
Artificial Intelligence: a Promised Land for Web Services

D. Richards1,, M. Sabou2, S. van Splunter2, F.M.T. Brazier2,
 1 Department of Computing 2 Department of Computer Science
 Macquarie University Vrije Universiteit Amsterdam
 Sydney, Australia Amsterdam, The Netherlands
 richards@ics.mq.edu.au < marta, sander, frances>@cs.vu.nl

Abstract
This paper considers the possibilities offered by the
application of techniques from the field of artificial
intelligence (AI) to the newer field of web services (WS).
Current commercial and research-based efforts are
reviewed and positioned within the two fields. Particular
attention is given to the application of AI techniques to the
important issue of WS composition. Within the range of AI
technologies considered, we focus on the work of the
Semantic Web and Agent-based communities to provide
WSs with semantic descriptions and intelligent behaviour
and reasoning capabilities. Re-composition of web services
is also considered and a number of adaptive agent
approaches are introduced, including our own, to achieve
this.

1. Introduction
Research in the web service (WS) and artificial intelligence
(AI) communities is coming together to develop solutions
that will take us to the next and more mature generation of
the WWW. The composition of web services to create a
value-chain greater than the sum of the parts is a key part
of what can be expected. The fulfillment of the vision of
the web as an information-providing and world-altering
provider of services [29] is not far away. More futuristic is
the notion of serendipitous interoperability which Lassila
[27] defines as “the ability of software systems to discover
and utilize services they have not seen before, and that
were not considered when the systems were designed”. In
both visions the services and outcomes may be the same.
However, the difference between the two visions is that the
first can be achieved through static and manual solutions
and the second requires dynamic and automated solutions.
While helpful for the first, the addition of semantic content
on the web is essential to enable automatic discovery and
composition of multiple services. It is natural that earlier
work in the field of AI will assist in realization of the
(artificially) intelligent web.

The work on the Web Services Modeling Framework1
(WSMF) is an example of AI being applied to this new
field. WSMF offers the combined use of ontologies, goal
(problem-type) repositories, web service descriptions and
mediators to handle interoperability issues. The agent
community, which is primarily AI-based, have also been
actively conducting WS related research. Examples are the
FIPA-led work that allows agents to use web service

infrastructure and the inclusion of a web services track at
the recent AgentCities [26].

Our own distributed agent-based work and the Agent
Factory [6], originates from our earlier AI research into
complex knowledge based systems and generic task based
configuration. On the one hand, our work on planning and
automated configuration offers a way of composing web
services. On the other hand, WSs potentially provide us
with components needed to achieve an implementation of
our design. Through the addition of techniques from the
Semantic Web community, the benefits of combining our
agent technology with WSs has been mutual.

This paper offers a review of research that overlaps the
fields of WS and AI. In the following section we describe
web services and the need for semantics to be added. In
section 3 we look at how the Semantic Web community,
within the field of AI, are offering semantics. In section 4
we present AI-based research to address the discovery of
WSs. In section 5 we consider both commercial and AI-
based techniques for WS composition. In section 6, the
notion of re-composition of WS is considered and how
adaptive agent technology, including our own, can address
this problem. We conclude with future directions for the
role of AI in the web services field.

2. Web Services

As is typical in new fields, there are a number of
definitions of a web service. According to the W3C, “a web
service is a software application identified by a URI, whose
interfaces and binding are capable of being defined,
described and discovered by XML artefacts and supports
direct interactions with other software applications using
XML based messages via Internet-based protocols” [46].
We find this definition overly-focused on the technical
aspects of a web service. A more business-oriented
definition which supports the idea of services as providing
a value-chain is “a self-contained, internet-enabled
application capable not only of performing business
activities on its own, but also possessing the ability to
engage other web services in order to complete higher-
order business transactions” [48]. The definition that most
fits with our intended use of WSs as components in the
Agent Factory is given by the Stencil2 group who define a
WS as “loosely coupled, reusable software components that
semantically encapsulate discrete functionality and are
distributed and programmatically accessible over standard

Publication and
Discovery: UDDIWS Composition:

