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Abstract

Treating averaged multiple-trial data is a common ap-
proach in recent papers for applying independent com-
ponent analysis (ICA) to neurobiological signal process-
ing. Although averaging increases the signal-to-noise ratio
(SNR), important information is lost, such as the strength of
an evoked response and its dynamics. Alternatively, when
averaging few-trial data, not much information is lost, but
SNR is very poor. In this paper, we deal with averaged data
of few as well as of many trials, and we demonstrate that not
only the location, but also the direction vector and dipole
moment of evoked fields (EFs) can be obtained by applying
our method, even when the number of trials is small.

1. Introduction

Many researchers have applied independent component
analysis (ICA) to electroencephalographic (EEG) or mag-
netoencephalographic (MEG) data to determine the behav-
ior and localization of brain sources [1, 2, 3, 4, 6]. How-
ever, because the magnetic field of brain signals is weak,
spontaneous and environmental noise makes it difficult to
recognize brain signals in recorded data.

The most widely used technique for reducing instrumen-
tal and environmental noises, and for identifying the behav-
ior and location of activities of interest, such as evoked field
responses, is to take an average across many stimulation
trials. In fact, when applying ICA to MEG data, most re-
searchers have treated averaged data [1, 2, 4]. However,
by taking an average, important information is lost, making
it advantageous to decrease the number of averages across

data trials. The disadvantage of having fewer averages is
that because SNR is very poor, the decomposition of a low-
power source signal from recorded data is still influenced
by noise. In this paper, we deal with small numbers of trials
(averaged 10-trials) and large numbers of trials (averaged
100-trials), and we demonstrate that evoked signals can be
detected by applying our ICA approach in both cases.

When applying ICA to physiological data, most re-
searchers have used real, measured, physiological data, with
some individual responses evoked by stimuli, and their de-
composed components are evaluated from a neuroscience
perspective. In this study, we use a synthesized MEG data
set, which includes an artificial evoked field and real, mea-
sured brain data. The behavior of our data set is similar to
auditory evoked fields (AEFs). The main advantage of our
data set is that dipole location of evoked responses and its
dynamics are known in advance, which facilitates the eval-
uation of the decomposed components. In this paper, to
evaluate the results of decomposition, we focus on not only
the location but also the direction vector and dipole moment
of evoked fields.

2. Data analysis model

In this section, we describe the model for applying ICA
to MEG data. Based on the principle of MEG measurement,
this problem can be formulated as

x(t) = As(t) + e(t), (1)

where x(t), s(t) and e(t) represent the transpose of m ob-
servations at time t, n unknown source components and ad-
ditive noise, respectively. Since neither human tissue nor
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skull attenuate magnetic fields in MEG, A can be repre-
sented by a numerical matrix whose element aij is simply
a quantity related to the physical distance between the i-th
sensor and the j-th source.

In the model, s(t), e(t), A and n are unknown but x(t)
are accessible. It is assumed that the components of s(t) are
mutually statistically independent, as well as being statisti-
cally independent of the noise components e(t). Moreover,
the noise components e(t) themselves are assumed to be
mutually independent.

3. Data analysis method

3.1. Robust pre-whitening technique

In this subsection, we describe our robust pre-whitening
technique [1, 2, 3]. This technique is very capable of reduc-
ing the power of additive noise.

When the sample size is sufficiently large, the covariance
matrix of the observed data in the mixing model Σ can be
written as Σ = AAT + Ψ, where Ψ is a diagonal matrix
of the additive noise e. Also the covariance matrix of the
observed data recorded by sensors can be given by C =
xxT .

For the robust pre-whitening technique, A can be esti-
mated as

Â = Un̂Λ
1
2
n̂ , (2)

by applying the standard PCA approach, where Λn̂ is a di-
agonal matrix whose elements are eigenvalues of C, the
columns of Un̂ are the corresponding eigenvectors and n̂
is the estimated number of sources.

