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Abstract 

 
The introduced system for object recognition and 

tracking uses an associative memory for storing proto-
types of objects. The Multilevel Hypermap Architecture 
(MHA), a self-organizing neural network approach, is 
used, to construct a robust system. To process form vari-
ant objects the MHA is extended to work with masked 
input data. 

Because of using scaled input objects, the system is in-
variant to translation. The invariance to rotation is real-
ized by the associative memory, which is able to learn 
different instances of the same input object. 

In our tests we obtained a robust system behavior, be-
cause the associative memory is able to minimize distur-
bances in feature extraction with the learned and recalled 
features of an object prototype. 
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1. Introduction 

From the point of machine vision the key to interpret 
the real world is to extract object information from it. One 
of the problems is to separate the objects from the 
background and to find their real boundaries. This is a 
condition for automated object recognition and object 
tracking on long image sequences in image analysis 
systems. Such systems are from great interest, not only in 
the field of traffic and security. 

Classical methods of signal and image analysis are 
successfully used to solve especially low dimensional 
problems. For high dimensional problems artificial neural 
networks become more important nowadays. These adap-

tations to the biological signal processing system (brain) 
try to control the complexity of recognition tasks. There 
is a wide range of usable neural network learning algo-
rithms and of applications in the field of object recogni-
tion [1, 8, 13, 14, 16]. 

Our research in the field of image analysis pursues the 
goal first to adapt principles of biological vision to com-
putational algorithms for improving machine vision and 
second of a large use of artificial neural networks. Espe-
cially we are dealing with Learning Vector Quantization 
(LVQ) [11] and Adaptive Resonance Theory (ART) [6].  

Our development of the Multilevel Hypermap Archi-
tecture (MHA) led to applications in speech recognition, 
analysis of fMRI data sets and generation of hypotheses. 
ART we were using for classification of high dimensional 
data sets and color segmentation in images [9]. 

Both neural network types use self-learning algo-
rithms. So they are qualified for automated systems.  

In this paper an algorithm for figure-ground-separation 
in long image sequences is described and the ability of 
the MHA to store objects robustly as an associative mem-
ory is shown. 

2. Image Sequence Analysis system 

In this paper we present a system for analyzing mo-
nocular image sequences, which autonomously describes 
and stores complex objects in an associative memory 
structure.  

The structure of the technical system is motivated by a 
simplified biological model of vision.  

The processing of visual stimuli takes place in two 
functional paths with clear anatomical differentiation. The 
magnocellular “where”-path analyses simple form and 
motion parameters, has high contrast sensitivity, transient 
responses and lack of overt wavelength selectivity. The 
parvocellular “what”-path extracts features like color, 
colorbased forms or texture by having lower contrast sen-
sitivity, sustained responses and pronounced wavelength 



selectivity [7]. The striate cortex V1 has a modular struc-
ture and each module is capable of analyzing the pattern, 
wavelength, luminance, movement and depth of stimuli 
appearing in different portions of visual space [15]. In the 
higher areas of visual cortex like medio- and inferotem-
poral cortex (MT, IT) and V4 topographical context will 

be lost and perception and recognition of a stimulus hap-
pens. MT analyses motion and depth, IT is responsible for 
the recognition of complex forms, like faces, and V4 for 
the experience of color. Object features described by the 
visual stimuli are distributed spatially over the matrix of 
feedback connections of the neurons in the brain [10]. 
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Figure 1: System model 

Inspired by the biological model we developed the fol-
lowing technical analysis system shown in Fig. 1 to rec-
ognize and track unknown and form variant objects. As 
input we use a monocular sequence of trichromatic im-
ages (RGB) from a stationary camera. Over a time of n 
images a stack is created representing the history of the 
object movement. The history is necessary for the sug-
gested figure-ground-separation. The first step is a feature 
extraction. The filter modules extract in parallel different 
features from each image of the stack. So a stack of fea-
ture maps is generated. After that figure-ground-
separation for each feature take place resulting in a set of 
featured figures from the object and a map from the back-
ground. For further processing the figures must be scaled 
to the same size. They are superimposed by a map, so that 
pixels not belonging to the object are marked. For im-

proving the robustness of the object extraction it is mean-
ingful to combine the separation results of several filter 
modules. Therefore next step is an object completion and 
we get as result scaled and masked images from the ob-
jects, which occurred in the sequence. The contour of the 
input objects for the associative memory follows the con-
tours of the moving objects in the image sequence. Back-
ground pixels are marked as such. For robust learning of 
an input object we suggest a multi-level scaling like in 
cortical neurons coding differently large ranges of visual 
space. So it is possible to get an input object with differ-
ent spatial scales by a determined size and to get a more 
or less detailed view on the objects. Therefore the input 
objects are translation invariant. 

