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Abstract

Texture is an important property of many types of images,
and has been widely used in a number of applications to de-
scribe, classify and index images. In this paper we propose
a novel technique for characterising texture by modelling
the relationships between the high and low frequency bands
of its wavelet decomposition, which have been experimen-
tally shown to provide information which is not available
when considering such bands independently. A similarity
measure using the recently proposed earth mover’s distance
is formulated, and the results of using this measure for re-
trieval of textures from a database presented.

1 Introduction

The wavelet transform has emerged over the last two
decades as a powerful new theoretical framework for the
analysis and decomposition of signals and images at multi-
ple resolutions [1]. One of the most common forms of the
transform used for image analysis applications is the sepa-
rable two dimensional wavelet transform, defined as

Aj = [Hx ∗ [Hy ∗Aj−1]↓2,1]↓1,2 (1)

Dj1 = [Gx ∗ [Hy ∗Aj−1]↓2,1]↓1,2 (2)

Dj2 = [Hx ∗ [Gy ∗Aj−1]↓2,1]↓1,2 (3)

Dj3 = [Gx ∗ [Gy ∗Aj−1]↓2,1]↓1,2 (4)

whereG andH are the high and low-pass filters along the
subscripted axis,∗ is the convolution operator,j is the res-
olution level, and↓ a, b represents downsampling along the
x and y axes by factors ofa and b respectively. The re-
sulting imagesAj andDji, i ∈ {1, 2, 3} are known as the
approximation and detail coefficients respectively.

The coefficients of the wavelet transform have been
shown to provide an excellent basis for identifying and seg-
menting textured images, and have been used in many ap-
plications to date [2, 3, 4]. The first and simplest of the

features extracted from the wavelet coefficients were the so-
called wavelet energy signatures, which were a representa-
tion of the energy contained within each band of the de-
composition. Extending this, the mean deviation and other
higher order moments have also been used for the purposes
of texture classification and segmentation. Such features
have been shown to provide good characterisation of tex-
tures in certain environments, and typically outperform sin-
gle resolution techniques such as grey-level co-occurrence
matrix features.

More recently, a number of new algorithms for extract-
ing features from the coefficients of the wavelet transform
have been proposed in the literature. Kim and Udpa pro-
pose a new non-separable set of wavelet filters for charac-
terising texture which are shown to outperform the more
commonly used separable DWT [5]. Tabesh uses the zero-
crossings of a wavelet frame representation to extract tex-
ture features, and has shown experimentally that these fea-
tures contain information not contained within the energy
signatures [6]. By combining these two feature sets, over-
all accuracy is improved by up to 70%. Van de Wouwer
et. al. have proposed a set of features based on second-
order statistics of the wavelet coefficients, calculated using
co-occurrence matrices [7]. Numerous methods of extract-
ing texture features using the wavelet packet transform have
been proposed [8, 9, 10].

In each of the feature extraction techniques listed above,
the coefficients of each band are analysed separately, with
the correlations between bands of the same and different
resolution levels ignored, even though it is well-known that
strong relationships between neighbouring bands exists.
Portilla and Simoncelli have shown that without knowledge
of these correlations accurate reconstruction of the texture
is not possible, indicating that this information is significant
for characterising the texture [11].

This paper proposes a novel method for indexing and re-
trieving textures based onwavelet scale co-occurrence ma-
trices, which capture information about the relationships
between each band of the transform and the low frequency
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approximation at the corresponding level. A theoretical de-
scription of scale co-occurrence matrices is first presented,
and is then used to formulate a metric for measuring the
similarity of two texture samples. Theearth mover’s dis-
tance(EMD), a recently proposed metric for measuring the
distance between two distributions, is used for this purpose,
as it has been shown to provide a more robust measure in
many applications. Results from retrieval experiments con-
ducted using this metric on a set of textures from the Bro-
datz album [12] are presented.

2 Limitations of Independent Wavelet Fea-
tures

Initial experiments conducted by Julesz in the field of vi-
sual texture led him to conjecture that such images could
be completely characterised by their second-order statis-
tics [13]. Eventually, this was shown to be false, with many
counter-examples presented showing visually distinct tex-
tures with identical second-order statistics. Recently, the
main focus of much texture analysis research has centered
around multi-scale filtering, with Gabor filters and the WT
used to good effect. Common WT-based texture analysis
techniques extract features from each band of the wavelet
decomposition, measuring statistical information or mod-
elling these coefficients via some parametric form. In this
section, we show that it is possible for markedly different
textures to have identical such statistics, indicating that they
do not completely characterise texture. Examples of syn-
thetic textures are provided to illustrate this point.