To estimate Ψ, we fit Σ to C using the eigenvalue de-
composition method. In this case, the cost function is ob-
tained as L(A,Ψ) = tr[Σ − C]2. And we minimize it by
∂L(A,Ψ)

∂Ψ = 0, whereby the estimate noise variance Ψ is
obtained as

Ψ̂ = diag(C − ÂÂT ), (3)

where the estimate Â is obtained in the same manner as
shown in Eq. (2). Using these estimates Â and Ψ̂, we
can obtain the transform matrix for the robust pre-whitening
technique as

Q = [ÂT Ψ̂
−1

Â]−1ÂT Ψ̂
−1

. (4)

Using the above result, the new set of data transformed from
the observations can be obtained by

z(t) = Qx(t). (5)

Note that the covariance matrix is E{zzT } = In̂+QΨQT ,
which implies that the source signals in a subspace are de-
correlated.

A similar noise reduction approach that applies factor
analysis (FA) to the decomposition of MEG data has been
reported in [4]. Both this method and ours take additive
noises into account, but with our robust pre-whitening tech-
nique, the distribution of additive noises is not restricted.
Therefore, our technique is more robust and effective for
data with non-Gaussian noise such as the outlier.

3.2. JADE algorithm

It should be noted that the robust pre-whitening tech-
nique is needed to reduce the power of sensor noises and
the number of parameters, but it is insufficient to obtain the
independent components since an orthogonal matrix in gen-
eral contains additional degrees of freedom. Therefore, the
remaining parameters must be further estimated by using an
ICA algorithm. In this study, we apply the JADE altorithm
[5].

The JADE algorithm has two procedures termed orthog-
onalization in PCA and rotation. We did apply the rotation
procedure in the JADE algorithm, described below, but in-
stead of the orthogonalization in PCA, we applied the robust
pre-whitening technique described in Section 3.1.

The rotation procedure in JADE uses matrices F(M)
formulated by the fourth-order cumulant tensor of the out-
puts with an arbitrary matrix M as

F(M) =
K∑

k=1

L∑
l=1

Cum(zi, zj , zk, zl)mlk, (6)

where the Cum(·) denotes a standard cumulant and mlk is
the (l, k)-th element of matrix M. The correct rotation ma-
trix W can be obtained by diagonalizing the matrix F(M),
i.e. WF(M)WT approximates a diagonal matrix.

After performing the robust pre-whitening technique and
rotation in JADE, the de-mixture matrix is WQ. With it, we
can calculate the decomposed sources y∈Rn as

y(t) = Wz(t) = WQx(t). (7)

3.3. Power of decomposed components

The robust pre-whitening and ICA techniques serve to
filter the raw data, decreasing the power of the additive
noises and decomposing the sources. The estimated be-
havior of the individual sources can be represented as Eq.
(7). To better visualize the information, we projected the
decomposed components onto the sensor space.

The virtual sensor signals coming from multiple compo-
nents are obtained as

x̂(t) = ÂW−1y(t). (8)

To determine the information of the k-th individual compo-
nents, we forced every element to be zero except the k-th



Table 1. Artificial evoked fields.

peak time (sec.) location x, y, z (mm) vector az, dec (deg.) moment Q (nAm)
Evoked Field 1 0.25 10, 50, 50 150, 108 20
Evoked Field 2 0.27 -40, 40, 40 250, 59 30
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Figure 1. An example for data synthesizing: (a) Data synthesizing at sensor-L24, which detects signal
EF1. (b) Data synthesizing at sensor-L44, which detects signal EF2. In each example, artificial EF
signals (left), real measured MEG signals (middle), synthesized signals (right) are represented. The
horizontal axis expresses time (sec.) and the vertical axis expresses amplitude (pT).

(k = 1, · · · , n̂) of y(t) in Eq. (8). The virtual sensor sig-
nals coming from k-th individual components are obtained
as

x̂k(t) = ÂW−1[0 · · ·yk(t) · · · 0]T . (9)

The relationship between virtual sensor signals from mul-
tiple x̂ and k-th individual components x̂k is x̂(t) =∑n̂

k=1 x̂k(t). Note that some noises have been reduced in
the estimated observation x̂k(t).

