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Abstract

Information overload is an increasing problem. A
significant contributor is the large amount of email that
people receive. It will be valuable if users can have as-
sistance in managing email. The first stage in such a
process is the classification of mail messages, which
need to be treated alike into groups.

The IEMS [4] work is based upon machine learning
for defining the rules. This project presumes that the
user wishes to make use of this approach but then
should be easily able to tune the rules. We also assume
users want to be able to scrutinize the whole process so
that they feel in control of the filtering rules or other
mechanisms used to predict the classification of their
mail.

1. Introduction

This paper describes the IEMS (Intelligent-Electronic
Mail Sorter) [4] project which has the broad goal of im-
proving our understanding of how to build systems
which can assist users in managing email. In particular,
we discuss work on automated support for classifying
messages into appropriate folders. Choice of folder may
depend on many factors including aspects such as the
sender and nature of the email. For example, email from
your supervisor may be filed into your “supervisor”
folder.

Users can be assisted in the task of classifying email if
they make use of filtering rules available within many
widely used mail interfaces such as Netscape Messenger
and Microsoft Explorer. These rules can be expressed in
terms of strings appearing in different parts of an email
message. To handle an email item, the rules are evaluated
in order and the first rule that applies to the item triggers
the email client to move the message into the associated
folder.

The difficulty with rules is that the process of a rule is
cognitively demanding and there is a real, potentially
unacceptable risk of misfiling mail. Generally, users
seem to avoid customizing software [8] [6]. In a recent

study of user’s management of email, the authors observe
“Most of our users (17 interviewees, or 60 percent) say
they don’t use filters. Several simply haven’t figured out
how to use them, suggesting that either filters need to be
simpler to use or that they are not that useful”

The motivation for rules is based on first, a belief
these rules will relatively easy for end users to understand
and modify, second, a suspicion that learning methods
alone are not an adequate solution for categorization prob-
lems of this type. It seems likely that instead some mix
of automatically and manually constructed classifiers will
be necessary to account for the fact that both the user’s
interests and the distribution of message change (some-
times quite rapidly) over time. In many cases, the users
themselves might have a better idea of the rules that
would be appropriate for the applications they would like
to build, so it would be useful for them to be able to
specify new rules. For instance, at the time of this writ-
ing, the rules above may be accurate for messages I have
received over the last few months; however at some point
it will certainly become appropriate to modify it by re-
placing “Tutorial No: 05” with “Tutorial No: 06” and
“Tutorial No: 5” with “Tutorial No: 6”.

Our solution is to build a SPBD as an intelligent rule
explorer that reduces the cognitive burden and the time
required for easily understanding and customizing rules,
to solve email classification into folder automatically in
sort time. As we know rules make decisions based on a
small number of keywords. Rules do not base classifica-
tion decisions on word frequency, only on the presence or
absence of a word. A problem with PBD has always been
how to represent the rules to users, and how the users can
come to feel in control the whole processes is becoming
our major problem.

In this paper we will introduce our approach to solve
the above problem.  We use a system where the users can
accept the rules given or view a pop up interface which
gives them the opportunity to scrutinize the rule, and
how it was derived, and then to modify it or to leave it
as predicted by our system.  It offers ease of use and
flexibility to cater to users who wish to modify rules.



2. Previous Works

Most of the current systems have used simple rule-
based inferencing for their generalizations. For example,
the early Peridot system, developed in 1987 to create
widgets by example uses about 50 hand-coded rules to
infer the graphical layout of the objects from the example
[9]. Each rule has three parts, one for testing, one for
feedback, and one for the action. The test part checks the
graphical objects to determine whether they match the
rule. For example, the test part of a rule that aligns the
centers of two rectangles checks whether the centers of the
example rectangles are approximately centered. Because
these rules allow some sloppiness in the drawing, and
because multiple rules might apply, the feedback part of
the rule asks the user whether the rule should be applied.
For example, Peridot might ask something like: “ Do
you want the selected rectangle?” If the user answers yes,
then the action part of the rule generates the code to
maintain the constraint. The subsequent systems have
used similar mechanisms, though often without the ex-
plicit list of rules we used in Peridot. For example,
Tourmaline, which formats documents form example,
contains rules that try to determine the role of different
parts of a header in a text document, such as section
number, title, author, and affiliation, as well as the for-
matting associated with each part. The results are dis-
played in a dialogue box for the user to inspect and cor-
rect.

