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Abstract

Automated image interpretation is an important task in
numerous applications ranging from security systems to
natural resource inventorization based on remote-sensing.
Recently, a second generation of adaptive machine-
learned image interpretation systems have shown expert-
level performance in several challenging domains. While
demonstrating an unprecedented improvement over hand-
engineered and first generation machine-learned systems in
terms of cross-domain portability, and design-cycle time,
such systems have yet to be rigorously tested. This paper
inspects the anatomy of the state-of-the-art Multi Resolu-
tion Adaptive Object Recognition framework (MR ADORE)
and presents experimental results aimed at establishing the
robustness of the system to real-world image perturbations.
Tested in a challenging domain of forestry, MR ADORE is
shown to be robust to changes in sun angle, camera angle
and training signal accuracy.

Keywords: Adaptive and Machine Learning, Intelligent
Image Processing and Computer Vision.

1 Introduction & Related Research

Image interpretation is an important and highly challeng-
ing problem with numerous practical applications. Hand
engineering an image interpretation system requires a long
and expensive design cycle as well as subject matter and
computer vision expertise. Furthermore, hand-engineered
systems are difficult to maintain, port to other domains,
and tend to perform adequately only within a narrow range
of operating conditions atypical of real world scenarios.
In response to the aforementioned problems, variousau-
tomatedways of constructing image interpretation systems
have been explored in the last three decades [8].

Based on the notion of “goal-directed vision” [7], a
promising approach for autonomous system creation lies
with treating computer vision as a control problem over

a space of image processing operators. Initial systems,
such as the Schema system [7], had control policies con-
sisting of ad-hoc, hand-engineered rules. While present-
ing a systemic way of designing image interpretation sys-
tems, the approach still required a large degree of human
intervention. In the 1990’s the second generation of control
policy-based image interpretation systems came into exis-
tence. More than a systematic design methodology, such
systems used theoretically well-founded machine learning
frameworks for automatic acquisition of control strategies
over a space of image processing operators. The two well-
known pioneering examples are a Bayes net system [15] and
a Markov decision process (MDP) based system [6].

Our research efforts have focused on automating the
latter system, called ADaptive Object REcognition sys-
tem (ADORE), which learned dynamic image interpretation
strategies for finding buildings in aerial images [6]. As with
many vision systems, it identified objects (in this case build-
ings) in a multi-step process. Raw images were the initial
input data, while image regions containing identified build-
ings constituted the final output data; in between the data
could be represented as intensity images, probability im-
ages, edges, lines, or curves. ADORE modelled image in-
terpretation as a Markov decision process, where the inter-
mediate representations were continuous state spaces, and
the vision procedures were actions. The goal was to learn a
dynamic control policy that selects the next action (i.e., im-
age processing operator) at each step so as to maximize the
quality of the final image interpretation.

As a pioneering system, ADORE proved that a machine
learned control policy was much more adaptive that its
hand-engineered counterparts by outperforming any hand-
crafted sequence of operators within its library. In addition,
the system was easily ported to recognize stationary (sta-
plers, white-out, etc.) in office scenes and again was shown
to outperform operator sequences designed by human do-
main experts [5]. In [13], such a system was used to iden-
tify individual trees from aerial images of forest plantation
scenes, and was again shown to outperformthe beststatic
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Figure 1. Each row from left to right: the original
image, desired user-provided labeling (ground-truth),
optimal off-line labeling, best static policy of length 4
labeling, best-first policy labeling. The adaptive policy
used by MR ADORE has been observed to outperform
best static policy (top row) and sometimes the human
experts as well (bottom row).

sequence of operators. However, to date there have been no
studies aimed at exploring the robustness of such systems.
In response, this paper explores ability of the MR ADORE
system to adapt to several perturbations typical of real-world
scenarios. To evaluate the performance of MR ADORE, the
test domain of forestry is used, which presents the follow-
ing problems typical of other real-world domains. Special
purpose algorithms designed to identify individual trees and
their corresponding species class, have been known to be
highly sensitive to the position of the camera and the angle
of the sun with respect to the orientation of target objects
(in this case trees) [4]. In addition, both forestry specific
and general purpose vision systems, such as MR ADORE,
require a set of training images (Figure 1). However, man-
ual interpretation of aerial forest scenes is an error prone
procedure [10]. Since training images are likely to contain
annotation errors, the robustness of the system to labeling
errors is of utmost interest. Hence, in addition to testing the
robustness of the system to changes in sun angle and camera
angle, this paper reports empirical evidence on robustness of
the MR ADORE system to labeling errors.