In this paper, we define the total sum of each virtual sen-
sor signal from the k-th individual component as:

vk(t) =
1
M

M∑
i=1

x̂k,i(t) (10)

to compare the power of decomposed components. In Eq.
(10), M denotes the number of sensors and x̂k,i denotes the
k-th decomposed components of y(t) into the i-th sensor.
Here vk represents the total observation signals derived by
the k-th decomposed signal, so that its amplitude is not am-
biguous.

Using the above results, we define the power of the k-th
decomposed components vk as

Pvk =
N∑

t=1

vk(t)vT
k (t), (11)

where, N denotes the number of data samples. Applying
Pvk as the power of the k-th decomposed components, we
can compare the power of individual components decom-
posed by ICA.
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Figure 2. Sensor distribution.

4. Experimental results

4.1. Synthesized MEG data

In this subsection, we describe the synthesized MEG
data set, used for simulation, which is similar to Auditory
Evoked Fields (AEFs). As shown in Fig. 1, we synthe-
sized an artificial signal and a real measured MEG signal
which is recorded by using an Omega-64 (CTF Systems
Inc., Canada). The sensor arrays consist of 64 channels and
the sensor distribution is shown in Fig. 2. The sampling rate
was 250 Hz with duration of 50 sec. for 12500 samples. The
observed data X(64×12500) was segmented into 100 trials,
so the duration of each trial Xi(64×125)(i = 1, · · · , 100) is
0.5 sec. and each trial has 125 samples, where i denotes the
trial number.

The source signals in this data set include two different
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Figure 4. Angle Θ between the direction vec-
tor of true and estimated EFs, in case of unit-
ing the starting point of two vectors (a : az-
imuth, d : declination).

evoked fields responses, EF1 and EF2, and include the 50
Hz electrical power interference and the α-wave component
involved in the real measured MEG data. The signal EF1
was artificially evoked from 0.2 sec. to 0.3 sec. with a peak
at 0.25 sec. and its strength (dipole moment) was Q = 20
nAm (see Fig. 1(a)). The signal EF2 was artificially evoked
from 0.22 sec. to 0.32 sec. with a peak at 0.27 sec. and its
strength was Q = 30 nAm (see Fig. 1(b)). The source of
EF1 was located at [x, y, z] = [10, 50, 50] mm and that of
EF2 was located at [x, y, z] = [−40, 40, 40] mm, where
a head model presupposes a sphere with a radius of 75 mm
and x, y, z axis are set according to Fig. 3. The direction
vector, azimuth (az) and declination (dec), of EF1 was set
at [az, dec] = [150, 108] deg. and that of EF2 was set at
[az, dec] = [250, 59] deg. (see Table 1).

4.2. Automatic classification

In this subsection, we demonstrate the procedure for au-
tomatic classification of the decomposed components into

signals EF1 and EF2. First, we calculated the power of each
decomposed component in the time domain

Pvk =
0.5∑
t=0

vk(t)vT
k (t), (12)

where vk(t) denotes the k-th decomposed component. To
define the criterion for classifying the decomposed compo-
nents into EF1 and EF2, we calculated the power of each
decomposed component in the duration from 0.2 to 0.3 sec.
P ′

vk and from 0.22 to 0.32 sec. P ′′
vk as

P ′
vk =

0.3∑
t=0.2

vk(t)vT
k (t),

P ′′
vk =

0.32∑
t=0.22

vk(t)vT
k (t). (13)

Using above results, we define the ratios

R′
vk =

P ′
vk

Pvk
, R′′

vk =
P ′′

vk

Pvk
. (14)

When R′
vk ≥ kEF1, the decomposed component vk is the

signal EF1, since the signal EF1 was artificially evoked
from 0.2 to 0.3 sec. , where kEF1 is a positive constant.
Similarly, when R′′

vk ≥ kEF2, the decomposed component
vk is the signal EF2, where kEF2 is a positive constant.
Based on prior experience, for this experiment we set these
parameters as kEF1 = 0.6, kEF2 = 0.6, respectively [2].