BPEL4WS, AgentFactory

Service Description Layer: WSDL, DAML-S

XML messaging layer: SOAP

Transport Layer: HTTP, SMTP, FTP

Applications Layer

Figure 1: WS architecture (adapted from [38])

internet protocols”. The three definitions offered differ in
their emphasis on technology, business and software
engineering but all encapsulate the self-contained, modular,

composable and distributed nature of WS.
These four characteristics of WS are well supported by

a layered-architecture where the base is a well-established
transport layer, as shown in Figure 1. In each layer we give
an example of a major standard. In italics we position the
work reported in this paper. The next layer up uses the
Simple Object Access Protocol (SOAP) which is an XML-
based communication protocol for exchanging data in
decentralized and distributed environments via typed
message exchange and remote calls. The service
description layer includes the XML-based Web Service
Description Language (WSDL). The next layer is split into
two main types of WS technologies: ones that support
single service advertising and discovery and ones that
support service composition. For service registration and
discovery there is the Universal Description, Discovery and
Integration (UDDI) (by IBM, Microsoft and Ariba)
standard service repository. To provide some very basic
semantics (such as identification via a product
classification code) one or more tModel descriptions may
be attached to a service. For service composition there are a
myriad of possible solutions. Figure 1 just includes the
Business Process Execution Language for Web Services
(BPEL4WS)3 which has grown out of the early offerings
WS Flow Language (WSFL) (IBM) [28] and XLANG
(Microsoft) [41] (an extension of the W3C’s Web Services
Description Language (WSDL)).

3. Semantic description of Web Services

WSDL, SOAP and UDDI are seen as steps in the right
direction but ones that will fail to achieve the goals of
improved automation and interoperability, because they
rely on a priori standardisation and require humans in the
loop [27]. To support automated reasoning, knowledge
representations (such as markup languages) will be needed
that express both data and rules for reasoning. The ability
to dynamically locate and compose web services based on

their semantic description will rely on the richness of the
description and the robustness of the matching techniques
used. Ontologies will be used to enable definition and
comprehension of meaningful content. These are the
concerns of the Semantic Web community. Additionally,
agents will be needed to interpret the content and transform
user requests into optimized delivered solutions.

The Intelligent Brokering Service for Knowledge-
Component Reuse on the WWW (IBROW)4 can be seen as
a forerunner of the Semantic Web. In IBROW problem
solving methods (PSMs) and ontologies were the
components being configured, the current focus is on WS
configuration. PSMs and ontologies when used together are
also capable of delivering services.

The most significant work that has been done to
describe web services has been conducted by the DAML-S
coalition [40]. The matching of service providers and
service requesters via semantic descriptions of the services
are key goals of this work. DAML-S uses the DAML+OIL
specification language (which extends the weak semantics
of RDF(S)) to define a number of ontologies that can be
specifically used to describe web services. DAML-S is
built on the AI-based action metaphor where each service is
either an atomic/primitive or composite/complex action.
Knowledge preconditions and knowledge effects are
handled via the inputs and outputs of the web service [29].
The DAML-S coalition are providing solutions to work
with current WS standards. For example, a DAML-S
service grounding definition can be mapped to a WSDL
definition of the service. A number of approaches to
service discovery and composition that we discuss in the
following sections use or extend the DAML-S web service
ontologies.

4. Discovering Web Services

Discovery involves locating and/or matchmaking
against some selection criteria. An earlier AI system, Lark
[39], which involved annotation of agent capabilities to
enable them to be located and brokered, clearly solved a
problem similar to the discovery of WS by a middle agent.
This work has developed into the DAML-S Matchmaker5.
To support matchmaking a number of filters may be
configured by the user to achieve the desired tradeoff
between performance and matching quality. These filters
include: word frequency comparison, ontology similarity
matching, ontology subsumption matching, and constraint
matching.
[11] offer an alternative to sequential searching when
matchmaking an agent with a service request. They point
out that finding possible partners via matching of service
advertisements with requests is not enough. To support
runtime interactions we need smarter behaviour to handle
components that are not quite what was requested and
combining several partial components to meet the original
request. The solution to overcome sequential searching is
the conversion of the concepts into number intervals and

the use inheritance hierarchies to determine subclass and
equality relations. A generalised search tree is used to
handle partial matches.

