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Abstract: Generally the neural networks
employing Bayesian decision do not output one
simple hypothesis, but a manifold of probability
distributions. This throws out the bayes posterior
coefficients as a large number of classifiers.
Here a novel method based on differential
feedback is explored to merge these classifiers.
The experimental results confirm affine
transportation of these classifiers. Also, it has
been shown that the differentially fed Artificial
Neural Networks (ANNs) learn in much the
same way as Bayesian learning and are hence
resistant to over fitting

1 INTRODUCTION
In Information geometry, a family of probability
distributions are made use to compute quantities
related to pdf including mutual interactions. It
was used to study multilayer perceptrons [1]. A
family of distributions called exponential family
has the pdf

P (y,θ)=exp{Σθiki(y)- ψ(θ)} (1)
Where θ is the cosystem, k= ki(y) are adequate
functions of y, ψ the offset. The exponential
family forms α=±1 flat manifold. For this
Riemann-christoffel curvature vanishes
identically. This is non Euclidean space. For this
manifold, there exists α=±1 affine cosystem.
This is because log of pdf is linear in θ . For any
two distributions p (y) and q (y) the geodesic
connecting them is given by

log (p (y, t))=(1-t)log p(y)+t log q(y)- ψ(t) (2)
A family of Divergence measures namely α-
divergence is associated with the manifold of pdf
[2]. The α=-1 divergence is known as Kullback
divergence. These divergence functions give a
Reimannian metric to the manifold of pdf.

The networks are represented by a set of
parameters called weights θ=wij .A family of
networks parameterized by θ forms a manifold, θ
playing the role of a cosystem.. In this paper, it is
shown that they form hyperplanes for different

choices of feedback. The amount of feedback is
proportional to Kullback divergence distance i.e.,
planes are Kullback distance apart. The kullback
divergence of pdf p from pdf q is given by

p*log(p/q) (3)
In this paper, different orders of differential
feedback form a manifold of hyperplanes and are
related to manifolds of pdfs. The distance
between them and the trajectory of a point on
these planes is explored. In section 2
differentially fed ANNs are introduced. In
section 3 the superposition of hyperplanes is
explained. The simulation results are given in
section 4 section 5 concludes

2. FORMALISM OF DIFFERENTIALLY
FED ANN
The output y of a neural network except for the
nonlinearities can be written as

y=Σwixi. (4)

Where xi are the inputs wi, the corresponding
weights. The thing to be noted is weight cannot
span the entire input space, whatever may be the
training mode. Again the linearity of the output
(1) may be viewed as a particular case of ARMA

y(n+1)=b0y(n)+b1y(n-1)+…..+a0xn+… (5)
Where b0.. and a0.. are constants. The auto
regressive terms b0…bn may be realized using
inherent differential feedback [3]. With
differential feedback it has been found out [3]
that the no of iterations required for training is
reduced as shown in the table I.XOR gate is
considered for simulation. Gaussian distributed
random input with seed value 1000 is taken as
input. With I order different feedback, the output
may be written as:

ΣWixi+b1y1 (6)
y1 being the I order differential. This equation
once again represents a plane parallel to Σwixi.
Thus the set of differentially fed ANNs form a
manifold of parallel planes, with ∞ order
feedback being the plane with zero error.
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Table 1. Performance with feedback

Order of differential Square error Iterations
No feedback 18 1156
I order 18 578
II order 18 289

Table 2..Performance with II order feedback

Order of differential Square error Iterations
II order Feedback 18 578
Equivalent Output 18 578

Also, simulation results of table 2 show that two
terms of II order differential feedback i.e., y2-y1
and y1-y0 can be replaced by a single equivalent
plane represented by

Weq=(w1*iextra+w2*iextra1)/y0 (7)
In II order differential feedback system, the two
differential terms can be replaced by a single
term. Extending this principle, the ∞ terms of ∞
order differential feedback can be replaced by a
single term.

