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Abstract. This paper describes a new technique for free-form object 
segmentation from a single arbitrary-viewed range image. The aim is to derive a 
surface description of objects that may vary in shape and complexity without 
any restriction on the type of surfaces on the object. We propose a surface 
representation scheme that uses edge information to built a surface description 
using algebraic implicit surfaces. The proposed technique, not only reduces the 
number of used patches, but also preserves surface-depth and orientation 
continuity. This is done by propagating and blending piecewise hermite 
interpolation surfaces. The system has been tested on several synthetic and real 
range images and the experimental results have shown that the system can 
produce reliable surface description of a variety of free-form objects. 

1   Introduction 

The computer vision community faced with the limited scope of simple geometric 
models, see free-form representations as the key to solve complex 3-D recognition 
tasks from structured light sensors such as laser range finders or stereo depth images 
[1,2]. A free-form surface is the one that has a well defined surface normal that is 
continuous almost everywhere except at vertices, edges and cusps [2]. Human faces 
and sculptures are typical examples of free-form objects.  Although much progress 
has been made in the field of 3-D vision and object recognition [2], it is widely 
accepted that reliable segmentation and recognition of arbitrary viewed complex 
curved objects is still a challenging task [2]. This is mainly due to shape complexity, 
existing noise, and occlusion effects [2]. Many techniques for free-form object 
segmentation were proposed. The most successful were those combining edge and 
region information [3-6]. Typically, edge-based techniques, which attempt to extract 
closed boundaries of components by detecting discontinuity in both depth and surface 
orientation, present difficulties when dealing with incomplete broken edges [5]. 
Region based techniques on the other hand, attempt to cluster surfaces based on their 
intrinsic differential geometric properties [1], but, also present difficulties when 
dealing with occlusion and surface continuity at the boundaries. This is because 
differential geometry is a theory for smooth differentiable surfaces, while free-form 
objects are not entirely smooth but piecewise smooth. In this paper we combine edge 
and region information to recover from these problems. A surface-curvature operator 
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is applied to extract valuable edge information that is used in turn to control the 
surface-fitting process. 

The segmentation process consists of three main stages. First, an edge map is 
extracted from the range image using a surface-curvature operator, and edge points 
are classified into jump boundary, creases, and extrema curvature (smooth edges). 
The edge map is then thresholded and skeletonized to produce one-pixel wide edge 
curves.  Second, the labeled edge map is used as the basis to generate dense triangular 
meshes for surface fitting. The surface triangulation is then restructured into a graph 
based on triangle-adjacency criterion. Finally, spanning trees, consisting of triangles 
with similar differential geometric properties, are extracted from the graph. The 
spanning trees are used to form larger homogeneous surface components. To ensure 
piecewise surface continuity and to avoid problems related to occlusions, crossing 
surfaces and hallow objects, surface continuity and differentiability conditions are 
used to progressively merge neighboring triangles while preserving reliable surface 
interpolations. Typically, larger surface patches are generated by propagating 
piecewise hermite interpolation surfaces along triangles belonging to the same 
spanning tree. These are then blended along cross edges linking neighboring spanning 
trees. To avoid surface orientation discontinuities, surface blending is applied only at 
cross edges that link surfaces separated by smooth edge curves. This method reduces 
significantly, the number of used surfaces for object representation while preserves 
surface-depth and orientation continuity. 

The rest of the paper is organized as follows. Section 2 describes the curvature-
based edge detection algorithm. In section 3, the technique used for surface fitting is 
presented. The experimental results are discussed in section 4, and finally, 
conclusions from the work are drawn and further research work is suggested. 

2   Edge Detection 

Edge detection techniques for range images are intended to localize discontinuities in 
both depth and surface orientation. The aim is to extract closed boundaries of object 
components [7]. Typically, most edge detection techniques for range images have 
used local surface properties such as surface curvature and surface normal to describe 
3-D shape [1, 4-9]. Surface curvature is the rate at which the surface deviates from its 
tangent plane, and since it is invariant to viewing directions and does not change with 
occlusion [7], this is used as the main feature for segmenting range images. The edge 
detection technique used in this study searches mainly for jump and crease boundaries 
by computing respectively, at every image point, zero-crossings and extrema of 
surface curvature in some chosen directions. 