The feasibility of matchmaking largely depends on the
annotation of web services. AI can also be applied to this
problem. A number of markup tools have been developed
for document markup and these could be applied to the
semantic description of WSs. The SHOE Knowledge
Annotator [19] uses ontologies to guide knowledge
annotation. To produce RDF-based markup, COHSE [1] or
AeroDAML [24] can be used. These approaches start with
descriptions in DAML+OIL and DAML, respectively.
These approaches support automatic conversion of markup
languages but do not support information extraction or
automatic markup. OntoMat [18] does support some form
of automated extraction of semantics. OntoMat combines
the resource with its DAML-S markup. The MnM [44]
approach additionally stores the annotations in a knowledge
base. Automated markup in MnM is achieved using
techniques from knowledge engineering, machine learning
and natural language processing.

[22] have developed a query language that is used to
find services. The solution to finding services is to first
describe the service using the process ontology with the
assistance of the MIT Process Handbook. The Handbook is
large and allows reuse to assist in ontology definition.
Next, the ontology is indexed by breaking it down into its
components such as attributes, ports, dependencies,
subtasks and exceptions. The requester can form a query in
the query language that will use the index to find matches.

Clearly AI is already contributing solutions for locating,
matchmaking, querying and annotation of WS to facilitate
their discovery. Discovery of web services is an important
issue as it is a prerequisite to their use. However, the real
value of web services lies in their composition.

5. Composing Web Services

Web service composition can be simply defined as: “the
problem of composing autonomous services to achieve new
functionality” [33]. WS composition is not just an
alternative to application development but a means of
reducing the application backlog problem because: many
services are moving online; integration is easier since WSs
conform to the HTTP protocol and many independent
providers have related services that need to be combined to
satisfy user requirements. The rigidity and lack of
intelligence of current solutions has spawned a number of
research projects from a number of other research fields.

The work by [42] has arisen from experience in the
distributed systems and networking fields. They have
developed the Infrastructure for Composability at Runtime
of Internet Services (ICARIS). They have extended WSDL
to develop the Web Services Offerings Language (WSOL).
They offer flexibility and adaptability but their approach is
very alternative. Instead of trying to solve the problem of
how to find services dynamically and combine them, they

focus on the situation where providers and requestors are
already matched but will at times either make changes to
their services or requests. A service is seen to have
numerous offerings. The functionality will be the same but
the constraints will differ such as authorisation rights and
QoS. They suggest that a limited number of classes of
services be offered and described. Then using WSOL they
are able to specialise the classes into offerings. Their
solution offers dynamic switching between offerings. From
a commercial point of view the notion of offerings makes
sense as customers probably prefer to do business with
companies they already know and businesses want to
maintain their existing client base.

The work at Hewlett Packard laboratories on eFlow [9]
is similar in that dynamic composition involves automatic
adaptation of the configuration at runtime according to the
requests of the individual customer. The approach is driven
by the view that composition adds value but to stay
competitive, composition needs to be dynamic as services
offered need to adapt to stay competitive. Their goal is to
allow dynamic change in service processes with no or
minimal human intervention. While they take a business
process perspective they point out that web services are less
static, predictable or repetitive compared to “traditional”
business processes. Similar to most current commercial
solutions, dynamic composition is made possible due to the
use of a central repository that has clients and providers
already attached to it.

The notion of generic solutions that are customized
according to user constraints is a recurring theme in much
of the literature. [37] also look at composition as the
selection of possible services based on user specified
criteria. They offer a centralized, pipes and filters
architecture with two main components: a composer (user
interface) and an inference engine (IE) component (which
includes a knowledge base of known services). The
inference engine is an OWL reasoner and includes axioms
to find all relevant entailments, such as the inheritance
relation between two classes which may not have been
made explicit. The user identifies some criteria that the
service must satisfy. The matchmaker (IE) selects services
that might be suitable based on those criteria and the
composer shows them to the user. Suitable services for
composition are ones whose output can be an input to a
selected service. While execution of WS may be performed
automatically, the actual task of composition is performed
by a human using the services suggested by the system.

Model-based reasoning is a common technique
employed in AI approaches. In SWORD [33] entity-
relationship modeling of services is performed by “base
service modelers” to produce a “world model”. After
building a world model for each service, a composition
model is developed that models each service as an action.
An expert system is used to automatically determine if the
composite service can be created with existing services and if so a
plan of execution is generated.