Wavelet energy signatures are one of most commonly
used texture features in many applications, and can be cal-
culated from the coefficients of the separable FWT by

Ejl =
1

MN

M∑
m=1

N∑
n=1

Djl(m,n)2 (5)

whereDjl are the wavelet detail coefficients are resolution
level j, l ∈ {1, 2, 3} indicates which of the detail images
is being analysed, andM andN are the dimensions of the
coefficient matrix. Such features have been shown to per-
form well in various texture analysis applications, however
they are not sufficient to fully characterise a texture, and
the performance of these features is generally not for any
segmentation, classification or retrieval task.

In order to improve upon the performance of the first-
order energy features, a method of modelling textures using
both the first and second order statistics of wavelet detail co-
efficients has been proposed by Van de Wouweret. al. [7].
Co-occurrence matrices are generated from each band of a
redundant wavelet frame decomposition, and a set of eight
standard co-occurrence features extracted to represent the

(a) (b)

Figure 1. Example showing the limitations
of second-order statistics of wavelet coeffi-
cients as a texture descriptor. The natural tex-
ture (a) and synthesised texture (b) have iden-
tical first and second-order wavelet statistics
of wavelet coefficients, yet are clearly distin-
guished by human observers.

second-order statistics of the texture. While this set of fea-
tures improves performance compared to energy signatures,
figure 1 shows that such a representation is still insufficient
to completely characterise a texture. The synthetic image
is generated having equal first and second order statistics
of wavelet coefficients for the first 4 decomposition lev-
els, and using the same low resolution approximation im-
age. Clearly, these two textures are easily distinguishable
by any observer, proving that the second order statistics
of wavelet coefficients are insufficient to fully characterise
texture. Without information to describe the relationships
between each band of the WT, visual artifacts of the tex-
ture which contain elements at numerous scales are not ad-
equately represented.

3 Wavelet Scale Co-occurrence Matrices

From the examples shown in the previous section, it is
clear that features obtained independently from each band
of the wavelet decomposition are not sufficient to fully
characterise textured images. Portilla and Simoncelli have
shown that relationships between direction and scale bands
of the wavelet transform are in many cases critical for ad-
equate reconstruction of a textured image [11, 14], and use
the correlations between the coefficients of a complex steer-
able pyramid decomposition to characterise texture for the
purpose of synthesis. These features quantitatively measure
the correlation between each orientation band at a given res-
olution levelj, as well as between each detail image and the
detail images at neighbouring resolution resolution levels.
These parameters are then used, along with autocorrelation
features of both the magnitude and raw coefficient values



and various statistics of the grey-level values, to generate
synthetic texture images by restraint enforcement.

In order to capture the relationships between bands of
the wavelet transform, we propose thescale co-occurrence
matrixS(k, l), which is defined as the probability of a detail
coefficientD(x, y) having a quantised valuek while the ap-
proximation coefficientA(x, y) at the same spatial position
has a quantisedvalue ofl. For an image of sizeN ×M , this
can be expressed as

Sji(k, l) =
|{(u, v) : q1(Dji(u, v)) = k, q2(Aj(u, v)) = l}|

NM
(6)

whereAj is the approximation image at resolution levelj,
Dji are the three detail images, andq1(x) andq2(x) are the
quantisation functions for the detail and approximation co-
efficients respectively. An overcomplete wavelet frame de-
composition is used in our experiments in order to provide
translation invariance and a higher robustness against nose,
give higher spatial resolution, and avoid an overly sparse
matrix at the lower resolutions.

The scale co-occurrence captures first order statistics of
both the detail and approximation coefficients, and can be
seen to fully encompass the wavelet mean deviation signa-
tures. More importantly, by defining the relationships be-
tween the low and high frequency information at each scale,
much information regarding structural components of the
texture such as lines and edges can be extracted. The scale
co-occurrence matrices overcome many of the limitations
of features modelling the first and second order statistics
of wavelet coefficients, as can be seen in figure 2, which
shows two of the scale co-occurrence matrices extracted
from the textures of figure 1, which have identical first and
second order statistics. These matrices are clearly distin-
guishable, and provide the discrimination power lacking in
other wavelet texture features. Previous work has shown
that features extracted from the scale co-occurrence repre-
sentation of texture are extremely powerful when used for
classification and segmentation tasks [15].

