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Abstract 
 
This paper discusses an application of an intelligent 
information system for decision-makers involved in multiple 
criteria group site selection problems under uncertainty. 
The fuzzy algorithm behind the system was developed by the 
authors for use in large-scale infrastructure site selection, 
and is validated here using a site selection problem at 
Brisbane Airport. The ‘InfraPlanner’ Spatial Decision 
Support System (SDSS) was created by customising 
ArcView GIS, and operates on raster data files. The tightly 
coupled system features linguistic interaction, multiple 
decision-maker input, uncertainty assessment, and a 
linguistically controllable aggregation function capable of a 
variety of compensatory and non-compensatory outcomes. 
Feedback from decision-makers involved in the experiment 
indicated a high level of satisfaction with outputs from the 
system, whilst noting some areas for future development.  
 
1. Introduction 
 
Site selection for facilities such as airports, highways, and 
heavy industry is often extremely complex. As multiple 
stakeholders are usually involved in the selection of a given 
location, there is a strategic need to take into account 
multiple criteria, which are often conflicting, 
incommensurate and subject to uncertainty. Also, the spatial 
variation of suitability and the weighting of each criterion is 
often hard to measure, and may be the basis of disagreement 
amongst a group of heterogeneous decision-makers. Such 
problems are often described as ‘surprisingly difficult’ [1] 
 
The use of Geographical Information Systems (GIS) in site 
selection has a long history, with most approaches being 
based on a multiple criteria evaluation (MCE) framework. 
There has been much literature on MCE embedded in GIS 
[2-4], however most GIS-based MCE methods have 
inherent difficulties and limitations. Embedded MCE 
approaches generally assume consensus among decision-
makers [5] and have little capacity for dealing with conflicts 
between affected parties, thereby losing potentially 
important information in the aggregation phase. Many 
authors have also noted that there is a need for accuracy 
measures to be incorporated into spatial datasets upon which 
decisions are to be made [6-8], however the nature of data 
uncertainty is not always easily fitted to a probability 
distribution, and measures of accuracy may themselves be 
hard to quantify. Perhaps most importantly, the use of MCE 
in computer-based decision support systems is limited by 
the fact that highly capable analytical systems are often used 

as simple visualization tools, primarily due to 
difficulties in use and understanding of the systems 
by strategic decision-makers [9].  
 
‘InfraPlanner’ is a SDSS, developed using a fuzzy 
algorithm to mitigate these difficulties. Specifics of 
the algorithm are given in [10]. Broadly speaking 
InfraPlanner is an intelligent information system 
based on approximate reasoning that offers the 
following capabilities:  
 
• Linguistic interaction: Linguistic interaction is 

provided using primary term sets semantically 
defined by parameter-based fuzzy numbers, 
which may be enhanced via a hedging procedure 
to add more terms. Both input and feedback is 
accomplished linguistically. 

• Multiple decision-maker capability: The system 
accepts linguistic inputs from each party 
involved in the decision-making process. 
Conflict between parties is assessed based on 
differing suitability and weighting judgments 
and factored into overall site suitability.  

• Uncertainty assessment: There are two types of 
uncertainty inherent in decision-maker 
suitability assessments: linguistic and 
quantitative. Linguistic uncertainty is 
represented by the fuzziness of the primary 
suitability term, whereas quantitative 
uncertainty is represented using the concept of a 
type-2 fuzzy set and its footprint of uncertainty 
(FOU) [11]. Quantitative uncertainty is the term 
used here to represent uncertainty in the source 
data and/or its relationship with site suitability.  

• User controllable aggregation: Users have the 
ability to choose an aggregation that minimizes 
uncertainty, risk or conflict, or maximizes 
compensatory suitability. A variety of 
compensatory and non-compensatory 
linguistically defined outcomes may be 
delivered. 

• Real-time interaction: In raster GIS the decision 
area may contain millions of cells, with each cell 
representing an alternative that will ideally be 
analyzed in a real-time interactive environment. 
The computationally efficient fuzzy algorithm of 
InfraPlanner utilizes a scoring function when 
dealing with fuzzy quantities that minimizes 
calculation time and makes real-time interaction 
possible. 
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Figure 1. Unconstrained alternatives 
 
This paper follows from existing work in development 
of the algorithm by discussing its application to a real 
world site selection task at Brisbane Airport, Australia. 
The remainder of the paper is structured as follows: 
Section 2 provides an overview of the site selection 
problem used in the experiment: Section 3 details input 
from decision-makers: Section 4 covers exploration of 
alternatives, Section 5 is a discussion of the outcomes of 
the experiment and Section 6 draws conclusions.  
 