The associated memory is able to learn the input ob-
jects unsupervised and creates prototypes. Each prototype 



represents a moving object from the image sequence by 
all the features analyzed by the filter modules. 

For an easy object tracking we suggest to locate the 
objects by a matching algorithm between the prototypes 
and the figures from the current image of the sequence 
separated from the ground. Conditions for the object 
tracking are prototypes and a background image. But after 
initial analyzing of the first few images of the sequence 
the system fulfils these conditions. Then the object recog-
nition and tracking tasks are running in parallel. 

In the proposed application we use long sequences of 
576*720 images. For a three-level spatial scaling input 
objects of sizes 4x4, 16x16 and 64x64 are created. 

3. Figure ground separation 

By image acquisition with a stationary camera we can 
assume stable background pixels and varying pixels over 
a sequence if changes happen. So, for detection of moving 
objects the pixel difference between successive images is 
usable. In the analysis system the history (a number of 
previous images) is considered and for each pixel a vector 
is created only from the stable feature values of the con-
sidered sequence, which describe the background. Chang-
ing feature values are faded out. In Fig. 2 an intensity map 
of a traffic scene and the background map belonging to it 
are shown. The background is calculated from a sequence 
of twenty images. The three moving objects on the road 
(two cars and a cyclist) are suppressed. 

 

    

Figure 2: Intensity map and background map 

The figures of the moving objects are selected by sub-
traction the calculated background map from the current 
feature map. Figures are separated by labeling connected 
pixels and each of them is scaled to the size of the input 
object images (4x4, 16x16, and 64x64). In these images 
all pixels not belonging to the object are marked with a 
special value. So the objects are masked by their real con-
tour boundaries. As result of the figure-ground-separation 
we get a background map for each filter module (see 
Fig.1, 2) and a set of three images for each figure of a 
moving object (Fig. 3). 

 

   

Figure 3: Masked figures of an object in 3 
scales (4x4 pixel, 16x16 pixel, 64x64 pixel) 

4. Associative Memory 

4.1 The Multilevel Hypermap Architecture 

One type of Learning Vector Quantization (LVQ) is 
the Hypermap principle introduced by Kohonen [11]. This 
principle can be applied to both LVQ and SOM algo-
rithms. In the Hypermap the input pattern is recognized in 
several separate phases: the recognition of the context 
around the pattern to select a subset of nodes is followed 
by a restricted recognition in this subset. This architecture 
speeds up searching in very large maps and may carry out 
stabilizing effects, especially if different inputs have very 
different dynamic ranges and time constants [2]. 

The modification and extension of the Hypermap, the 
Multilevel Hypermap Architecture (MHA), are described 
in [2], the system model is shown in Fig. 4. 
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Figure 4: The Multilevel Hypermap Architec-
ture (MHA) 

Instead of two levels proposed in the Hypermap [12], 
the data and the context level, the MHA supports several 
levels of data relationship and a hierarchical unsupervised 
clustering. Therefore the input vector consists also of an 
arbitrary number of levels. In the MHA there is the same 
number of levels in the weight vector of each unit and 
these levels are related to the corresponding levels of the 
input vector. A varying number of levels for the units of 
the map is supported. 



The MHA is trained with the different levels of the in-
put vector whose representation is a hierarchy of encapsu-
lated subsets of units, the so called clusters and sub-
clusters, which define different generalized stages of clas-
sification. 

Classification is achieved by finding the best matching 
node for each level of the hierarchy and by determining 
the square mean error of matching. In principle the algo-
rithm handles different numbers of levels in the input vec-
tor. 

One advantage of the MHA is the storage of hierarchi-
cal relationships of data. This will be useful for the gen-
eration of hypothetical relationships, i.e. relations that are 
not trained by input data. The MHA find it by itself by 
analyzing trained data. 

By means of MHA it is possible to analyze structured 
or hierarchical data, i.e. 

o data with priorities, e.g. projection of hierarchical  
    data structures in data bases 
o data with context (data bases, associative memories) 
o time series, e.g. speech, moving objects 
o data with varying degrees of exactness, e.g.  
    sequences of measured data. 
One advantage of the MHA is the support for both, the 

classification of data and the projection of the structure in 
one unified map. The resulting hierarchy has some redun-
dancy like in biological systems. 

An overview of our last works about MHA and further 
details on the algorithm gives [2, 4, 5]. Also in the previ-
ous years some real world applications using the MHA 
were reported in the literature [3, 5]. 

4.2 Adaptation for an Associative Image Memory 

To use the MHA for the described object tracking sys-
tem some extensions and definitions are needed. First of 
all the MHA is now able to learn masked data. With this 
feature the scaled and masked input objects (see Fig. 5) 
are learned. The different input objects (images) are as-
signed to the levels of the MHA, especially the 4x4 image 
is assigned to the 1. level, the 16x16 image to the 2. level 
and so on. 