This is termed as eigen plane which is the
practical way of generating lowest error. Now
the differential feedback becomes

dy/dt+d2y/dt2+… (8)

Taking Z transform, & then the inverse,

yeq = IZT{Y (z)/(1-z)} (9)

2.1. Information geometry of differential
feedback
For less error, the plane spanned by the weight
vectors should be as close as possible to the
eigen plane. When I order differential feedback
is given, the new plane is given by

ynew =
�

wixi+a*yold (10)

Which is a parallel plane. To start with, set
Yold=0.So, y =

�
wixi. Since error varies

asymptotically with order, the gap between
parallel planes decreases and the infinite order
Plane coincides with the eigen plane. If still
more feedback is given, error increases further
as shown in fig.2

To show that the entropy is minimum on the
eigen plane, consider the exponential family as
given in [4] . The error may be assumed to be

Gaussian distributed. In Gaussian distribution
with Zero mean, the pdf can be written as

p(x)=exp((energy of x)/σ2 ) (11) .

The error energy of a plane x may be written as
(x-d)2. (x-d) being the distance of x from eigen
plane d (or the actual value). The entropy of such
a distribution takes minimum value when (x-
d)=0. i.e. entropy is min when the plane reaches
the eigen plane The Natural learning algorithm
is given by [5]

θ (t+1)=θ (t)-η G-1 (12)

i.e.,newplane=oldplane+deviation This shows
that the repeated learning in gradient descent
algorithm shifts the planes towards the eigen
plane in the same way the diff feed back will do
,but fails to reach it because eigen plane does
not belong to the space spanned by inputs alone.

Figure.1.Differential feedback planes

Figure2. Feedback v/s error
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3. SUPERPOSITION OF HYPERPLANES
Bayesian learning [6] is a pdf over hypothesis
(parameterized) space, expressing degree of
belief in a specific hypothesis. A neural network
trained with Bayesian learning algorithm outputs
entire distribution of probabilities over
hypothesis set rather than a single hypothesis.
Such a distribution is Bayes’ aposterior and
depends up on the training data and on the prior
distribution. This dependency on the aprior
distributions make it a memory system where
previous outputs take a role in deciding the
present output. In the present context each
hypothesis corresponds to one hyper plane i.e.,
different orders of feedback. Alternative
perspective is that each hyperplane may be
taught of as a classifier with an associated
probability density function. Degree of belief is 0
for no feedback and increases towards 1 for
infinite feedback or when all classifiers merge.
In such a classifier the actual output may be
thought of as superposition of beliefs [7] i.e.,
addition of different feedbacks. As the order of
differential feedback increases, the number of
estimators considered in the sum increases by the
same amount and hence the degree of belief
moves towards 1.The addition is not simple but
weighted by belief or pdf. In [1]. it has been
proved that the n number of differential terms
with a feedback of degree n may be replaced by
a single nth degree differential term. It follows
that, a single equivalent or effective distribution
will be thrown out with nth degree differential
feedback. It may be seen that equation. 13 runs
in much the same way as that of
equation.7.Finally we arrive at the eigen plane.
I.e. the superposed effect of all classifiers is the
eigen plane. This gives

P0*no feedback+p1*I order differential
feedback=p2*II order differential feed back
(13.a)
P1* I ordered differential+…infinite order
=Eigen plane (13.b)
I.e. weighted sum of different ordered
differentials.
P1*distance between I order and
nofeedback+p2*II order and no
feedback+…=1*distance between no feedback
and Eigen plane (13.c)

The equations show that the learning algorithms
with differential feedback do indeed resemble
Bayesian learning algorithms and are hence
resistant to over fitting [7]. It may be attributed

to the hidden Auto regression associated with
differential feedback

3.1. Resistance for over training
The posterior has two components-a data
independent Gaussian prior part and a data
dependent term. Logically, the Gaussian part
may be attributed to the previous or differential
terms of the output since the weighted sum of
any probability distribution function in general
turns towards Gaussian, by central limit theorem.
Such a Gaussian classifier is known to resistant
to over fitting

3.2..Bayesian learning
The result of Bayesian learning is a pdf over the
hypothesis space each expressing the degree of
belief in a specific hypothesis as an
approximation to the target function. The aprior
distribution P(λ) generally encodes some prior
knowledge. With the arrival of data pattern D the
aprior distribution gets updated using Baye’s rule
as P (λ|D) ∝ P (D|λ) P (λ).Taking Logarithm
both sides, we get

Log (P (λ|D)) ∝ log (P (D|λ))+log (P (λ)) (14)
The equation has two terms-one current data
dependent term and one data independent term
where the prior or previous outputs (Gaussian as
a result of superposition) are considered.The
posterior distribution so obtained hence encodes
information coming from the training set and
prior knowledge.