Results have shown PBD has very high performance
to solve classification problems based on rule-based in-
ferencing, from different users (especially novices) by a
series of very simple actions. As we know the purpose of
PBD’s characteristic is that it is easily understood. This
characteristic led us alternative approach to encourage the
users to solve email classification problem.

A variety of approaches have been taken to address the
problem of automating email classification. Most of
these can be split into two groups: filtering junk email;
and general classification of email. At first glance, one
might presume email classification was simply a special
case of text categorization. However, even the seemingly
similar work on the Reuters-21578 dataset is quite differ-
ent from learning how to predict an individual user’s
classification of their own mail.

In any instance, it is desirable that any learning algo-
rithm should produce useful results quite quickly, with
small amounts of data: in our case, the learning is for a
single user’s filtering preferences and it is desirable that
rules for automating this should be learnt from small
numbers of example.

Further, the classification task may change with time.
Changes in classifications might be due to changes in the
user’s activity: for example, a user who teaches a course
in programming in one semester may not be involved in
that type of activity in the next semester. This affects the
task of a learner since it needs to recognize such changes.

There are also many other changes that affect classifica-
tions. For example, if the user’s supervisor changes or
other personnel at work change their roles, a learner will
need to adjust its classifications.  

We note two other important aspects of this domain:
user differences and differences in the difficulty in learn-
ing to predict the categorization for different mail classes.
We know that different people use quite different mail
management strategies, as noted, for example in [6]. We
would expect that it is easier to learn the classifications
applied by some users than would be the case for others.

On the matter of the varying difficulty of learning an
individual users’ different mail classes, Machine Learning
and Information Retrieval approaches have demonstrated
good performance can be achieved on spam/junk email.
For example, SpamCop [10], using a Naïve Bayes ap-
proach achieved accuracy of 94%. Sahami [14] applied a
Bayesian approach and achieved precision of 97.1% on
junk and 87.7% on legitimate mail and recall of 94.3%
on junk and 93.4% on legitimate mail. Katirai (1999)
used a genetic classifier and its best run overall achieved
a precision of 95% and a recall of 70%. Androutsopoulos
[1] compared Naïve Bayes with a keyword approach. The
keyword approach uses the keyword patterns in the anti-
spam filter of Microsoft Outlook 2000 (which they be-
lieve to be hand constructed). They reported the keyword
approach achieved precision of 95% and the Naïve Bayes
approach 98%. On recall the corresponding performance
was 53% and 78%. Androutsopoulos [1] also explored a
memory based learning approach IiMBL (a simple varia-
tion of the K-Nearest Neighbour) showing similar per-
formance to a Naïve Bayes classifier. Provost [12] also
evaluated Naïve Bayes, comparing it with the RIPPER
algorithm, showing 95% accuracy after learning on just
50 emails while RIPPER reached 90% accuracy only after
learning on 400 emails.

One fairly strong result is described by Cohen [3].
He used the RIPPER learning algorithm to induce rules
and reported 87%-94% accuracy. He also explored TF-
IDF, and achieved 85%-94%. He observed that the rule
based approach provided a more understandable descrip-
tion of the email filter. The iFile naïve Bayes classifier
[13] was made available to several users to test on their
own mail and this gave 89% accuracy. Grutlag (2000)
assessed a Linear Support Vector Machine (SVM), report-
ing results from 70% to 90% correct and with the Uni-
gram Language Model, 65% to 90%. They compared this
against TF-IDF where they achieved 67% to 95%, de-
pending on the store of email used.