In summary, a number of solutions are offered to provide web
service composition. The approaches described in this section
show that composition can be assisted through the use of class
definitions, inheritance hierarchies and model and rule-based
reasoning. In many cases, decision making is left to humans. The
only automated composition offered is in limited situations where
a central repository is used and the requestor and provider are part
of the same system. However, the web is distributed in nature.
Intelligent reasoning and collaboration between services is needed
to handle this complexity. Agents are capable of both.

6. Agents and Web Services

The autonomous and reasoning capabilities of agents make
them well suited for handling cross-organisational decision
making. For example, agents can be used to (re)negotiate
contracts which would then require: determination of which
processes are needed to fulfil the contract; creation of new
business processes; and adaptation of existing business processes.
Two main agent-oriented approaches exist: use wrappers to make
WS behave like agents and; using agents to orchestrate WS.

6.1 Adding Behaviour to WS via Agents Wrappers

WS are componential, independent, software applications
similar to agents. However, agents are also reactive, social and
capable of reasoning [47]. If we wish web services to work
together, we need to give them social and reasoning capabilities.
This can be achieved by wrapping a service in an agent. In the
work of [8], a composition language is used to create an agent
wrapper which allows services to collaborate. The created agent
has first–order reasoning abilities that have been derived from the
DAML-S description of the service. This then allows one agent-
wrapped service to know what other agent-wrapped services are
capable of doing and whether they can assist in the service/agent
meeting its goals. [23] also offer an agent-based wrapper approach
to web services. They have developed a tool for creating wrappers
so that web sources can be queried in a similar manner to
databases. They then use an interactive, hierarchical constraint
propagation system to perform integration. As in [37], the end-
user interacts via a GUI to manage the orchestration. The Racing
project6 offers a mediator architecture also using agent wrappers
that are structured into a hierarchy. A number of different agent
wrappers are supported: user, query translation, query planning,
resource wrapper, ontology, matchmaking, cloning and
coordination agents. The use of agent wrappers is a way of
allowing multi-agent system technology to be applied to web
services.

6.2. Composing Web Services using Agents

The work of [29] combines ideas from the Semantic Web,
Knowledge Representation and Agent communities to allow WSs
to be composed. Their goal is to “construct reusable, high-level
generic procedures, and to archive them in shareable (DAML-S)
generic-procedures ontologies so that multiple users can access
them”. In the approach, WSs and user constraints are marked up
in DAML-S. A generic task procedure is selected by the user and
given to the DAML(-S) enabled agent, who customises the
procedure according to the user specific constraints. The generic
procedures are written in an extended version of ConGolog, a
situation calculus agent programming language, and executed
using a Prolog inference engine. Others provide agent-oriented
languages for web service description. [10] propose an Agent

Service Description Language (ASDL) and Agent Service
Composition Language (ASCL). ASDL is an extension to WSDL
and captures external behaviour via a finite state machine. Their
work is based on the argument that composition requires more
than description of the data, but also requires a strong
representation of actions and processes. A number of approaches
are focused on the design of agent systems with web services as
the components. [3] has developed WARP (Workflow
Automation through Agent-based Reflective Processes) that uses
the XML and WSDL standards. The goal is automatic
configuration and management of low-level services
(components). The software engineering development process that
has been developed is semi-automatic involving multiple software
agents and a human workflow designer. They support
visualisation of the process based on activity diagrams in UML.

Niersatz [31] argues that (re-)composability is a distinguishing
feature of open systems. We have considered some approaches
which support the use of agents to reason about and coordinate
services over the ultimate open system, the web. In some of these
approaches, composition involves reuse and specialization of
generic components. As [29] point out, services often provide
multiple outputs, only some of which may be needed as inputs to
a subsequent service. Sometimes additional services will be
needed to overcome a mismatch in inputs and/or outputs. Such
shortcomings in the original configuration may require
recomposition of WSs. To achieve this may involve adapation of
the agent’s behaviour, since web services are by nature closed and
immutable.

6.3 (Re-)composition and Adaptable Agents
The ability of agents to adapt according to changes in system

requirements and the environment is important to enable dynamic
and reactive behaviour.