The rest of the paper is organized as follows. First, we
review the requirements and design of MR ADORE, in or-
der to demonstrate the critical assumptions made and the
resulting difficulties. Second, we briefly present the domain
of forestry and outline the three challenges it presents. The
paper then goes on to outline the experiments and their cor-
responding results and concludes with future research direc-
tions and closing comments.

2 MR ADORE Operation

MR ADORE starts with a Markov decision process
(MDP) [16] as the basic mathematical model by casting the
IPL operators as MDPactionsand the results of their appli-
cations (i.e., data tokens) as MDPstates(Figure 2).

First, the domain expertise is encoded in the form of
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Figure 2. Partial operator graph for the domain of for-
est image interpretation. The nodes and the corre-
sponding example images depict that data processing
layers, which in turn describe the type of MDP states
present with MR ADORE. The edges represent vision
routines, typically ported from the Intel OpenCV and
IPL libraries, that transform one state to another (i.e.,
the MDP actions).

training data. Each training datum consists of two images,
the input image, and its user-annotated counterpart allow-
ing the output of the system to be compared to the desired
image labeling. Figure 1 (columns 1 - 2) demonstrates two
training pairs (image and correct labeling) for the forestry
image interpretation domain. Second, during the off-line
stage the state space is explored via limited depth expan-
sions of all training image pairs. Within a single expansion
all sequences of IPL operators up to a certain user-controlled
length are applied to a training image. Since training images
are user-annotated with the desired output, terminal rewards
can be computed based on the difference between the pro-
duced labeling and the desired labeling. Systemrewards
are thus defined by creating a scoring metric that evaluates
the quality of the final image interpretation with respect to
the desired (used-provided) interpretation∗. Then, dynamic
programming methods [2] are used to compute the value
function for the explored parts of the state space. We rep-
resent the value function asQ : S × A → R whereS is
the set of states andA is the set of actions (operators). The
trueQ(s, a) computes the maximum cumulative reward the

∗For all experiments presented, the intersection over union scoring met-
ric, A∩B

A∪B
is used. This pixel-based scoring metric computes the overlap

between the set of hypothesis pixels produced by the system(A) and the
set of pixels within the ground-truth image(B). If setA andB are iden-
tical then their intersection is equal to their union and the score/reward is
1. As the two sets become more and more disjoint the reward decreases,
indicating that the produced hypothesis corresponds poorly to the ground-
truth.



policy can expect to collect by taking actiona in states and
acting optimally thereafter.

Features (f ), used asobservationsby the on-line sys-
tem component, represent relevant attributes extracted from
the unmanageably large states (i.e., data tokens). Features
make supervised machine learning methods practically fea-
sible, which in turn are needed to extrapolate the sampled
Q-values (computed by dynamic programming on the ex-
plored fraction of the state space) onto the entire space.

Finally, when presented with a novel input image, MR
ADORE exploits the machine-learned heuristic value func-
tion Q(f(s), a) over the abstracted state space,f(S), in
order to intelligently select operators from the IPL. The
process terminates when the policy executes the action
Submit( 〈labeling〉) , which becomes the final output of the
system. Both the off-line and on-line processes are illus-
trated in Figure 3.

2.1 Adaptive Control Policies

The purpose of the off-line learning phase within MR
ADORE is to construct an on-line control policy. While
best-first policies are theoretically capable of much more
flexibility than static policies, they depend crucially on (i)
data token features forall levels and (ii) adequate amounts
of training data to train theQ-functions forall levels. Fea-
ture selection/creation can be substantially harder for ear-
lier data processing levels, where the data tokens exhibit
less structure [8, 12]. Compounding the problem, a sin-
gle user-labeled training image delivers exponentially larger
numbers of training tuples,〈 state, action, reward 〉, at later
processing levels. However, the first processing level gets
the mere|A1| tuples per training image since there is only
one data token (the input image itself) and|A1| actions. As
a net result, best-first control policies have been shown to
backtrack frequently [6] as well as produce highly subopti-
mal interpretations [3], due to poor decision making at the
top processing layers.

Rather than making control decisions at every level based
on the frequently incomplete information provided by im-
perfect features, theleast-commitment policiespostpone
their decisions until more structured and refined data tokens
are derived. That is, all operator sequences up to a prede-
fined depth are applied and only then the machine-learned
control policy is engaged to select the appropriate action.
Doing so allows the control system to make decisions based
on high-quality informative features, resulting in an overall
increase in interpretation quality. As a side benefit, the ma-
chine learning process is greatly simplified since feature se-
lection and value function approximation are performed for
considerably fewer processing levels while benefiting from
the largest amount of training data. In [13] such a policy
was shown to outperform thebeststatic policy.

