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Abstract 

MRA (magnetic resonance angiography) is a 
commonly used method for diagnosing unruptured 
cerebral aneurysms. In this paper, we introduce a novel 
computer-aided diagnosis (CAD) system for the cerebral 
aneurysm using MRA images. The proposed CAD system 
automatically finds candidates of the cerebral aneurysm, 
and then evaluates a fuzzy degree belonging to aneurysm 
whose size is more than a user-specified size. To find the 
aneurysm candidates, the normal model, which has no 
aneurysm, is estimated by using the cerebral arteries 
segmented from MRA images. Then the candidates are 
characterized by four features; variance, hemi-sphericity, 
mean MR signal value, and directional gradient 
concentration. The system then estimates the fuzzy 
degrees by using a feature value map generated by 
reference datasets. In the experiments, the proposed 
system was applied to eight patients with cerebral 
aneurysms. The four patients were used to make reference 
datasets, and the four patients were used to test the ability 
of finding cerebral aneurysms. The experimental results 
showed that our system gave the highest fuzzy degree for 
the cerebral aneurysm among the candidates in all cases 
except one case with small aneurysm.  

 
 

1. Introduction 
 
Cerebral aneurysms occur in the blood vessels (usually 

arteries) in the brain. Finding the aneurysms before they 
rupture is essential for prophylaxes of the subarachnoid 
hemorrhage, the cerebral infarction and so on. Wilcock et 
al. showed that magnetic resonance angiography (MRA) 
reliably detected aneurysms greater than a diameter of 5 
mm [1]. According to Wiebers et al.’s findings, mean 
diameter of ruptured aneurysm was 7.5 mm [2]. It has 

been reported that long-term risk of rupture for aneurysm 
whose size is more than 10 mm is between 1 % and 2 % 
[3]. In addition, the risk of rupture correlates with the 
aneurysm size [4]. Thus, it is important to detect cerebral 
aneurysm with respect to the size of the aneurysm.  

Several studies have been conducted on a computer 
aided-diagnosis (CAD) of aneurysm. They can be 
classified into (1) blood vessel segmentation [5][6], (2) 
volume rendering [7], (3) evaluation of blood velocity [8], 
and (4) automated detection of aneurysm. Especially, 
there are the related methods for detecting aneurysms. 
Kawata et al. have proposed a method for detecting the 
abdominal blood vessel disease [9]. An automated 
method for detecting the retinal microaneurysm has been 
proposed [10]. As related study to our interest, automated 
polyp detection has been studied [11]. However, they 
have not been applied to detecting cerebral aneurysms in 
MRA images. Moreover, there is no work on a CAD 
system to assist radiologists in finding cerebral aneurysms 
using MRA images.  

The aim of this paper is to develop a CAD system, 
which supports radiologists to find the cerebral aneurysm. 
Because aneurysm is unspecified in size, shape, or 
location, it is difficult to realize a fully automated 
detection system. Therefore, our method detects 
aneurysm candidates and assigns the fuzzy degree 
belonging to various size of aneurysm. The aneurysm 
candidates are found by using a normal model, which is 
composed of normal arteries of the given subject before 
the aneurysms occur. The normal model is constructed by 
using the cerebral arteries segmented from MRA images. 
Assigning the fuzzy degrees is carried out on a feature 
value map generated by reference datasets. In the 
experiments, the proposed system was applied to eight 
patients.  
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2. Materials 
 
MRA images used in this study were acquired using a 

Genesis Signa 1.5 tesla MRI scanner (General Electric 
Medical Systems). The image acquisition method was 
3-D time-of-flight (TOF) angiography with a repetition 
time (TR) of 25.0 msec and an echo time (TE) of 6.9 
msec. A field of view was 160 mm. A matrix was 512 by 
512, and the thickness of the slice was 1.2 mm. The 
dimension of the given voxel was 0.3125×0.3125×0.6 
mm3. Each of the volume data was composed of about 
100 separated and volumetric slices taken from the axial 
plane. The intensity value for all voxels of all intracranial 
structure ranged between 0 and 4095. The subjects were 
eight volunteers with aneurysms. MRA datasets used in 
this experiment was converted into cubic voxels, that is, 
filled between axial slices by linear interpolation.  

 
3. Methods 

 
The risk of rupture of the aneurysm depends on its size.  