Agents may be adapted in a number of different ways. The
knowledge and facts that an agent uses may be adapted for
example the agent may use a client profile that changes according
to the clients activities (e.g. [45]. This type of adaptation typically
involves machine learning, e.g. [25]. An agent may also adapt its
interface according to the platform on which it is being used (e.g.
[brand]. A third type of adaptation, and the type of adaptation we
are concerned with, is adaptation of the agent’s functionality.
There is limited work in this area. Semi-automatic agent creation
tools such as AGENTBUILDER [34], D’AGENTS/ AGENT/TCL
[17], ZEUS [32] and PARADE [2] could possibly be extended to
support agent adaptation.

Following the use of compositionality in the major software
engineering paradigms (e.g. functional programming [21], object-
oriented programming [4], component-based programming [20]
and the Factory design pattern [16], we have developed an Agent
Factory [6]. The approach is based on the use of components, the
general agent model (GAM) and the DESIRE formal knowledge-
level modelling and specification framework for multi-agent
systems [7]. Our agent (re-)structuring approach allows an agent
to automatically adapt by reusing existing components. Our
approach is a combination of process-oriented and object-oriented
approaches by treating processes as the 'active' parts of our agent,
which are our agent components, and classes as the 'passive' part
of our agent, which are the data types used in the agent
components. We are currently exploring whether DAML-S
descriptions of web services are adequate for automated
configuration of web services by the Agent Factory. Our initial
report on how the Agent Factory can be used to perform this task

is found in [43]. Our observations and recommendations regarding
DAML-S are given in [35].

The work by [12], which is also called the Agent Factory and
based on the notion of design patterns, assists human designers in
functional design, and the configuration of software components
to fulfil the conceptual design specified by the designers,
depending on the agent platform that is to be used. Our approach
does more: it automates the creation and redesign of both the
conceptual and operational design based on the requirements on
function, behaviour and state of an agent. Our use of web services
as components is a further distinguishing feature.

While not currently working in the WS area, the AdaptAgent
[30] approach, bring together adaptive workflow and agent
research. They consider how agents can be used to collaborate to
perform a workflow and make workflow more intelligent and
how workflow can be used to organise a set of agents and
coordinate interaction between people and agents.

The reuse of knowledge has also been a widely researched
topic and the creation of libraries of problem solving methods [36]
and generic task models [7] offer a similar idea to the functional
components in our agent factory. The IBROW project, mentioned
earlier, has even more in common with our approach by semi-
automatically configuring intelligent problem solvers using
problem solving methods as building blocks. They use mappings
to act as glue between the components which are modeled as
CORBA objects. Unlike our approach, their architecture is
restricted to specific languages and architectures, they only
support semi-automation and they do not distinguish between
conceptual and implementation level designs.

7. Discussion and Future Directions

An interesting phenomena of AI research is that when a
problem becomes solved it no longer holds any mystery and
moves from being called AI to being just another part of
information processing. This phenomena was first noted by
Donald Michie and is thus known as the Michie effect [15].
Examples of the assimilation of AI concepts into mainstream data
processing are the use of machine learning techniques in
knowledge discovery from databases, the inclusion of business
rules in database technologies and the use of ontologies for
information systems development.

Similarly, AI-based research will benefit B2B, e-commerce
and internet applications requiring knowledge-level
interoperability of information systems and intelligent processing
by agents. Advances in natural language technology research will
assist discovery of web services and agents will play an important
role in using web services to satisfy user requests.

The current trend towards interoperability of systems and
integration of technologies will continue and increase the need for
standards. Standards, as mentioned in section 2, are emerging for
web services. As the roles of agents on the web increases, further
work is required in the area of communication standards between
agents and web services. For invocation, the Java Agent Services
(JAS) project is developing an industry standard and API for
network agent and service architectures. JAS does not, however,
specify how an ACL message can be translated into the format
needed by the web service. HP BlueJade also does not describe
how agents can use SOAP, UDDI, WSDL, etc, or say how
services and agents can communicate [26].

Existing agent platforms may need to be adapted to handle the
specific requirements of web services. In this direction, CMU

have proposed the RETSINA7 agent architecture for web-based
agents. The RETSINA functional architecture includes four basic
types of agents: interface, task, information and middle agents
who communicate via a special agent communication language.
Each of these agents includes four reusable modules:
communication and coordination, planning, scheduling and
monitoring. The middle agent plays a critical role in matching
providers with requesters and is offered as a solution to the
heterogeneous nature of agents over the web.

The work of the Semantic Web community to provide
semantic description of web services will play a key role in
enabling agents to automatically compose web services. We are
more than interested onlookers in these developments. While it is
still early days, the incorporation of ideas from AI is already
proving to be mutually beneficial.