The more general categorization task achieves weaker
results than the levels achieved for two-category spam
filtering employed by various researchers.  Agent [2] ex-
plored learning in a two-class case, this time ‘work’ ver-
sus ‘other’. Boone used a hybrid approach with TF-IDF
to learn useful features and then both neural networks and
nearest neighbour approaches. This gave 98% accuracy on



a datase where the standard IR approach had 91% accu-
racy.

This poorer result for general classification is unsur-
prising: useful email classification involves a user defin-
ing the class or classes within which they want to store a
piece of email and this is a far less well defined task than
distinguishing spam. When users make these classifica-
tions, there are many complex issues which define the
process. For example, some users classify mail on the
basis of the time by which they need to act upon it.
Some classify mail according to the broad subject area as
it relates to their work. In fact, the results summarized
above seem very high for any realistic scenario where the
user might have modest numbers of mail items in many
of their mail folders.

The work described above does suggests that auto-
mated classification should be able to operate usefully in
helping users create classification mechanisms for their
email. The above work also indicates that some folder
classifications will be far easier than others. It seems
fruitful to explore approaches that can learn at least some
classifications quickly. Even more importantly, it seems
likely that a useful learner should be able to tell the user
how well it performs so the user can decide whether that
level of performance is good enough.

Previous work also suggests the need to build these
classification mechanisms into an interface which pro-
poses classifications rather than automatically acting on
the mail. For example, the work on MailCat [15], using
a TF-IDF approach initially had error rates of 20% to
40%. Since this was considered unacceptable, they took a
different approach: MailCat recommended its three best
predicted folders so that the user could archive email to
one of these with a single click. This improved perform-
ance to acceptable levels.

Since several approaches seem to achieve good results
in some studies, we can afford to explore the usefulness
of a range of approaches that are simplest to explain to
the user. Then the user should be able to understand any
proposed classification rule and maintain a sense of con-
trol. This is the direction taken by Pazzani [11] who
reported a study where users where asked to assess their
preferences for different approaches for representing email
filtering rules.

Our work is similar to previous work as PBD ap-
proach, and machine learning for defining the rules. The
significant part of PBD is allowed user to explore the
whole process and adjust the rules defined by the ma-
chine learning such as TFIDF, Sender, Keywords, DTree,
and Naïve Gayes. After processed, it performs prediction
as the presence or absence of a word.

3. Overview System

During our exploration, we found that there were
many types of email client around the world, most of
which come with email filtering (Microsoft Outlook,
Hotmail, etc). Unfortunately, not many users apply this
technology to deal with email classification problems.
This result has been found in previous research. On the
other hand, there are many researchers who believe that
rule is a best solution to the issue of junk and email clas-
sification. Thus, a method to encourage users to custom-
ize and understand filter rules is fast becoming essential.

Cohen [3], found that the problem with the use of
keyword-spotting rules is based on first, a belief these
rules were relatively easy for end users to understand and
modify, and second, a suspicion that learning methods
alone are not an adequate solution for categorization prob-
lems of this type. It seems likely that instead, some mix
of automatically and manually constructed classifiers will
be necessary to cater for the fact that both the user’s inter-
ests and the distribution of messages change (sometimes
quite rapidly) over time. For instance, at the time of this
writing, the rule set above may be accurate for messages I
have received over the last few months; however, at some
point it will certainly become appropriate to modify it by
replacing “Assignment No: 05” with “Assignment No:
06” and “Assignment No: 5” with “Assignment No: 6”.

Our solution to the above problem is to combine two
existing techniques: PBD and machine learning for defin-
ing the rules. In previous approaches in PBD, users dem-
onstrate algorithms to the computer by operating the
computer’s interface just as they would if they weren’t
programming. The computer records the user’s actions
and can then reexecute them later on different inputs.
PBD’s most important characteristic is that it is accessi-
ble to everyone.  PBD is not much different from or
more difficult than using the computer normally. This
characteristic led us to consider PBD as an alternative
approach to infer the rules. This is a portion of work
from the iems approach is based upon machine learning
for defining the rules. We presume that the user wishs to
make use of this approach but then should be easily able
to adjust rules. We also presume the user wants to be
able to explore whole process so that they feel in control
of the filtering rules, or other mechanisms used to predict
the classification of their mail.