 
2. The problem 
 
The problem worked through here concerns the location 
of a new construction and demolition (C&D) facility, at 
Brisbane Airport, Australia. The Airport occupies 
2700ha of land, located 13km north east of the Brisbane 
CBD, adjoining Moreton bay. The site is flat and low 
lying, occupying part of the original Brisbane river delta, 
which has undergone extensive changes since the 1830s, 
with most of the original network of tidal waterways 
being replaced with constructed drains. Much of the 
vegetation on the site has been planted in the last 15 
years, and was chosen to reduce the attraction of birds. 
There are, however, some environmentally sensitive 
areas to consider when locating new developments, as 
well as issues associated with airport facilities, 
Government legislation and the effects of airport 
operations on local communities.  
 
A Construction and Demolition facility inputs masonry 
from demolished buildings and, via crushing and 
grinding, turns out various grades of landfill material. 
The main impacts of such an operation on its immediate 
vicinity are noise and dust emissions. The Brisbane 
Airport Corporation (BAC) is considering leasing a 

parcel of land on its site to a C&D facility operator 
primarily because of the flow on benefit of easily 
accessible fill material for other development sites on 
the Airport grounds.  
 
Three separate groups are to be engaged in the decision-
making process: The Brisbane Airport Corporation, The 
Commonwealth Government, and the Pinkenba 
residential community. The three groups differ 
considerably in their priorities and suitability 
assessments, creating a rich decision-making 
environment. 
 
 
3. Decision-maker input 
 
Data input primarily consists of the creation of a set of 
maps detailing the suitability and uncertainty 
assessments of each group. The first step in the process 
is the definition of constraints (Boolean criteria) that 
serve to limit the number of alternatives under 
consideration. After an initial consultation with decision-
makers, a set of five constraints emerged: 
 
1. Airport Boundary: The site must lie within the 

airport boundary 
2. Existing Buildings: Sites already occupied are 

excluded 
3. Road access: The site must be within 200m of 

selected access roads. 
4. Zoning: The site must lay in a zone designated 

‘General Industry’ or ‘Light Industry’ as defined by 
the BAC 1998 Master Plan. 

5. Conservation: The site must not occupy an area of 
high conservation value. 
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The map of unconstrained alternatives is derived using 
standard GIS Boolean overlay functionality and is 
shown in Figure 1.  

 

 
The next step in the process involves the definition and 
linguistic assessment of criteria that vary on a suitability 
scale from ‘Totally Unsuitable’ to ‘Perfect’. These 
criteria (referred to as factors) are represented as a set of 
suitability maps, created using specially designed 
interfaces that convert linguistic inputs from each 
decision-maker to a spatially explicit format as shown in 
igure 2 and 3.  To illustrate how the linguistic input is 
structured factor definition from BAC is provided 
below: 
 
1. Environmental value is ‘important’: It is 

‘moderately certain’ that sites of moderate 
conservation value are ‘good’ whilst it is ‘very 
certain’ that all others are ‘perfect’.  

 
Figure 2: Creating a suitability map from a continuous 
variable (the charted utility function is a guide only as 

values are fuzzified) 2. Zoning is ‘very important’: It is ‘very certain’ that 
general industry zones are ‘perfect’ whilst it is 
‘moderately certain’ that light industry zones are 
‘good’. 

 

 

3. Tenant Amenity is ‘important’: It is ‘very certain’ 
that sites less than 50m from sensitive tenants are 
‘totally unsuitable’. It is ‘moderately certain’ that 
sites 100m from sensitive tenants are  ‘good’. It is 
‘certain’ that sites 500m from sensitive tenants are 
‘perfect’. 