10. References
[1] Bechhofer, S. and Goble, C. Toward Annotation Using
DAML+OIL, 1st Int. Conf. on Knowledge Capture (K-CAP’2001),
W’shop on Semantic Markup and Annotation, Victoria, BC, Canada,
Oct. 2001
[2] Bergenti, F., Poggi A.: A Development Toolkit to Realize
Autonomous and Inter-Operable Agents. In: Proc. of Fifth Int. Conf.
of Autonomous Agents (Agents 2001), Montreal (2001) 632-639
[3] Blake, M.B. An Agent-Based Cross-Organizational Workflow
Architecture in Support of Web Services, WETICE 2002: 176-181
[4] Booch, G.: Object oriented design with applications. Benjamins
Cummins Publishing Company, Redwood City, 1991
[5] Brandt, R., Hörtnagel, C., Reiser, H.: Dynamically Adaptable
Mobile Agents for Scaleable Software and Service Management.
Journal of Communications and Networks 3:4 (2001) 307-316
[6] Brazier, F.M.T., Wijngaards, N.J.E.: Automated Servicing of
Agents. AISB Journal 1 (1), Spec. Issue on Agent Tech. (2001) 5-20
[7] Brazier, F.M.T., Jonker, C.M., Treur, J.: Principles of
Component-Based Design of Intelligent Agents. Data and Knowledge
Engineering 41 (2002) 1-28
[8] Buhler, P. A. and Vidal, J. M. (b) Semantic Web Services as
Agent Behaviors. In B. Burg, J. Dale, T. Finin, H. Nakashima, L.
Padgham, C. Sierra, and S. Willmott, editors, Agentcities: Challenges
in Open Agent Environments, pages 25-31. Springer-Verlag, 2003
[9] Casati, F., Ilnicki, S. and Jin, L Adaptive and Dynamic Service
Composition in eFlow. HP Technical Report, HPL-2000-39, March,
2000, www.hpl.hp.com/techreports/2000/HPL-2000-39.pdf
[10] Cheng, Z., Singh, M.P. and Vouk, M.A., Composition
Constraints for Semantic Web Services. WWW2002 Workshop on
Real World RDF and Semantic Web Applications, to appear in the
proceedings, May 7, 2002
[11] Constantinscu, I. and Faltings, B. Efficient Matchmaking and
Directory Services. Technical Report No IC/2002/77, 18 Nov 2002,
Laboratoire d’Intelligence Artificielle, Department Informatique,
Swiss Federal Institute of Technology, IN (Eculbens), 2002
[12] Cossentino, M. Burrafato, P., Lombardo, S. and Sabatucci, L.
Introducing Pattern Reuse in the Design of Multi-Agent Systems.
AITA'02 workshop at NODe02 - 8-9 October 2002 - Erfurt, Germany
[13] Dumas, M., O'Sullivan, J., Heravizadeh, M., Edmond, D. and ter
Hofstede, A. Towards a semantic framework for service description In
Proc. of the IFIP Conference on Database Semantics, Hong Kong,
Kluwer Academic Pub., April 2001
[14] The DAML Services Coalition (alphabetically Anupriya
Ankolenkar, Mark Burstein, Jerry R. Hobbs, Ora Lassila, David L.
Martin, Drew McDermott, Sheila A. McIlraith, Srini Narayanan,
Massimo Paolucci, Terry R. Payne and Katia Sycara), DAML-S: Web
Service Description for the Semantic Web, The First International
Semantic Web Conference (ISWC), Sardinia (Italy), June, 2002