Figure 3. Top: Off-line training phase. Exploration of
the state space is done by applying all possible opera-
tor sequences to a number of training images for which
ground truth is provided. By comparing the interpre-
tation resulting from an application of a sequence of
operators to the ground truth, each hypothesis is as-
signed a quality measure (i.e., reward). The rewards
are then propagated up the expansion tree in order
to calculate q-values to the intermediate data tokens.
Function approximators are trained on the features ex-
tracted from the data tokens produced during the ex-
ploration phase. Bottom: On-line operation. Using
the machine leaned q-function approximators the on-
line policy greedily selects the state-action pair ex-
pected to yield maximum reward. the process termi-
nates then a interpretation hypothesis is submitted to
the user.



3 Forestry Domain

Forest maps and inventories have become a critical tool
for wood resource management (planting and cutting), eco-
system management and wild-life research. Canada alone
has approximately1011 harvestable trees, making manual
forest inventorization completely infeasible. In order to au-
tomatically create forest inventories, an image interpretation
system needs to measure the type (species), position, height,
crown diameter, wood volume and age class for every tree
in the survey area. This paper focuses on the tree labeling
problem as a sub-process within a larger, complete system
aimed at extracting the aforementioned parameters from in-
dividual trees. Namely, we consider the pixel-level labeling
of aerial tree images and apply the adaptive object recog-
nition approach that competes with previous state-of-the-art
research methodologies and sometimes outperforms human
interpreters as demonstrated in Figure 1.

A number of approaches have been proposed for extract-
ing the aforementioned information about individual trees
from aerial images. Model-free (image-based) approaches
attempt to delineate individual trees, and subsequently clas-
sify each tree instance to a species class[10]. On the other
hand, model-based approaches employ template matching
methods to extract regions of interest and then delineate
individual trees [11]. Regardless of the approach used,
modern systems are highly sensitive to image variations,
especially those resulting from sun angle and camera an-
gle changes. For instance, the performance of image-based
algorithms has been reported to degrade in proportion to
the off-nadir view angle of a given forest scene. Like-
wise, off-midday sun angles negatively effect the perfor-
mance of both the image-based and model based approaches
[4]. Lastly, expert-annotated images, needed to train image-
based, model-based, and MR ADORE-type systems, typi-
cally contain 10-40% miss-labeling errors when compared
to ground-based forest surveys [9]. Thus, the use of MR
ADORE is motivated by the inability of any single clas-
sical approach to perform adequately under the multitude
of conditions typical of real-world scenarios within present-
day remote sensing applications.

4 Empirical Evaluation

In order to test the feasibility of the MR ADORE in re-
mote sensing applications three sets of experiments were
carried out to test the robustness of the system to labeling
errors, changes in overall illumination and changes in cam-
era angle.

4.1 Labeling Errors Experiment

In Figure 1, a small pine tree was left unlabeled by the
expert in row two, column two. However, the adaptive pol-
icy of MR ADORE was able to find it. To study the robust-
ness of the off-line phase of the system, a synthetic forest

input image ground-truth depth 4 depth 5

159%

100%

20%

Figure 4. Column 1: Synthetic Input Image. Col-
umn 2: Ground-truth corresponding to the input im-
age. Actual ground truth (100%, in row 2) is perturbed
in rows 1 and 3 to simulate the error made by domain
experts. Columns 3 and 4: Best interpretation found
by MR ADORE during off-line expansion as a function
of search depth.

scene and the corresponding ground truth were created. By
spatially dilating/erroding the set of ground-truth pixels, la-
beling errors (false positives or false negatives respectively)
were introduced into the expert labeled interpretation of the
image as illustrated in Figure 4.

In order to assess performance degradation resulting
from labeling errors, each interpretation (columns 3 and 4 in
Figure 4) was re-evaluated against the true hypothesis (row
2 of Figure 4). The results are presented in Table 1.

The initial results indicate that adding pixels (i.e, false
positives) to the ground-truth interpretation is less detrimen-
tal to performance than missing target class pixels (i.e. false
negatives). Table 1 shows optimal results produced with re-
spect to the erroneous interpretation but evaluated against
the error-free ground-truth image.