Learners considered

The system of IEMS [4] has implemented in JAVA
1.3.1, which allows it to cross over to different plat-
forms. We have explored the whole system, identified
some of the most important classifications which include
class of Gui, Store, RunLeanrer, LearnerSender,
LearnerKeyword, LearnerTFIDF, MultiSet, and InvertTa-
ble. The Gui classification is to perform the graphical
user interface, and convert user inputs to the relevant sys-
tem event; The Store class is used to maintain the store



of all the messages, including training and classification;
RunLearner is used to control which training algorithm is
to be used, ie. Sender, keyword, or TFIDF algorithm;
The class of LearnerTFIDF is going to train the set of
folder used for learning and classification using the
TFIDF algorithm. The classify function uses the standard
first order classifier and places mail into proper folder.
The induce function is going to train the set of folders
used for learning. The reason function explains in word
the reason for the particular classification, such as the
particular mail message contains some keywords, that
should be classified into a particular folder.  The above
functions must work with invertTable class; The class of
InvertTable works in conjunction with the LearnerTFIDF
class. When the “Next” button is enabled, this class
evaluates the SIM4 similarity score of each of  the folder
with the next message and guesses the folder with the
highest score for that message. The MultiSet class keeps
track of the count of each word in a given message. It
uses a HashMap to store “word as integer v.s. count”
entries. Used by the various learner classes; The class of
LearnerKeyword is going to train the set of folders used
for learning and classification. The classify function uses
the standard first order classifier with the hypothesis in-
duced by the learner. It should place mail message into
the proper folder. The reason function explains in word
the reason for the particular classification; The class of
LearnerSender is going to train the set of folders used for
learning and classification. The main purpose is to look
at the sender of email messages. A rule for each sender is
created and this rule places anything new from that sender
into the most commonly used folder they had been pre-
viously placed. The classify function uses the standard
first order classifier and places mail into proper folder.
The induce function is a simple hypothesis based on the
Sender to achieve the goal. Note that the hypothesis is
given in first order form. The reason function shows the
clause as reason for the particular classification.

We would like to show a very high level description
of a new algorithm as below, which would be able to
accomplish our goal. See the Figure 1.

Figure 1. High level description of a new
algorithm (SPBD)

Once a user has read a message, there are two possible
courses of action. If they are happy with the classifica-
tion, they can simply click on the Archive button. This
is at the top left of the screen. This moves the message
into that folder. In the case of the current message shown
in Figure 2, the Archive button would move it to the
PChardware folder.

Figure 2.
The other possibility is that the user is not happy with

the classification. In that case, the user simply selects the
MoveTo button followed by the name of the folder in the
left panel. This moves the message to the correct folder.
Meanwhile, it pops up the scrutable interface which tries
to explain the rules particularly in highlighting some
keywords, and waiting user to adjust the rules if they feel
confident. This task is trying to encourage users to un-
derstand and adjust rules. In the case of the current mes-
sage shown in Figure 3.

Figure 3.
This interface should help users to understand and

customize filter rules faster, as well as encourage users to
get involved with email classification tasks. If the system
makes the correct classification, the user simply accepts it
with a single click. If the system is wrong, the user does
the sort of classification task (particular in adjusting
rules) they would have had to do anyway. This should
significantly reduce the cost of creating a filter rule while
improving the accuracy for email classification.

4. Empirical Results



Below we describe the experiments that have been
done so far. First, we conducted a 20 minute experiment
and compared experience and non-experience users to see
whether they could undertake the same task (creating a
rule) or not. Second, we conducted a 4 month experiment
and compared the Microsoft Outlook and iems system to
see which one is easier to manage in terms of users email
account. The last was a 4 month experiment conducted to
see whether reconstructing the rules was a difficult task or
not should disaster occur.