We propose a system to help radiologists find cerebral 
aneurysms whose size is greater than an arbitrary size that 
the radiologists want to find. The proposed CAD scheme 
is illustrated in Figure 1. This CAD system finds 
aneurysm candidates from MRA images of a given 
subject.  For each candidate, the degree of aneurysm is 
assigned in the range of 0 to 1 by a fuzzy expert system.  
One means that the aneurysm candidate is completely the 
cerebral aneurysm. In the example illustrated in Figure 1, 
the system finds five aneurysm candidates, and assigns 
fuzzy degree for each candidate. Thus, users can diagnose 
only the aneurysm candidates with respect to the fuzzy 
degrees. This makes the users easily find the aneurysm 
because it is not necessary to observe the whole cerebral 
arteries. And the number of points to diagnose can be 
limited. For example, the number of points to diagnose 
can be controlled by changing a threshold value. That is, 
the users diagnose the aneurysm candidates whose fuzzy 
degree is higher than the threshold. In addition, the 
system estimates the fuzzy degrees belonging to the 
aneurysm whose size is more than an arbitrary size 
decided by the user. For example, when the user tries to 

find the aneurysms whose size is greater than 3.0 mm, our 
system gives the low fuzzy degree for the aneurysm 
whose size is smaller than 3.0 mm. In the following, we 
describe (1) finding of aneurysm candidates, (2) feature 
extraction, and (3) fuzzy expert system.  

 
3.1. Aneurysm candidates 

 
We assume a normal model to extract aneurysm 

candidates. The normal model is composed of normal 
arteries of the given subject before the aneurysms occur. 
Thus, the normal model is generated for the individual 
subject. Finding the aneurysm candidate from an MRA 
dataset is performed with four steps. At the first step, 
arteries are extracted by means of an automated artery 
extraction method proposed by Kobashi et al. [5]. The 
method gives 3-D binary images in which the voxels of 
segmented arteries are 1 and the others are 0. The second 
step skeletonizes the 3-D binary image using Saito and 
Toriwaki’s method [12], and then gives the centerlines of 
arteries. At the third step, the normal model is genelated 
using the centreline and radius of the arteries. Assume an 
example of constructing the normal model illustrated in 
Figure 2. For each voxel of the centrelines, we define the 
radius of the arteries to be the Euclidean distance from 
the voxel to the nearest background voxel as shown in 
Figure 2(a). So, in the case of the aneurysm, the normal 
radius before the aneurysm occurs can be approximated. 
Next, the centrelines are dilated so that the radius of 
centrelines becomes the approximated normal radius for 
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Figure 1. The proposed CAD scheme. 
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Figure 2. (a) Segmented arteries image and 
the centerline is described in the gray line. 
(b) The normal model by dilating the 
centerline. (c) Aneurysm candidate obtained 
by subtracting the normal model (a) from 
the segmented arteries (b). 



each voxel of the centrelines as shown in Figure 2(b). We 
call the dilated centrelines as the normal model. Finally, 
aneurysm candidates are found by subtracting the normal 
model from the arteries segmented at the first step as 
shown in Figure 2(c).  

 
3.2. Feature Extraction 

 
To characterize the aneurysm candidates, we introduce 

four features, variance, hemi-sphericity, mean MR signal 
value, and directional gradient concentration. Each 
feature value is normalized by  
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where Fi, ai, and σi are the ith extracted feature value, the 
average value and the standard deviation, respectively.  
 
[Feature 1] Variance: All voxels of the candidate are 
assigned the Euclidean distance from the voxel to the 
nearest voxel of normal model. The method then 
constructs Euclidean distance histogram of aneurysm 
candidate. Using the histogram, we define the variance of 
the histogram as a feature value.  To demonstrate the 
effectiveness of this feature value, assume three 
candidates shown in Figure 3. In this example, the first 
candidate shown in (a-1) is the aneurysm that is called as 
true-positive (TP), the second and the third candidates 
shown in (b-1) and (c-1) are quasi aneurysms that are 
called false-positive (FP). In the case of the second 
candidate, variance is too small (b-2). This is due to 
errors of the normal model assumption. In contrast, in the 
case of the third candidate, variance is too large (c-3).  
This is due to an overextraction in the artery extraction 
process.  
[Feature 2] Hemi-sphericity: The shape of the aneurysm 
should be like a hemisphere.  We define a feature of 