4.2 Sun Angle Experiments

Changes in overall scene illumination were created by
simulating various time of the day as shown in Figure 5.
Table 2 shows the off-line performance on the sun angle ex-
periment. Using the SNoW algorithm [1] in conjunction
with local binary patterns serving as texture features [14],
the on-line policy achieved an89% accuracy with respect
to off-line optimal during the leave-one-out cross-validation
experiment. In comparison, the best static sequence could
only achieve a segmentation accuracy of74%. In essence,
using a single sequence of operators cannot produce ade-
quate results. Rather for each position of the sun there exists
a specific sequence of operators that works best. Therefore
in order to achieve robust performance an adaptive policy,



Table 1. Off-line robustness to noise. When maximal
sequence length is set to four, the experimental results
indicate a negligible performance degradation when
false positives or false negatives are added to the
ground-truth image. When maximal sequence length
is set to five (and six), false positives appear less detri-
mental to the performance of the system when com-
pared to false negatives. Middle row (highlighted) rep-
resents the base line performance given the correct
ground-truth. Erroneously adding pixels to the set of
target concept pixels appears to be less detrimental
than omitting pixels belonging to the target concept for
longer sequence lengths.

Pixels % 

depth 4 
False 
Reward

depth 4 
Real 
Reward

depth 5 
False 
Reward

depth 5 
Real 
Reward

12000 159% 0.77 0.554 0.77 0.554
10557 140% 0.74 0.592 0.74 0.592
8915 118% 0.703 0.622 0.703 0.622
7538 100% 0.639 0.639 0.64 0.64
4635 61% 0.455 0.606 0.458 0.592
2626 35% 0.267 0.553 0.308 0.389
1510 20% 0.147 0.553 0.2 0.284
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Table 2. Off-line performance on the Sun Angle ex-
periment. The current library of operators appears to
perform poorly in mid-day sun as the results indicate.
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07:00 ground-truth depth 4 depth 6
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Figure 5. Various angles of the sun can produce
vastly different image interpretations for a given scene.
While sun positions at 07:00, 12:00, and 17:00 are
shown in column one, a total of eleven images was
used in the experiment containing sun angles between
07:00 and 17:00 hours at one hour increments. A
static, expert labelled ground-truth image (column 2)
is used to compare the hypotheses produced by MR
ADORE at various search depths (columns 3 and 4).

Input Image ground-truth depth 4 depth 6

Figure 6. Various view angles produce different im-
age interpretations for a given scene. The hypothe-
ses produced by MR ADORE at various search depths
(columns 3 and 4) are compared to ground-truth (col-
umn 2).

such as the least-commitment policy used by MR ADORE,
is needed.

4.3 Camera Angle Experiments

To simulate changes in camera angle, the view of the
synthetic image was altered by translating the camera



Table 3. Off-line performance on the View Angle ex-
periment. Since the operator library uses a single tem-
plate taken at nadir view angle, the interpretation qual-
ity gracefully degrades as the scene is viewed from
larger off-nadir angles. At extreme view angles the
best interpretation is increased by employing a signif-
icantly different sequence of operators from the previ-
ous 5 view angles.
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(0,10,20,40,80 or 160 units) left from the center of the scene
and then rotating (pan) it back to view the center of the
scene. Illustrated in Table 3, the system demonstrates a
graceful degradation in performance as camera angle be-
comes more and more pronounced. The on-line perfor-
mance unfortunately is not as successful as in the sun angle
experiment. The best static sequence was able to achieve a
77% accuracy, while the least-commitment policy was only
able to attain a 70% accuracy on the leave-one-out exper-
iment. The exact causes for the rapid degradation of the
online policy are currently under investigation.

5 Conclusion

This paper presented three sets of experiments aimed
at determining the robustness of the MR ADORE system.
First, effects of labeling errors were explored and the off-
line system component was shown to be robust with respect
to false positives but not false negatives. Next, the sun an-
gle was varied for a static scene and corresponding ground-
truth. The on-line component of the system learned to select
near optimal interpretations demonstrating the system’s ro-
bustness to changes in overall scene illumination. Respec-
tively, the experiments varied the image or its ground-truth.
By changing the camera angle in the final experiment, both
the scene and the correct labeling were varied from one im-
age to another. While the system gracefully degraded in its
off-line performance, the on-line component was unable to
cope with the changes in the test images. However, the poor
performance of the on-line least-commitment policy may be
the result of using a limiting set of training samples (5 im-
ages). Hence two main avenues of research still remain: (i)
determining the cause of poor on-line performance on the

view angle experiment and (ii) determining the on-line per-
formance for the labeling errors experiment.
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