[15] Gaines, B. (2000) Knowledge Science and Technology:
Operationalizing the Enlightenment In P. Compton, A. Hoffmann, H.
Motoda and T. Yamaguchi (eds) Proceedings of the 6th Pacific
Knowledge Acquisition Workshop, Sydney Dec. 11-13,2000, 97-124
[16] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns: Elements of reusable object-oriented software. Addison
Wesley Longman, Reading, Massachusetts, 1994
[17] Gray, R.S., Kotz, D., Cybenko, G., Rus, D.: Agent Tcl. In:
Cockayne, W., Zypa, M. (eds.): Itinerant Agents: Explanations and
Examples with CD-ROM. Manning Pub. (1997) 58–95
[18] Handschuh, S., Staab, S. and Maedche, A. CREAM- Creating
Relational Metadata with a Component-Based, Ontology-Driven
Annotation Framework, 1st Int. Conf. on Knowledge Capture (K-
CAP’2001), Workshop on Semantic Markup and Annotation,
Victoria, BC, Canada, October 2001
[19] Heflin, J. and Hendler, J. A Portrait of the Semantic Web in
Action, IEEE Intelligent Systems, 16(2), 2001
[20] Hopkins, J.: Component primer. Communications of the ACM
43:10 (2000) 27–30
[21] Kernighan, B.W., Ritchie, D.M.: The C Programming Language.
2nd edn. Prentice Hall Software Series, 1988
[22] Klein, M and Bernstein, A. Searching for Services on the
Semantic Web using Process Ontologies. In The Emerging Semantic
Web - Selected papers from the first Semantic Web Working
Symposium, Isabel Cruz, S. Decker, J. Euzenat, and D. McGuinness,
Eds. Amsterdam: IOS press, 2002, pp. 159-172
[23] Knoblock, C., Minton, S., Ambite, J..L., Muslea, M., Oh, J. and
Frank, M. Mixed-initiative, multi-source information assistants,In
Proceedings of the World Wide Web Conference, pages 697--707,
ACM Press, New York, NY, May 2001
[24] Kogut, P. and Holmes, W. AeroDAML: Applying Information
Extraction to Generate DAML Annotations from Web Pages, 1st Int.
Conf. on Knowledge Capture (K-CAP’2001), Workshop on Semantic
Markup and Annotation, Victoria, BC, Canada, October 2001
[25] Kudenko, D., Kazakov, D., Alonso, E.: Machine Learning for
Multi-Agent Systems. In: V. Plekhanova, V.(ed.): Intelligent Agents
Software Engineering, Idea Group Publishing, 2002
[26] Kuno, H. and Sahai, A. My Agent Wants to Talk to Your
Service: Personalizing WSs through Agents. HP Tech. Rep., HPL-
2002-114, www.hpl.hp.com/techreports/2002/HPL-2002-114.html
[27] Lassila, O. Serendipitous Interoperability, in Eero Hyvönen
(ed.): "The Semantic Web Kick-Off in Finland - Vision,
Technologies, Research, and Applications", HIIT Publications 2002-
001, University of Helsinki, 2002
[28] Leyman, F. Web Service Flow Language (WSFL) 1.0, IBM,
Armonk, NY, www-4.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf, 2001
[29] McIlraith, S. and Son, T., Adapting Golog for Composition of
Semantic Web Services, Proceedings of the Eighth International
Conference on Knowledge Representation and Reasoning (KR2002),
Toulouse, France, April, 2002
[30] Narendra, N. C. AdaptAgent: Integrating Adaptive Workflows
and Multi-Agent Conversations for B2B E-Commerce. Proceedings of
International Conference on Artificial Intelligence, Special Session on
Agent-Oriented Workflow Architecture for B2B, 2001
[31] Nierstrasz, O. and Meijler, T. D.Requirements for a Composition
Language. Object-Based Models and Langages for Concurrent
Systems, Paolo Ciancarini, Oscar Nierstrasz and Akinori Yonezawa
(Eds.), 147—161, Springer-Verlag, 1995
[32] Nwana, H.S., Ndumu, D.T., Lee, L.C.: ZEUS: An Advanced
Tool-Kit for Engineering Distributed Multi-Agent Systems. Applied
AI 13:1/2 (1998) 129-185
[33] Ponnekanti, S.H. and Fox, A. SWORD: A Developer Toolkit for
Web Service Composition. In The Eleventh WWW Conference (Web
Engineering Track), Honolulu, Hawaii, May 7-11, 2002