4. Community Impact is ‘important’: It is ‘very 
certain’ that sites less than 500m from Pinkenba are 
‘totally unsuitable’. It is ‘uncertain’ that sites 1000m 
from Pinkenba are ‘good’. It is ‘very uncertain’ that 
sites 2000m from Pinkenba are ‘perfect’, and 
‘certain’ that sites 4000m from Pinkenba are 
‘perfect’.   

5. Proximity to BAC Landfill Requirement is 
‘moderately important’: It is ‘very certain’ that sites 
on Lomandra Dr are ‘perfect’. It is ‘moderately 
certain’ that sites on Randle Rd, Sugarmill Rd and 
Viola Pl are ‘good’. It is ‘moderately certain’ that 
sites on Airport Dr are ‘indifferent’. 

Figure 3: Creating a suitability map from a discrete 
(categorical) variable 

 
InfraPlanner takes the linguistic assessments and 
generates raster maps, where each raster cell has a fuzzy 
number representative of the suitability and uncertainty 
assessment for each criterion from each decision-maker. 
Figure 4 illustrates the type-2 fuzzy concept used to 
accomplish this. When all maps are generated a fuzzy 
aggregation is performed, enabling decision-makers to 
interactively explore alternatives as discussed in the next 
section.  

6. Traffic impact is ‘important’: It is ‘very certain’ that 
sites on Airport Drive are ‘bad’. It is ‘moderately 
certain’ that sites on Lomandra Drive and Viola Pl 
are ‘good’. It is ‘certain’ that sites on Randle Road 
and Sugarmill Rd are ‘perfect’. 
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wu is the weighting of the uncertainty score  
4. Alternative exploration wr is the weighting of the risk score 

wc is the weighting of the conflict score  
 The initial aggregation provides four linguistic 

parameters for each alternative cell: Compensatory 
suitability, uncertainty, risk, and conflict. Compensatory 
suitability is derived from a fuzzy weighted combination 
of individual criterion outcomes, importance values and 
a relevance value representing the ability of each 
decision-maker to assess each criterion, as shown in 
Equation 1. 

The adjusted suitability score is then used to generate an 
adjusted linguistic suitability rating. Weighting of the 
four parameters is via consensus, or a non-weighted 
averaging of each decision-maker’s preferences, which 
enables a variety of non-compensatory outcomes to be 
generated. 
 
As expected the system easily identified the preferred 
sites for each decision-maker individually. The three 
sites varied in location, and thus contained high levels of 
conflict. The best compensatory solution was acceptable 
to only two of the parties, and performing a second 
aggregation to minimise conflict found a slightly 
different solution that the third party also rejected. It was 
quickly ascertained that disagreement was primarily due 
to the third decision-maker placing primary importance 
on satisfying a single criterion. Unfortunately this left no 
locations available that were completely satisfactory to 
all, and the primary benefit gained in from the system 
was the clear identification of the source of conflict, 
which has become the subject of negotiation between 
parties.  
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Where: 

iS  is the suitability of alternative i. 

ijkO  is the criteria outcome for alternative i with 
relation to criterion j and decision-maker k, 
including quantitative uncertainty. 

jkR  is the relevance of decision-maker k’s opinion 
with respect to criterion j.  

jkW  is the weight assigned to criterion j by decision-
maker k  

 5. Discussion 
Uncertainty is derived from the support of the triangular 
fuzzy number, as this will vary with the individual 
uncertainty assessments via a Type 2 scaling procedure. 
Risk is a measure of how each criterion outcome 
compares to a specified minimum, and conflict is a 
measure of disagreement amongst decision-makers, as 
shown in Equation 2.  

 
The nature of the site selection problem presented here is 
typical of many real world situations. A fundamental 
problem in designing systems to solve such problems is 
that there is often no universally accepted solution to 
find, and it is not always possible to derive the best 
compromise from initial assessments. Most GIS based 
decision-making methods assume that crisp numerical 
suitability assessments can be processed according to a 
pre-determined algorithm to derive a solution. However 
the complex nature of many site selection decisions 
make such assumptions unrealistic. It was noted during 
the experiment that decision-makers were reluctant to 
place their faith in a derived solution without fully 
understanding how that solution was obtained. This 
creates a significant hurdle for system designers whose 
aim is to replicate, and by default replace, the decision-
making process. Using a pre-determined optimization 
algorithm is standard procedure in many areas of 
problem solving, and works particularly well when the 
exact utility of a solution can be precisely measured and 
used as feedback to improve performance. However the 
exact utility of a solution in site selection is seldom 
known. Multiple, conflicting criteria, and the added 
human element of conflicting opinions of measurement 
and importance create an ill-structured problem that is 
often dynamic, in that assessments may change as the 
solution space is examined. It is also relevant to note that 
problem-solving strategies vary from person to person, 
making the group situation a particularly dynamic 
environment.  
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Where: 
Rc(i) is the conflict score for alternative i 
Rs(i) is the suitability score for alternative i 
∧   is the minimum operator 
∨  is the maximum operator 
 