4 Scale Co-occurrence Matrices for Similar-
ity Measure

Using the scale co-occurrence matrices defined previ-
ously, it is possible to calculate a similarity measure be-
tween two textures

SM =
1∑J

j=1

∑3
i=1 wjid(S1ji, S2ji)

(7)

whered(x) is a distance metric used to determine the differ-
ence of the two distributionsS1 andS2, andwji are weight-
ing constants satisfying

∑
j

∑
i wji = 1. Such a similar-

ity measure can then be used in image retrieval tasks, and

also in classification and segmentation problems, where a
candidate image is assigned to the class with the highest
similarity measure. A number of choices for the distance
metricd(x) are available, ranging from the computationally
inexpensive mean-squared error to more sophisticated tech-
niques. We have chosen the earth mover’s distance for this
application as it has been experimentally shown to give a
more accurate and stable measure of the difference between
two scale co-occurrence representations that other metrics.

4.1 Earth Mover’s Distance

The earth mover’s distance (EMD) is a relatively new
metric for representing the distance between two distribu-
tions in which the minimum amount ofwork required to
transform one distribution to the other is calculated, given
a set of ground distances between each point of the ma-
trix [16]. Calculating this minimum amount can be viewed
as a case of thenetwork transportation problem, where
one distribution is considered as a set of suppliers, and the
other as a set of consumers. For the case of the scale co-
occurrence matrix, each element of the matrix corresponds
to a supplier or consumer.

Formally, the earth mover’s distance can then be ex-
pressed as the minimum of the cost function of a set of
weighted flowsfij given by

EMD = min
∑

i∈I

∑

j∈J
cijfij (8)

whereI andJ are the sets of suppliers and consumers, and
cij is the ground distance between binsi andj. To ensure a
valid solution, the following restraints are also applied:

fij ≥ 0 (9)∑

i∈I
fij = yj (10)

∑

j∈J
fij = xi (11)

wherexi is the total supply the supplieri andyj the total
capacity of consumerj, which in our case are represented
by the values of each element of the scale co-occurrence
matrices.

A solution to the transportation problem of findingfij

can be achieved using the simplex algorithm [17], an itera-
tive method which will eventually converge to a local min-
imum. Russell has proposed an algorithm to determine a
near-optimal starting point for this algorithm, which is used
to ensure that the final value is close to the global minimum.

Using the earth mover’s distance on the full scale co-
occurrence matrices of two textures involves solving a
transportation optimisation problem, which is of computa-
tional complexityO(N2), for more than 1000 suppliers and
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Figure 2. Examples of wavelet scale co-occurrence matrices for each of the textures of figure 1,
showing considerable differences. (a) shows the horizontal and scale co-occurrence matrices re-
spectively for the first level decomposition of the texture of figure 1(a), while (b) shows the same for
figure 1(b).

consumers. Even for a relatively low number of iterations,
this computational time can easily become excessive in all
but the most trivial of applications. To improve this perfor-
mance, it is necessary to significantly reduce the size of the
flow optimsation problem without adversely affecting the
accuracy of the distance metric. This can be accomplished
by using signaturesto represent the scale co-occurrence
data rather than the traditional matrix form. Signatures,
rather than representing fixed intervals, model a distribution
using a set of clusters, and are defined as [16]

{~si = (~mi, vi)} (12)

where~mi are the means of each cluster, andvi the weight-
ings. If sufficient clusters are used, it is possible to repre-
sent any distribution with arbitrary accuracy. It can also be
shown that the histogram or matrix representation is actu-
ally a special case of a signature in which the clusters are set
at fixed equidistant intervals in the underlying space. In fact,
because of the possibility the each bin mean is not the mean
of the distribution within it, a signature in this case will give
a more accurate representation than the corresponding his-
togram form.

Calculating the signature of a distribution can be eas-
ily done by any one of a number of data clustering tech-
niques. Using the k-means clustering algorithm has shown
to produce acceptable results using approximately 50 clus-
ters. More sophisticated techniques for approximating the
modality of a distribution can be used for this purpose, but
are beyond the scope of this paper.

The optimal flowsfij and thus the final value of the
EMD is highly dependent on the set of ground distances
cij . Generally, these values are expressed as a function of

(i, j), which in our case are the indices(k, l) of the scale co-
occurrence matricesS1 andS2, and thus a two-dimensional
vector. One commonly used metric for the ground distance
between 2D points is the Euclidean distance

d(k1, l1, k2, l2) =
√

(k1 − k2)2 + (l2 − l2)2 (13)

where(k1, l1) and(k2, l2) are the indices of the scale co-
occurrence matricesS1 andS2 respectively. Other metrics
include the city block or Manhattan distance

d(k1, l1, k2, l2) = |k1 − k2|+ |l2 − l2| (14)

which is a summation of the distance of each dimension,
and the maximum distance

d(k1, l1, k2, l2) = max(|k1 − k2|, |l2 − l2|) (15)

which considers only the greatest of the differences over all
dimensions. Experimentally, a weighted Euclidean distance
defined by

d(k1, l1, k2, l2) =
√

ak(k1 − k2)2 + al(l2 − l2)2 (16)

whereak andal are the weights for each dimension, has
been found to give the most robust distance metric. Values
of ak = 2 andal = 1 are used in our experiments, mean-
ing that differences in the detail coefficients are considered
more important than a similar difference in the approxima-
tion coefficients.