hemi-sphericity as: 
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where VC is the volume of the aneurysm candidate. VCHS 
is the volume of a hemisphere, which circumscribes the 
aneurysm candidate.  
[Feature 3] Mean MR signal value: The voxels of 
aneurysm have similar intensity to the voxels of the 
arteries because aneurysm is a part of the arteries.  Mean 
intensity value of the aneurysm candidate of interest is 
calculated as the third feature.   
[Feature 4] Directional gradient concentration: 
Generally, the shape of aneurysms appearing on the 
arteries wall is hemispherical. In the hemisphere, gradient 
vectors of the intensity map point toward the center of a 
sphere, which is estimated by using the hemisphere as 
shown in Figure 4. Therefore, we employ the directional 
gradient concentration (DGC) feature [11]. The DGC 
feature is computed by 
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where p is a voxel of the aneurysm candidate, and N is the 
number of the 3-D symmetric directions that is used for 
computing the response. The value max ( )ie p  is the 
maximum gradient concentration between Rmin and Rmax. 
As illustrated in Figure 5, the angle ( )ij pψ  is the angle 
between the direction vector 

iD
uur

 and a gradient vector 
jg

r
 located at distance j from p. Also, max ( )ie p  and 
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/ 2 ( )i Ne p+

 are computed from the opposite directions, 
iD

ur
 and / 2i ND +

ur
. In comparison with the second feature, 

hemi-sphericity, this feature value gives the information 
about a hemisphere like based on the intensity values.  
 
3.3. Fuzzy expert system 
 

In this section, we propose a fuzzy expert system. The 
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Figure 3. (a) TP candidate. (b) FP candidate 
due to overextraction. (c) FP candidate due 
to errors of the normal model assumption. 
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Figure 4. An example 
of gradient vector 
distribution in a 
hemispherical density. 
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fuzzy degrees are given by evaluating the similarity of the 
candidate to the reference datasets.  

The reference datasets, which are constructed by an 
expert preliminary, are a set of feature values, the size, 
and the labeled instance (TP or FP) of the aneurysm 
candidates. The instance, TP, means an expert instructs 
that the candidate is the aneurysm. In contrast, the 
instance, FP, means the expert instructs the candidate is 
NOT the aneurysm. In the following, we call the reference 
datasets of TP and FP are TP object and FP object, 
respectively.  The reference datasets are obtained from 
MRA images by candidate detection, feature extraction, 
and instance labeling. The instance of each candidate is 
given by the expert. Note that there are various sizes of 
TP objects.  

For each candidate, a fuzzy degree belonging to each 
TP object is calculated as below. First, Euclidian distance 
values from the feature vector of the candidate to that of 
each reference data are computed. For explanation of 
estimating the fuzzy degree, consider a feature vector map 
of the reference data illustrated in Figure 6. This is an 
example of the feature map in the case of 2-D space. In 
this figure, the values dT1, …, dTn (n: the number of TP 
objects) are the distances to each TP object, and dF is to 
the nearest FP object. Using the distance values, we 
estimate a fuzzy degree belonging to the ith TP object, µT1, 
…, µTi, (i = 1, …, n) by: 
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where c1 is a parameter that controls fuzziness (c1 = 10 is 

used in this experiment). Figure 7 gives an example of Eq. 
4. As shown in this figure, if the distance from the 
candidate to the ith TP object is dTi, the fuzzy degree is µTi. 
That is, the shorter distance gives the higher fuzzy degree. 
By applying Eq. 4 for all TP objects, we can obtain fuzzy 
degrees belonging to for each TP object.  

Using the fuzzy degrees, a membership function 
illustrated in Figure 8 is given by:  
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where DTi is the size of the ith TP, and b is a parameter for 
fuzziness (b = 30 in this experiment). This membership 
function gives a change of fuzzy degree according to the 
size of aneurysm. Thus, using the membership function, 
we can obtain a fuzzy degree belonging to an arbitrary 
size of the aneurysm.  

Finally, this system calculates a fuzzy degree, µaneurysm, 
belonging to the aneurysm whose size is greater than a 
user-specified size. For a candidate of interest, the 
aneurysm degree µaneurysm is given by: 
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where Dobject is a size specified by the users. The example 
is illustrated in Figure 9. The difference between this 
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Figure 9. The aneurysm degree.  
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Figure 6. An example of the feature 
values map of the reference data. 

Figure 7. The degree of 
the ith TP. 