Consider the example of II order feedback which
makes use of two previous or priori terms
P (λ1) and P (λ2). With this the equation may be
rewritten as P (λ|D)= P (D|λ1)* P (λ1)+ P
(D|λ2)* P (λ2)Which leads to the equation

p2*II order differential feed back =P0*no
feedback+p1*I order differential feedback (15)

This is analogous to the famous equation

P (y|x, D)= )()|(),( λλλ
λ

dPDpxf (16)

in probability space.As can be seen here, the
probabilities are proportional to the weights. The
equation tries to expand the (k+1) th order
differential feedback plane with0,1..K th order
differential feedback planes. The weighing
factors may be taught of as the projection or dot
product of the hyper plane over lower order
hyper planes.



3.3.Hilbert space
The set of probabilities form Hilbert space

H={z:Λ→ℜ such that )()( 2 λλ
λ

dpz
Λ∈

<∞}

with the inner product
<z1.z2>= �

Λ∈λ

λλλ )()(2)(1 dpzz (17)

Since the same constraints are also satisfied by
the hyper planes, they form Hilbert space.The
output of a neural network is subjected to
nonlinearity or fair quantization. Let sk be the
number of points or planes which go wrong
because of this nonlinear round off. The
fractional error ek is defined as sk/l , l being the
number of hyperplanes considered. Because of
the uniform nature of this error, the probability
of this error equal to r/l is

)!()!(2

!

εε ��
�

−ll
which gives average

probability of realizing different patterns of r
errors.Now mapping the hypothesis space to
error shells or differential feedback hyperplanes,
We get

(18)
Where B=(r,l). Hence the error in classification
has to vary asymptotically as a power of 2 with
increase in the order of differential feedback.
This is indeed the case as given in table I. But for
the nonlinearity, any hyperplane or the k+1 th
degree feedback happens to be a linear weighted
sum of the k hyperplanes found in H. This
threshholding makes the output a subset C (H)
the convex hull of H rather than H itself. It can
be shown that the bias term or the datum or
reference depends just up on the instantaneous
data and independent of the feedback inputs. I.e.
it remains the same for all orders of the
feedback. Here also, P (D|λ1) and P (D|λ2) are
the same and independent of λ or the feedback
but depends only up on D the data. Hence the
above equation may be rewritten as

P (λ|D)=P (D){P (λ1)+ P (λ2)} (19)
I.e., Output without feedback or the bias
term*Gaussian like pdf. especially with higher
Orders of the feedback
.
4. SIMULATION
The differentially fed Artificial neural networks
are made to learn the psd of random data .The
Normal distributed data is generated using
Matlab.The error after learning and the

differentials of the error are stored The
probability distribution of each of them is
computed using Parzen equation p
(x)=

πσ2
1 exp (-(

2

2)(

σ
xmean − )).The

weighted sum of the zero th order feedback and I
order feedback data with their corresponding
pdfs is found identical to the weighted second
ordered differential feedback with the
corresponding pdf as given in the equation In
fig.3 signals of I and zero order weighed with
pdf and weighed II order signal are shown.

5. CONCLUSIONS
From the simulation results it is clear that the
classifier represented by a certain hyper pane is
the weighted sum of the hyper planes o
classifiers below. This way, ideal classifier is the
weighted sum of all the classifiers.

Figure.3.signals of I and zero order weighed with
pdf and weighed II order signal

Legend: - Weighted second ordered feedback. -.
Sum of weighted zeroth and first ordered FB
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