4.2 Computational Considerations

The wavelet scale co-occurrence signature representa-
tion is quite small, less than 1kb for an image, making



Figure 3. Results of a query using the scale co-occurrence similarity measure and the EMD. Query
image (left) and top 5 matches, with distance measures of 42.7, 264, 274, 347.1 and 495.4 respectively.

Figure 4. Retrieved images when using texture not present in the database. Query image (left) and
top 5 matches, with distance measures of 196.8, 207.8, 226.7, 401.2 and 457.1 respectively.

it suitable for indexing large collections of textures. This
size can be further reduced by traditional compression al-
gorithms, which generally perform quite well given the rel-
atively sparse nature of the data. Calculation of the similar-
ity measure using the mean squared error is very fast, with
more than 1000 comparisons performed per second on a
1700MHz workstation. Using the signatures rather than the
full co-occurrence matrices provides a significant improve-
ment to the efficiency of calculating this distance metric,
reducing the computation time by many orders of magni-
tude, resulting in over 100 comparisons per second in most
cases. On large databases or when computation speed is of
critical importance, however, it may be necessary to further
improve the computational efficiency of the search.

A suggested technique for pruning the search tree in
large databases is to estimate a lower bound of the EMD,
and use this estimate to remove unlikely match candidates.
One such estimate of this lower bound is the distance be-
tween the centroids of the distributions, given using the no-
tation of (8)-(11) as [16]

min(EMD) =

∥∥∥∥∥∥
∑

i∈I
xipi −

∑

j∈J
yjqj

∥∥∥∥∥∥
(17)

wherepi andqj are the coordinates of each cluster in the
signaturesI andJ respectively. Such a lower bound is sig-
nificantly faster to computer than the EMD, and by setting
a suitable adaptive threshold a large proportion of the total
candidates can be removed from the search without com-
promising the final result.

Another computational improvement can be realised by
using a tree structured search algorithm, whereby the low-
est resolution matrices or signatures are first compared, and
processing continued for only those samples with the high-
est partial similarity measure. By combining these two
methods of searching, the computation time for a typical
search is reduced by approximately 95% with no noticeable
affect on the quality of the retrieved matches.

4.3 Texture Retrieval Results

Using the distance metrics shown above, texture retrieval
experiments were conducted using a small database of 50
images from the Brodatz album. The scale co-occurrence
signature representations in of each of these images is ex-
tracted to 4 levels of wavelet decomposition, and used to
create an index into the database. A test set of 200 images
was the selected from the same 50 images, 4 from each
class. In all cases, the training and test images were ex-
tracted from separate parts of the image such that no over-
lap between the two sets of possible. The top 5 matches
for each of these test cases were then found in the database
using the proposed similarity measure using the EMD met-
ric. Overall, an image of the same class as the test case
was returned as the most similar image in 97% with only 8
samples returning another class of image as the most likely.
The results of a typical query for such an image is shown in
figure 3.

In order to show the robustness of the proposed mea-
sure, a selection of textures which were not present in the
database were searched for, with the results for a few such



examples shown in figure 4. It can be seen from these exam-
ples that the textures retrieved from the database are visu-
ally similar to the candidate image, indicating that the scale
co-occurrence matrices provide a good characterisation of
the visual appearance of texture.

5 Conclusions and Future Work

In this paper we have proposed a novel representation
of texture which models the relationships between bands of
the wavelet transform decomposition. Such a representation
has been empirically shown to provide better characterisa-
tion of many textures than statistics extracted independently
from each band. Using the earth mover’s distance, a sim-
ilarity measure for comparing two textures based on this
representation has been presented, with results from texture
retrieval experiments showing excellent performance on a
set of natural textures. Future work will aim to further im-
prove the modelling of the scale co-occurrence distributions
in a parametric form, and to study the types of textures for
which the proposed representation provides the best repre-
sentation. The proposed representation is also being inves-
tigated for the purposes of texture classification using both
the distance metric and via a set of features extracted from
the scale co-occurrence matrices.
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