[34] Reticular: AgentBuilder: An Integrated Toolkit for Constructing
Intelligent Software Agents. Reticular Systems Inc, white paper
edition. http://www.agentbuilder.com, 1999
[35] Sabou, M., Richards, D. and van splunter, S. An experience
report on using DAML-S , Workshop on E-Services and the Semantic
Web, Budapest, Hungary, May, 2003 (submitted)
[36] Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R.,
Shadbolt, N., van de Velde, W., Wielinga, B.: Knowledge Eng. and
Management, the CommonKADS Methodology. MIT Press, 2000
[37] Sirin, E., Hendler, J. and Parsia, B. Semi-automatic Composition
of Web Services using Semantic Descriptions. Accepted to "Web
Services: Modeling, Architecture and Infrastructure" workshop in
conjunction with ICEIS2003, 2002
[38] Staab, S., Benjamins, R., Bussler, C., Gannon, D., Sheth, A. and
van der Aalst, W., Web services: Been there, Done that? IEEE
Intelligent Systems, Trends & Controversies, 18(1), Jan/Feb 2003
[39] Sycara, K., Widoff, S., Klusch, M. and Lu, J., LARKS: Dynamic
Matchmaking Among Heterogeneous Software Agents in Cyberspace,
Autonomous Agents and MAS, 5 (2): 173-203, June, 2002
[40] The DAML Services Coalition (alphabetically A. Ankolekar, M.
Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith, S. Narayanan,
M. Paolucci, T. Payne, K. Sycara, H. Zeng), "DAML-S: Semantic
Markup for Web Services", in Proceedings of the International
Semantic Web Working Symposium (SWWS), July 30-Aug. 1, 2001
[41] Thatte, S. XLANG: Web Services for Business Process Design,
www.gotdotnet.com/teaml/xml_wsspecs/xlang-c/default.htm, 2001
[42] Tosic, V., Pagurek, B. Esfandiari, B. and Patel, K. :On the
Management of Composition of Web Services position paper at the
Workshop on Object-Oriented Web Services - OOWS (at OOPSLA
2001), Tampa, USA, October 15, 2001. Also published as: Technical
Report OCIECE-01-10, Ottawa-Carleton Institute for Electrical and
Computer Engineering - OCIECE, October, 2001
[43] van splunter, S., Sabou, M., F.M.T. Brazier and Richards, D.
Configuring Web Services, using Structuring and Techniques from
Agent Configuration, EEE/WIC International Conference on
Intelligent Agent Technology (IAT 2003) (submitted)
[44] Vargas-Vera, M, Motta, E., Domingue, J, Lanzoni, M., Stutt, A.
and Ciravegna, F. MnM: Ontology Driven Tool for Semantic Markup.
European Conference on Artificial Intelligence (ECAI 2002). In
proceedings of the Workshop Semantic Authoring, Annotation &
Knowledge Markup (SAAKM 2002). Lyon France, July 22-23, 2002
[45] Wells, N., Wolfers, J.: Finance with a personalized touch.
Comms of the ACM, Issue on Personalization 43:8 (2000) 31–34
[46] W3C Web Services Architecture Working Group. Web Services
Architecture Requirements, Working Draft 29 April 2002,
http://www.w3.org/TR/2002/WD-wsa-reqs-20020429
[47] Wooldridge, M. and Jennings, N. (1995), Agent Theories,
Architectures, and Languages: a Survey, in Wooldridge and Jennings
Eds., Intelligent Agents, Berlin,:Springer-Verlag, 1-22.
[48] Yang, J and Papazoglou, M. Web Component: A Substrate for
Web Service Reuse and Composition. in Procs of the 14th
International Conference on Advanced Information Systems
Engineering (CAiSE02), May, Toronto, Lecture Notes in Computer
Science, Vol. 2348, p21-36, Springer, 2002

1 http://informatik.uibk.ac.at/c70385/wese.
2 www.stencilgroup.com/ideas_scope_200106wsdefined.html
3 http://xml.coverpages.org/bpel4ws.html
4 www.ibrow.org
5 http://www-2.cs.cmu.edu/~softagents/daml_Mmaker/daml-
s_matchmaker.htm
6 http://www.zsu.zp.ua/racing/
7 http://www-2.cs.cmu.edu/~softagents/retsina_agent_arch.html

	P205:
	Numb:
	Numbx:
	C: 205
	L:
	R:

	P206:
	Numb:
	Numbx:
	C: 206
	L:
	R:

	P207:
	Numb:
	Numbx:
	C: 207
	L:
	R:

	P208:
	Numb:
	Numbx:
	C: 208
	L:
	R:

	P209:
	Numb:
	Numbx:
	C: 209
	L:
	R:

	P210:
	Numb:
	Numbx:
	C: 210
	L:
	R:

