours arising from an individual chemical or from mix-
tures of chemicals. An E-nose built from broad response 
sensors can be trained or calibrated using characteristic 
samples of a potential odour source in air. When the E-nose 
is presented with an “unknown” odour some kind of pat-
tern matching is used to determine if the fingerprint of the 
new odour matches one which is already known (i.e. on 
which the E-nose has already been trained). The recogni-
tion software should determine the best match with its li-



brary of known fingerprints and report the degree of confi-
dence in the match. Provided the odour was caused by a 
known chemical, for which the sensor was appropriate, it
should be possible to identify the chemical [12].
The human equivalent of the electronic nose is an olfacto-
metry panel – a number of people selected for their ability
to respond in a reasonably repeatable way when presented
with various odour samples. Using humans in this way is
subject to variations in the sense of smell between human
beings and between individuals on different occasions, and 
for these reasons is not as objective as an electronic nose. 
However, in many cases humans are more sensitive and
can detect odours at much lower concentrations than elec-
tronic noses. When artificial neural networks are trained
with data from olfactometry panels there will be extra diffi-
culties associated with the variations associated with hu-
man observers [13].
The application of portable E-noses in field conditions is
more difficult than in a controlled laboratory environment.
Variations in humidity, temperature and, especially, back-
ground odours and sample concentration mean that identi-
fication rate can be disappointingly low. It is, anyway,
more difficult to correctly identify complex samples such
as those from cigarettes which can be expected to show
natural variation among batches and with age and storage
conditions.
The aim of this work is to explore and improve the capabil-
ity of a portable E-nose to identify different brands of ciga-
rette. The sensor responses from the E-nose were analysed
using artificial neural network (ANN) techniques. The data 
analysis were performed using MATLAB V6.5 and its neu-
ral network toolbox at the Electrotechnology Department,
Auckland University of Technology (AUT), New Zealand.
Data collected from the portable E-nose were used for fea-
ture extraction and principal component selection purposes. 
The extracted features and principal component selection
were used to train the neural network providing an intelligent
approach for identifying cigarettes [14]. The preliminary
investigation described here was carried out on four brands 
of cigarettes under open laboratory conditions (no special 
atmospheric, humidity or temperature controls). We found
that the rate of identification obtained using the neural net-
work trained with extracted parameters was better than that
obtained directly from the E-nose. 

MATERIALS AND METHODS 
Cigarette manipulation
The leaves of four different brands of cigarettes (with a 
total mass of about 10g each) were obtained from local 
suppliers and placed in different flasks. The flasks were
closed tightly after introducing the tobacco and were held 
at room temperature (18 to 20 °C) for 6 hours before sam-
pling.
The sample flasks were connected to the EDU inlet via a
sample transfer line. The tobacco odours were collected 

onto the internal Tenax adsorbent tube, then desorbed to
the Cyranose 320 E-nose via its detector line.
E-nose measurements
Figure 1 shows the experimental set-up for measuring and
analysing cigarette odours using E-nose in the laboratory.
The Cyranose 320 E-nose was coupled with an Airsense
EDU pre-concentrator containing Tenax TA adsorbent.
The sample flasks were connected to the EDU inlet via a
sample transfer line. The tobacco odours were collected 
onto the internal Tenax adsorbent tube, then desorbed to
the Cyranose 320 E-nose via its detector line.
Figure 1 The E-nose and preconcentrator system in the

laboratory.

The volatiles were thermally desorbed from the EDU and

were pumped to the sensor array in the Cyranose 320. All
measurements were performed at 30°C. The Cyranose 320 
E-nose was set up as shown in Table 1. 

Table 1 Cyranose 320 parameters set up for sampling
cigarette volatile from Tenax tube

E-nose
parameters

Run time
(Sec)

Pump
speed

Baseline Purge time 100 M
Draw1 50 MSampling

Time Draw2 50 H
1st Air intake 15 M
2nd Air intake 47 H

Purge
Time

2nd Air intake 28 M
Digital Filtering On
Substrate Heater Temperature On 30 °C
Training Repeat count 10
Identify Repeat Count 1
Identification Quality medium
Algorithm Canonical

In Table 1, M and H stand for ‘medium’ and ‘high’ pump
speed respectively.
Data acquisition and analysis
The raw sensor response data were acquired and formed
the “fingerprints” shown in Figures 2 and 3. The data were 



also saved into files for further analysis. The Cyranose 320
E-nose was trained with the sensor response data to obtain
the patterns for each brand of cigarette which were then 
stored in its memory.

Artificial Neural Networks (ANN) 
In order to enhance the identification rate of cigarettes, a
feed forward ANN has been used with the raw data from
the E-nose. The nose has 32 sensors and collects 32 sets of 
data for each sample. These data were used to train our 
neural network for the purpose of comparing the identifica-
tion rate. Several features were extracted from each sensor 
signal. They were the average (AVG), standard deviation 
(SD) and maximum response (MAX). As sensors S3, S4, 
S5, and S31 exhibited most resolution between the four 
brands, the output signals from these sensors were 
weighted for training purposes. All calculations and data
evaluations were performed in MATLAB V.6.5 using the
neural network toolbox.

Figure 2 shows that the different brands of cigarette have
very similar fingerprints – because the main odour compo-
nents are similar. The result is that it would be difficult to
discriminate them using the methods provided with E-nose 
software.