Therefore we get a generalization depending on the 
resolution of the image. The better the resolution, the 
more disturbances are expected and the higher is the num-
ber of the used level of the MHA (obviously with less 
generalizing effects). With learning the input objects the 
MHA creates prototypes of objects. These prototypes are 
used from the tracking system to find and track an object 
in a scene. The associative memory is unsupervised and 
self-organized, i.e. learning and recall of learned objects 
happened at the same time. 
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Figure 5: The scaled input objects are trans-
formed into the input vector for training the 
MHA. The different image resolutions are 
assigned to the corresponding levels of the 
input vector (in summary 4368 elements). 

To be invariant to the rotation of an object the associa-
tive memory (MHA) builds instances of the object proto-
types, which are all learned views of an input object. Be-
cause of the hierarchical structure of the MHA similar 
instances are clustered, i.e. are assigned to the object pro-
totype. 

In the matching process of the object tracking the re-
called object prototypes are combined with the back-
ground image and labeled as known objects. For these 
known objects the tracking is processed. 

5. Results 

The ability of the MHA as an associative memory 
should be demonstrated by the results of a simulation ex-
periment of the suggested object recognition system. 

 

 

Figure 6: Image 36 from traffic sequence 



A video sequence from a camcorder with 67 images 
was presented to the system. The first twenty images were 
used for creating the initial background image for the fig-
ure-ground-separation. From the following 47 images the 
object figures were separated and the input objects were 
created. Also the background image was updated continu-
ously. In the sequence there were five moving objects 

(four cars and a cyclist). A MHA with 25x25 nodes was 
trained with the input object images. In the traffic se-
quence (one image from it is shown in Fig. 6) we ob-
served a disturbance. The object of the cyclist (in the cen-
ter of the image in Fig. 6) covers partially the object of 
the car. The effect on the prototype is shown below. 
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Figure 7: 64x64 image of input object 
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Figure 8: 64x64 image of object prototype 
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Figure 9: 64x64 image of disturbed input 
object 

Knoten: 12  17 Level: 3 Error: 6.6233
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Figure 10: 64x64 image of disturbed object 
prototype 

Fig. 7 shows the 64x64 feature image of the input ob-
ject from an image of the sequence before the disturbance 
occurs.  

We use here the 64x64 images for presentation, be-
cause they are better to view then the smaller images. The 
results of the first two levels of the MHA are comparable 
to the results of level 3, but with a higher significance 
(generalization effect of the MHA’s hierarchical struc-
ture). 

Fig. 8 shows the level 3 prototype of the object ‘car’ 
generated by the MHA. It’s clearly to be seen that only 
the masked object is learned. Pixels from the surrounding 

lead to coincident values. The shown prototype is repre-
sented by node {11,16} from the 25x25 MHA. 

Fig. 9 shows the input object created from the car cov-
ered by the cyclist resulting from image 36 (see also Fig. 
6).  

In Fig. 10 the result of the recall for the disturbed input 
object (from Fig. 9) is shown. The resulted prototype is 
represented by node {12,17}. This means that the proto-
type of the disturbed object belongs to the same cluster 
like the undisturbed. The MHA has learned an instance of 
the object. The similarity of both recalls is obviously 



comparing Fig. 8 and Fig. 10, and the generalization ef-
fect of the MHA, too. 

In spite of the disturbance by another object the track-
ing continuous uninterruptedly. So the robustness of the 
associative memory stabilizes object tracking. 

6. Summary and Conclusions 

In the last years we were dealing with block matching 
for motion detection. Because of problems by using it for 
separating objects from a scene we are now using a new 
figure-ground-separation algorithm for motion detection. 

To construct a robust system, the object tracking is 
combined with an associative memory, where prototypes 
of objects are stored. The associative memory is an adap-
tation of the Multilevel Hypermap Architecture (MHA), a 
self-organizing neural network approach. To process form 
variant objects, which are constructed as masked images, 
the MHA is extended to work with masked input data. 

The introduced system for object recognition and 
tracking is invariant to translation because of using scaled 
input objects. Different image resolutions of object fea-
tures are used for classifying and storing objects in the 
associative memory in form of prototypes. 

The system is invariant to rotation, because the asso-
ciative memory is able to learn different instances of the 
same input object and the hierarchical structure guaran-
tees the consistency of all instances of an object proto-
type. 

In our tests we obtained a robust system behavior, be-
cause the associative memory is able to minimize distur-
bances in feature extraction (e.g. shadow or partly cov-
ered objects) with the learned and recalled features of an 
object prototype. 

Further works are going to implement more feature fil-
ters in the system, especially for texture features of the 
input objects. Also improvements in the history mecha-
nism of the scene analysis and optimization of speed are 
planned. 
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