4.3. Evaluation methods

In this study, since the dipole locations, direction vectors
and dipole moments of EF1 and EF2 were known in ad-
vance, we can compare them to the estimated ones. We used
the standard spatio-temporal dipole fitting routine, MEG
v3.3a (CTF System Inc., Canada), to find the dipole. Here
we define the distance between true dipole location [x, y, z]
mm and estimated dipole location [x̂, ŷ, ẑ] mm as

r =
√

(x − x̂)2 + (y − ŷ)2 + (z − ẑ)2. (15)

When uniting the starting point of two vectors, we define the
angle Θ between the direction vector of true and estimated
EFs as

Θ = cos−1[sin(d)sin(d̂)cos(a− â)+ cos(d)cos(d̂)], (16)

where a and d denote azimuth and declination (deg.), re-
spectively (see Fig. 4). We define the difference of true and
estimated dipole moment ∆Q as

∆Q = |Q − Q̂|, (17)

where Q and Q̂ denote the dipole moments (nAm) of the
EFs and their estimates, respectively.
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Figure 5. (a) Averaged of 10 trials data. (b) Result of ICA with the robust pre-whitening technique and
its frequency contents. (c) Estimated map focus on EF1, (d) Estimated map focus on EF2.
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Figure 6. (a) Averaged of 100 trials data. (b) Result of ICA with the robust pre-whitening technique
and its frequency contents. (c) Estimated map focus on EF1, (d) Estimated map focus on EF2.

4.4. Results for averaged 10-trials data

We demonstrate the results for the averaged 10-trial data,
as shown in Fig. 5(a). In this figure, the horizontal axis and
vertical axis express time from 0 to 0.5 sec. and amplitude
from -0.5 to 0.5 pT, respectively. The results v(t) and these
power spectrums Vk(f) are shown in Fig. 5(b). Apply-
ing the automatic classifying technique described in Sect.
4.2, v1 and v2 have satisfied the equations R′′

v1 ≥ kEF2

and R′
v2 ≥ kEF1, respectively, and can thus be regarded as

signals EF2, EF1, respectively.
The estimated maps of signals EF1 and EF2, derived by

analyzing the average of 10-trials (after ICA), are shown
in Fig. 5(c)(d), respectively. As for the result of EF1, note
that the evoked response appears on the left-front area of
the brain. For the result of EF2, the evoked response ap-
pears on the left-back area of the brain. The results of
dipole estimation become [x̂, ŷ, ẑ] = [−5.7, 46.4, 47.5]
mm, [âz, d̂ec] = [145.1, 123.3] deg. and Q̂ = 50.0

nAm for EF1 and [x̂, ŷ, ẑ] = [−37.5, 24.1, 52.9] mm,
[âz, d̂ec] = [293.6, 55.0] deg. and Q̂ = 30.6 nAm for
EF2. Using Eq. (15), (16) and (17), the difference between
true and estimated dipole, r, Θ and ∆Q are r = 16.3 mm,
Θ = 15.9 deg. and ∆Q = 30.0 nAm for EF1 and r = 20.6
mm, Θ = 36.5 deg. and ∆Q = 0.6 nAm for EF2, respec-
tively (see Table 2).

Here, we describe the results of dipole estimation for av-
eraged 10-trials data (before ICA). The results of dipole es-
timation for averaged 10-trials data become [x̂, ŷ, ẑ] =
[7.8, 16.5, 46.4] mm, [âz, d̂ec] = [167.2, 85.1] deg.
and Q̂ = 119.8 nAm for EF1 and [x̂, ŷ, ẑ] =
[−38.2, 12.5, 52.3] mm, [âz, d̂ec] = [299.8, 60.4] deg.
and Q̂ = 41.1 nAm for EF2. Therefore r, Θ and ∆Q are
r = 33.8 mm, Θ = 28.5 deg. and ∆Q = 99.8 nAm for EF1
and r = 30.2 mm, Θ = 42.7 deg. and ∆Q = 11.1 nAm
for EF2, respectively. The results show that by applying
our ICA approach, we can obtain more accurate informa-
tion about EFs.