Experiment 1

We conducted this experiment in 20 minutes, setting
up 10 computers with fully installed iems system, at a
university computer laboratory. We arranged two groups
called Group A, & Group B. Each group had 5 members,
all students from university. We asked both groups to
create a rule and compared how much time they took to
customize a rule.

Group A had some experience in customize rules for
email classification and group the emails into folders.
Group B has no idea about rules, but they knew how to
group the emails into folder.

From our observation, we found that most Group B’s
member only run the system directly without thinking,
and they found that the system help them to predict a
folder for each email. They could identify error of predic-
tion from some emails, and the system enabled them to
see the result of how system has been done so far, espe-
cially in highlighting some of most important keywords
in  green, based on the machine learning result and what
the user input manually. Some users tried to add/delete
some of keywords and clicked on the confirm button.
They tried to test the system in order to see the different
result produced.

Figure 4.Group A & Group B
From the results, we believe that most Group B’s

members were able to create a rule in an average of 3
minutes. See Figure 4. Group A had good results as
well, they could customize a rule on average in under 1
minute. It is very clear that both groups can perform and
feel confident in customizing a rule for email classifica-
tion in very a short time.

After this test, we gave them a questionnaires. The
feedback was very positive. We found the Group A
members were very happy with the SPBD technology as
they felt it was easy to turn the rules, and believe they
could customize a new rule in very a shout time. Group

B members enjoyed creating a rule, because they could
use their natural ability to identify error prediction easily.
Meanwhile, they could change the rules as naturally
without any stress.

Experiment 2

We set up another experiment, and conducted it over 4
months. First we looked at 10 users from university lec-
tures. Currently they use Microsoft outlook filter to clas-
sify email into folder. The average amount of emails re-
ceived in each day was 69 messages.  We force them to
use iems system to classify the emails, and then we
compared the results to see which one gave a better per-
formance.

After 3 months, we found very positive result such as
the members continuing to use iems system to receive
the emails from students and other staff. The reason
given was that they could create/tune the rules in a  very
short space of time and only the system only required
simple actions, compared with Microsoft Outlook.

Experiment 3

This experiment was conducted over 4 months.  First
we asked 10 users from university lectures to join our
experiment. These students had been attacked by com-
puter disaster, such as viruses, hard drive fault and oper-
ating system failure or other effects. They also had expe-
rience using Microsoft Express filters and know how to
use rules to file emails into folders automatically.  We
asked them to use our new iems system instead of their
current system.

After 4 months, we found very positive answers. They
found iems system very powerful in creating rules in a
very short time. They didn’t feel that the system required
much effort to use  and they believed that if a disaster
should happen again, they would not worry about  re-
creating the rules. One thing they worried about was how
to back up the email files and it would seem that this is
becoming another important task.

5. Conclusion

The SPBD approach is an easy-to-use personal assis-
tant that helps users create a rule in a way more natural to
them to solve their email classification problems. SPBD
approach makes very few demands on users; they have
nothing extra to learn when creating the rules and the
only thing required is their natural ability. Users can
identify the wrong prediction easily and move to the mail
to the correct folder. Meanwhile it pops up with an inter-
face to provide details and to ask them to modify it if



necessary. In the future, if the system detects a similar
email coming in, it will predict a folder for this email.
Users are required to do a final confirmation such as
clicking on Achieve button.

The experiment results are very positive, as previous
discussed. Experience and Non-Experience users can do
the same task after 3 minutes. Some who have experience
using Microsoft Outlook filters to classify their email
into folder changed email reader from Microsoft Outlook
to IEMS after 4 months. From the other experiment re-
sult, we see some are worry about.  After 4 months, they
believe this is the right technology to assist them in re-
covering rules in a very short time. This amounts to a
significant qualitative enhancement that is likely to en-
courage users to file their mail using email filter by natu-
rally ability.