Decision-makers can now decide which parameters are 
most important as they explore and reduce the set of 
feasible alternatives in an interactive, point and click 
environment as shown in Figures 5a and 5b. Alternatives 
are gradually reduced by selecting minimum standards 
for each of the four parameters or creating an overall 
adjusted suitability value by combining them as shown 
in Equation 3. 
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Where: 
A(i) is the adjusted suitability value of alternative i  
Rr(i) is the risk score for alternative i  
Ru(i) is the uncertainty score for alternative i 
ws is the weighting of the suitability score 
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Figure 5a: Choosing alternatives 

 

 
Figure 5b: Alternative exploration and feedback 

 
 

 InfraPlanner was designed as an intelligent information 
system to provide decision-makers with relevant, 
understandable processed information, whilst leaving 
them in control of the decision-making process. To this 
end it was noted that decision-makers expressed a high 
level of satisfaction with outputs, as they enabled the 
group to find the core elements behind their conflicting 
assessments. In a real world situation, where political 
issues can dominate operational concerns, it is often 
most beneficial to identify these core areas as they may 
be traded off for concessions outside the sphere of the 
site selection task. Outcomes from the experiment 
discussed in this paper confirm this point of view. 

Giving decision-makers the ability to generate a variety 
of solutions that maximized aggregated suitability or 
minimized risk, conflict and uncertainty provided an 
easily understandable way for decision-makers to take 
more control of the analysis, rather than accepting 
imposed heuristics. Moreover, whilst the system makes 
computationally deriving a solution from input data 
possible, it’s major strength was the high information 
value of outputs. The experiment confirmed that a focus 
on a meaningful, interactive exploration of alternative 
outcomes is a valid way to support decision-makers in 
their task. 
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The experiment also confirmed some important 
limitations of the system: Firstly, the method used is 
limited to analyzing problems with a single objective, 
which makes it unsuitable for situations where multiple 
facilities are to be located simultaneously or multiple 
land uses considered. Secondly, the use of single cells as 
alternatives does not accurately represent the true size 
and spatial configuration of a proposed development, 
which has been surprisingly seldom noted [12]. Lastly, 
utilizing linguistic terms for data input may 
unnecessarily limit the accuracy of results in those cases 
where hard quantitative data is available. 
 
Another difficulty noted in the group experiment was the 
requirement to define discrete criteria. As an example, 
some decision-makers noted overlap in their perception 
of community impact versus environmental impact. 
Some authors have described multicriteria decisions, 
particularly those with multiple objectives, in terms of a 
hierarchical structure, whereby some criteria encompass 
others, eg [13]. In a group situation this provides another 
area for disagreement and/or misunderstanding.  
 
6. Conclusions 
 
The experiment confirmed the validity of an 
approximate reasoning approach to group site selection 
problems under uncertainty. The InfraPlanner system 
enabled decision-makers to express their assessments 
linguistically and receive meaningful linguistic 
feedback, whilst taking more control of the process than 
other methods allow, and a high level of satisfaction 
with outputs was expressed.   
The results indicated a definite benefit from utilizing a 
multi-decision-maker framework, as the identification of 
conflicts between parties could be easily accomplished. 
An emphasis on providing meaningful processed 
information, rather than offering a heuristically derived 
solution was also found to be beneficial. 
 
Further work is needed to design site selection 
algorithms that are capable of handling multiple facility 
problems, and explicitly include the size and spatial 
configuration of the required land parcels. Genetic 
algorithms offer a promising method to explore feasible 
alternatives without resorting to the massive number of 
calculations required to fully examine the solution space 
of such problems. 
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