Figure 8. The membership 
function of the degree of TP. 

Table 1 
(a) The TP feature values. 

TP# Variance Hemi- 
Sphericity 

Mean 
MR value DGC 

1 4.20 0.771 199.2 0.144 
2 6.40 0.904 182.5 0.143 
3 11.4 0.661 194.5 0.141 
4 11.9 0.703 175.8 0.139 

 (b) Normalization parameters. 
 Variance Hemi- 

Sphericity 
Mean 

MR value DGC 

α 4.91 0.608 154.6 0.135 
σ 5.15 0.173 24.22 0.008 



fuzzy degree, µaneurysm, and the fuzzy membership 
function defined above is that µaneurysm gives a fuzzy 
degree belonging to the aneurysm whose size is greater 
than a given by a user, and the membership functions give 
a fuzzy degree belonging to the aneurysm for each size.  

 
4. Results and discussion 

 
We applied the proposed method to MRA datasets of 

eight patients with aneurysms. The four MRA datasets 
were used to make reference datasets, and the another 
four MRA datasets were used to test the ability of finding 
cerebral aneurysms. 22 reference datasets were obtained 
from four MRA datasets by candidate detection and 
feature extraction. The reference data consisted of 4 TP 
objects and 18 FP objects. Table 1 tabulates the feature 
values of TP objects and the normalization parameters. 
Table 1 showed that the feature values of TP objects were 
obtained within a constraint range.  

The MRA datasets of the four patients (subject 1, 2, 3, 
and 4) for testing were analyzed by the proposed system. 
Figure 10 shows a part of results of candidate detection 
for subject 1. In this case, three candidates including one 
aneurysm (candidate 3) and two mis-findings (candidates 

1,2) were obtained. The membership function fT for each 
candidate is shown in Figure 11. As shown in these 
figures, we found that the fT of the aneurysm (candidate 
3) was higher than that of the other mis-finding 
(candidates 1,2). Figure 12 shows the maximum fuzzy 
degree distribution of all aneurysm candidates for each 
subject. The ground-truth aneurysms in the candidates 
were given by a radiologist for evaluation. The fuzzy 
degree of the ground-truth aneurisms are denoted by a 
white allow in the maximum fuzzy degree distribution. In 
this result, our system gave the highest fuzzy degree for 
the ground-truth aneurysms among the candidates in all 
cases except the subject 2. In the case of subject 2, the 
fuzzy degree of the ground-truth aneurysm was poorly 
estimated because the number of the reference datasets 
used in this experiment is very small and there is no 
reference dataset corresponding to the aneurysm in the 
subject 2.  

Figure 13 shows the aneurysm candidates whose fuzzy 
degree is the highest in the candidates for subject 1 and 4. 
The size to derive the resultant fuzzy degree was set at 4 
mm. The aneurysm candidates with the highest fuzzy 
degree were equal to the ground-truth aneurysms given 
by the radiologist. The size of the candidate in subject 1 
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Figure 10. (a) Segmented arteries. (b)Skeletonized image. (c) Normal model. (d) Three aneurysm 
candidates were found. 
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Figure 11. The membership function fT. (a) and (b) are the FP candidates. (c) is the TP candidate. 
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Figure 12. Fuzzy degree distribution of aneurysm candidates. 



and 4 are 4.1mm and 6.0mm, respectively. These results 
indicate that the proposed system gave high fuzzy degrees 
for the aneurysm in spite of little number of the reference 
datasets. The accuracy will be more improved with an 
increase in the number of the reference datasets.  

 
5. Conclusions 

 
We have proposed a novel CAD system for finding 

aneurysms using MRA images. The CAD system 
estimates a fuzzy degree belonging to aneurysms whose 
size is greater than a user specified size by using 
reference datasets. The experimental results confirmed 
that high fuzzy degrees were given for the ground-truth 
aneurysms. Thus, the proposed system strongly assists 
radiologists to find the cerebral aneurysm from the MRA 
images but the radiologists investigates the all sectional 
images or all points of the arteries. The feature of the 
proposed system is that it can be applied to entire cerebral 
arteries independent of the shape, and can limit the 
aneurysm candidates on the size of user’s demand. It 
should be noted that our method is efficient to assist 
diagnosis of cerebral aneurysm. It remains us to evaluate 
the proposed system using the large number of subjects.  
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Figure 13. Illustration of the detection of aneurysm.  
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