While IEMS was developed for electronic mail the
same technique can easily be used to organize other types
of electronic documents such as disk files, audio, book-
marks, recordings, and other text-based documents that
are placed into a hierarchy of folders.

ACKNOWLEDGMENTS
We would like to thank the people who contributed

their email archives enabling us to conduct the expirical
study. We also thank the reviewers for their valuable recom-
mendations for improving this document.

References and Citations
[1] Androutsopoulos, I., Koutsias, J., Chandrinos, K., &

Spyropoulos, C. An experimental comparison of naïve
Bayesian and keyword-based anit-spam filtering with
personal e-mail messages. Proceedings of the 23rd an-
nual international ACM SIGIR conference on Research
and development in information retrieval IN, 2000.

[2] Boone, G. Concept features in re:agent, an intelligent
email agent. Second International Conference on
Autonomous Agents, 1998.

[3] Cohen, W. Learning rules that classify e-mail. Papers
from the AAAI Spring Symposium on Machine Learning
in Information Access, pp. 18-25, 1996.

[4] Crawford, E., Kay, J., & McCreath, E. Automatic induc-
tion of rules for e-mail classification. In Proceeding of
the Sixth Australiansian Document Computing Sympo-
sium, coffs Harbour, Australia, 2001.

[5] Cypher, A. Watch What I Do: Programming by Demon-
stration. MIT Press, Cambridge, Mass., 1993

[6] Ducheneaut, N., & Bellotti, V., Email as habitat: an ex-
ploration of embedded personal information manage-
ment. Interactions, 8, 30-38, 2001.

[7] Lau, T., Weld, D. S., Programming by demonstration: An
inductive learning Formulation, Intelligent User Inter-
face, 145-152, 1999.

[8] Mackay, W., Triggers and barriers to customizing soft-
ware. CHI’91 Conference on Human Factors in Comput-
ing Systems (pp. 153-160). New in Computing System.
New Orleans, Louisiana. 1991.

[9] Myers, B. Creating user interfaces using programming
by example, visual programming, and constraints. ACM
Transact. Program Lang, Syst. 12, 2, 143-177, 1990.

[10] Pantel, P., & Lin, D., Spamcop: A spam classification &
organization program. Proceedings of AAAI-98 Work-
shop on Learning for Text Categorization, (pp. 95-98),
1998.

[11] Pazzani, M. Representation of electronic mail filtering
profiles: A user study. Proc. ACM Conf. Intelligent User
Interfaces. ACM Press, 2000.

[12] Provost, J. Naïve-bayes vs. rule-learning in classifica-
tion of email, 1999.

[13] Rennie, J. Ifile: An application of machine learning to e-
mail filtering. KDD-2000 Text Mining Workshop, Bos-
ton, 2000.

[14] Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. A
Bayesian approach to filtering junk email, AAAI-98
Workshop on learning for Text Categorization IN, 1998.

[15] Segal, R., & Kephart, M. Mailcat: An intelligent assis-
tant for organizing e-mail. Proceedings of the Third In-
ternational Conference on Autonomous Agents (pp.
276-282). Seattle, WA, 1999.

[16] Smith, D., Cypher, A. and Tesler, L., Novice program-
ming comes of age, Communication of the ACM,
43(3):75-81, 2000.


	P351: 
	Numb: 
	Numbx: 
	C: 351
	L: 
	R: 



	P352: 
	Numb: 
	Numbx: 
	C: 352
	L: 
	R: 



	P353: 
	Numb: 
	Numbx: 
	C: 353
	L: 
	R: 



	P354: 
	Numb: 
	Numbx: 
	C: 354
	L: 
	R: 



	P355: 
	Numb: 
	Numbx: 
	C: 355
	L: 
	R: 



	P356: 
	Numb: 
	Numbx: 
	C: 356
	L: 
	R: 