Table 2. Comparison of true and estimated EFs
(a) Estimation of EF1.

dipole location (mm) direction vector (deg.) moment (nAm)
x y z r az dec Θ Q ∆Q

true value 10.0 50.0 50.0 - 150.0 108.0 - 20.0 -
averaged 10-trials after ICA -5.7 46.4 47.5 16.3 145.1 123.3 15.9 50.0 30.0

before ICA 7.8 16.5 46.4 33.8 167.2 85.1 28.5 119.8 99.8
averaged 100-trials after ICA 8.9 47.0 50.9 3.4 149.5 107.6 0.6 24.3 4.3

before ICA 5.6 57.3 48.1 8.7 141.5 123.0 16.8 13.4 6.6

(b) Estimation of EF2.
dipole location (mm) direction vector (deg.) moment (nAm)

x y z r az dec Θ Q ∆Q
true value -40.0 40.0 40.0 - 250.0 59.0 - 30.0 -

averaged 10-trials after ICA -37.5 24.1 52.9 20.6 293.6 55.0 36.5 30.6 0.6
before ICA -38.2 12.5 52.3 30.2 299.8 60.4 42.7 41.1 11.1

averaged 100-trials after ICA -37.1 37.0 36.3 5.6 259.6 50.7 11.4 33.0 3.0
before ICA -43.0 37.5 44.4 5.9 245.1 70.3 12.1 33.4 3.4

4.5. Results for averaged 100-trials data

Next, we describe the results of averaged 100-trials data,
as shown in Fig. 6(a). The results v(t) and these power
spectrums Vk(f) are shown in Fig. 6(b). Here, v1 and
v3 have satisfied the equation R′

v1 ≥ kEF1 and R′′
v3 ≥

kEF2, respectively, and can thus be regarded as EF1 and
EF2, respectively.

The estimated maps of the EF1 and EF2 derived by ana-
lyzing the averaged 100-trials data (after ICA) are shown in
Fig. 6(c)(d), respectively. In the results of EF1 and EF2,
note that the evoked responses appear like the maps de-
rived by analyzing the averaged 10-trials data. The results
of dipole estimation are [x̂, ŷ, ẑ] = [8.9, 47.0, 50.9]
mm, [âz, d̂ec] = [149.5, 107.6] deg. and Q̂ = 24.3
nAm at EF1 and [x̂, ŷ, ẑ] = [−37.1, 37.0, 36.3] mm,
[âz, d̂ec] = [259.6, 50.7] deg. and Q̂ = 33.0 nAm at EF2.
Therefore r, Θ and ∆Q are r = 3.4 mm, Θ = 0.6 deg. and
∆Q = 4.3 nAm for EF1 and r = 5.6 mm, Θ = 11.4 deg.
and ∆Q = 3.0 nAm for EF2 (see Table 2).

The results of dipole estimation for averaged 100-trials
data (before ICA) become [x̂, ŷ, ẑ] = [5.6, 57.3, 48.1]
mm, [âz, d̂ec] = [141.5, 123.0] deg. and Q̂ = 13.4
nAm for EF1 and [x̂, ŷ, ẑ] = [−43.0, 37.5, 44.4] mm,
[âz, d̂ec] = [245.1, 70.3] deg. and Q̂ = 33.4 nAm for EF2.
Therefore r, Θ and ∆Q are r = 8.7 mm, Θ = 16.8 deg.
and ∆Q = 6.6 nAm for EF1 and r = 5.9 mm, Θ = 12.1
deg. and ∆Q = 3.4 nAm for EF2.

Comparing the results of ICA and taking averages (be-
fore ICA), we conclude that not only dipole location, but
also direction vector and dipole moment become more ac-
curate by applying our ICA approach (see Table 2).

5. Conclusions

In this paper, we performed source decomposition of av-
eraged multiple-trials MEG data using our ICA algorithm.
Our results showed that the analysis of averaged data effec-
tively determines not only dipole location but also direction
vector and dipole moment of the evoked fields even when
the number of averages is small. The authors hope these re-
sults will help neuroscientists to further their understanding
of the temporal cortex.
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