Average Feature Fingerprints
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The size of training data set and the number of extracted
features was determined by the topology of the ANN. Fig-
ure 4 shows a two-layer log-sigmoid/log-sigmoid neural
network. It has 32 or 35 inputs depending on using the ad-
ditional three features with the 32 sensor signals. It has two
neurons in its output layer to identify four classes. The 
number of neurons in its hidden layer was chosen to be 
eight. This number was selected by experience from other
work.
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Figure 2 Fingerprints for four cigarette brands.

Figure 3 shows the average responses (from ten samples)
from four brands of cigarette for each sensor. Note that all
sensors, except S3, S4, S5, and S31, have very similar re-
sponse data.
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Figure 4 The network architecture with 32 inputs and 2
output neurons.0
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While altering the number of input neurons, the same trans-
fer function and same parameters were used in the investi-
gation. The log-sigmoid transfer function was chosen be-
cause its output range (0 to 1) is perfect for learning Boo-
lean output values.

Figure 3 Average response for each brand.

Cigarette Identification using Cyranose 320 E-
nose

Four 32- or 35-element input vectors were defined as a 
matrix of input vectors for one sample to compare cigarette
identification. The target vectors are two-element vectors to 
represent different classes. Each output vector corresponds 
to one class.

The experimental tests for identifying the cigarettes were 
conducted in the laboratory one week after the Cyranose
320 E-nose had been trained. Identification samples were
selected from the same packets of cigarettes as the training
samples. Sampling time, desorption time and injection time
were set to 100s, 80s and 60s respectively for EDU. The
sampling time of Cyranose 320 was set to 100s. Each brand 
was sampled 10 times in order Cig1, Cig2, Cig3, and Cig4
with an interval of one day between test sets. The percent-
age correct identification rate is presented in Table 2. We
can see that the E-nose canonical discrimination method
has a poor discrimination rate, especially for Cig3 and Cig4
in this case. 

The same conditions were used to initialize networks with
different architectures and the same parameters and learn-
ing functions were used to train them.
The Nguyen-Widrow initialization algorithm was used in
this project. It has advantages over purely random weights
and biases since few neurons are wasted (all the neurons
are in the input space) and training works faster (each area 
of the input space has neurons). A log sigmoid transfer 



We can see the differences between results obtained by 
Cyranose 320 E-nose without and with three ANN net-
works.  ANN1, with 32 input neurons, provides similar
performance in correct identification of cigarettes as the
Cyranose 320 E-nose without ANN. ANN2, which has 35 
inputs (32 sensor signals plus three inputs for the extracted
features) has better results than ANN1, but still its per-
formance is rather low. ANN3, which uses weighted sig-
nals for S3, S4, S5 and S32 sensors, provides the best re-
sults. The identification rate has improved, especially for
Cig1 and Cig4. Plainly, weighting the signals for specific
sensors improves the identification rate.

function in layers calculates a layer’s output from its net
input. Learning occurs according to the defined gradient,
learning rate and momentum constant.

RESULTS AND DISCUSSION 

Feature extraction and training of the ANN 
The proposed networks were trained under the same condi-
tions in order to compare their performances. The training
data sets were extracted from the data files of Cyranose
320. Four brands of cigarette with 160 samples for each
were selected as basic signals to train the networks. The
first network had 32 input signals and the second network
had extra inputs for three extracted features AVG, SD and
MAX. The third network was the same as the second one 
but S3, S4, S5, and S31 signals were weighted.

Conclusions
In this work, we have demonstrated that artificial neural
networks can improve E-nose classification performance
for cigarette brand identification. In the experiments the
performance of the Cyranose 320 E-nose was compared
without and with utilising three ANNs in identifying four 
brands of cigarettes.

Training parameters were chosen carefully with maximum
epoch of 3000, minimum gradient limited to 0.00001 and 
goal of 0.0001. Figure 5 shows the training performances
of the neural networks. We can observe that the behaviours
of the three networks in terms of training speed are differ-
ent.

By utilising feature extraction techniques in combination
with weighting sensitive signals from the E-nose and ANN,
it is possible to improve E-nose identification performance.
It is important to extract appropriate features from the raw 
data and apply them to the ANN for training and testing. 
The ANN input vector was formed by obtaining 32 sensor 
signals plus three features. Table 3 shows that there are
different identification rates between ANNs with and with-
out extracted features. 

Figure 5 Training performance of the networks.
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Significant improvement in successful discrimination be-
tween the brands was achieved by selecting specific sen-
sors and applying extra weight to their signals during train-
ing and testing of the networks. The raw data from the
Cyranose 320 indicated that signals from sensors S3, S4, 
S5 and S31 showed greater differences in their responses to
the four different cigarette brands (than the other 28 sen-
sors) and that S3 and S4 had the highest magnitude of re-
sponse. Weighting these four signals was responsible for 
most of the advantage realised in the ANN tests. 
The results from this study are sufficiently promising to
justify further work with both legal and counterfeit ciga-
rettes in China. The conditions used in the laboratory test-
ing were not particularly controlled and the methods devel-
oped should be transferable to field analysis.

Test results
In comparing the performance of the ANN-based E-noses
and Cyranose 320 E-nose, the same test data was used and
each cigarette was tested 10 times. Each set of test data
from the E-nose was preprocessed before submission to the
ANNs for identification. Efficient features were extracted 
and some specific signals were weighted. The identification
rate of each ANN-based E-nose is also shown in Table 2. 
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Table 2. Identification rates of cigarettes using Cyra-
nose 320 and ANNs 

Cyranose 320 
E-nose

Cig1
(%)

Cig2
(%)

Cig3
(%)

Cig4
(%)

Without ANN 70 70 50 40
With ANN1 70 60 60 40
With ANN2 80 70 70 60
With ANN3 100 90 90 90
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