Prior to edge detection, the range image is first smoothed to reduce the effect of 
noise. The smoothing process is very important since the calculation of curvature 
involves second-order partial derivatives and hence may significantly magnify the 
effects of noise. Consequently, noise is removed by convolving the image with a 
rotationally invariant Gaussian mask. Once smoothing is performed, the directional 
surface curvature kφ(p) along direction φ, given by: 
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where: 

fφ ' : is the first-order directional derivative of  f   

fφ '' : is the second-order directional derivative of  f    

A = f'(0°) 
        B = f’(90°) 
 

 

(1) 

is computed in the four main directions (0o, 45o, 90o, 135o) [3,4]. The largest 
curvature kφ(p), among the four obtained values, is used to compute zero-crossings 
and extrema. Typically, jump boundaries where surface depth are discontinuous, 
create zero-crossings of the curvature in a direction normal to that of the boundary 
[4]. A zero crossing is given by a zero surrounded by non-zero numbers of opposite 
sign on the two sides, or by a sequence of two numbers of opposite sign. Creases and 
curvature extrema where surface normals are discontinuous cause a local extremum of 
the curvature at that point. Crease differs from curvature extremum by being steep 
extremum, that is an extremum with high slopes of curvature values in both of its 
sides, in a direction normal to that extremum. Creases may also create zero-crossings 
away from the location of the boundary itself [4]. Zero-crossings and extrema are thus 
used to classify edge points. The resulting edge map is then thresholded and 
skeletonized to yield one-pixel wide edge curves. Finally, a curve-linking process 
within a threshold of 5 pixels is performed. Fig.1. shows some of the edge detection 
results obtained using the above described technique. 

3   Surface Fitting 

The study of geometric and topological properties of 3-D surfaces has been of great 
importance to the computer vision community [1-2, 10-11]. A variety of geometric 
models such as parametric surfaces [10,11], algebraic implicit surfaces [12,13], 
superquadrics [14,15], and generalized cylinders [2] among others, have been used to 
describe 3-D shape for object recognition purposes. Most of these methods were 
application dependent, aiming to design an object model for use in a specific vision 
application. The challenge, however, consists of developing a model that is general 
enough to represent free form objects regardless of domain [2]. In this paper, an 
attempt is made towards this direction. The proposed technique is based on algebraic 
implicit surfaces for a number of reasons that are justified below.  An algebraic 
surface can be defined implicitly as the zero-set of an arbitrary function f as shown 
below. 

}0),,(),,{( == zyxfzyxS  (2) 
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Fig. 1. Edge detection results 

The classical and most used least squares fitting of an algebraic surface to data, is 
to minimize the algebraic distance over the set of given 3-D discrete data sample, that 
is [16]: 

∑
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=
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1
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Unfortunately, the classical least squares fitting algorithm is limited by the stability 
of the fitting process. “Fitting a surface to an order greater than 4 can produce 
surfaces whose shape matches poorly to the object from which the data were 
obtained”[2]. This is mainly due to: i) local inconsistency with the surface orientation 
continuity of the data set; ii) local over-sensitivity of the polynomial zero-set around 
the data to small data perturbation; and iii) instability of the coefficients due to 
excessive degrees of freedom in the polynomial. Mathematically, this problem is 
referred to as the Runge problem [16]. It is exhibited by the oscillation problems 
between data points when using Lagrange interpolation. One solution to this problem 
is to substitute the algebraic distance with Euclidian distance, and to change the way 
the interpolation is carried out. Hermite interpolation, where the first derivative of the 
polynomial is controlled in addition to the value of the polynomial at each given 
point, has proven to converge properly for all continuous functions when the number 
of sampling points and thus the degree of the polynomial increases. Hence, Piecewise 
Hermite Interpolation Surfaces (PHISs) are more flexible to approximate a complex 
surface while achieving higher order of smoothness. Moreover, they present a number 
of advantages over parametric surfaces with regard to their applicability to: i) 
unbounded surfaces which are mainly caused by object occlusion, ii) surfaces that 
contain holes such as the case of hallow objects, and iii) unordered 3-D local surface 
data caused by either noise or non-homogeneously spaced data points [16]. However, 
the main shortcoming held against the use of algebraic implicit surfaces is that the 
representation being multivalued may cause the real zero contour surface to have 
multiple sheets, self-intersections and several other undesirable singularities [17]. A 
solution to this problem, using the Bernstein-Bezier (BB) form of a trivariate 
polynomial, consists of introducing a sufficient criterion for the BB form within a 
tetrahedron such that the real zero-contour of the polynomial is smooth (non-singular) 
and a single sheeted algebraic surface [17]. This solution was adopted in this work to 
construct cubic surfaces that interpolate 3-D data. 
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Prior to surface fitting, range data is organized into triangular meshes. Surface 
triangulation is very crucial to any reliable surface reconstruction [1]. This is due to 
the fact that the problem is not limited to finding a smooth interpolant, but concerns 
the estimates of some geometric properties such as curvature and extraction of 
elementary shapes to recover 3D objects [18]. This is why the proposed triangulation 
uses the extracted edge points as initial sets for surface triangulation. The 
triangulation is then completed by generating additional triangles using a set of rules 
to preserve topological properties of object surfaces. The applied rules are: 

 
1. Connect every two points where edge curves exist. 
2. Connect the two points with the shortest Euclidian distance (shorter line first). This 

rule selects proximate triangle vertices for best fit. 
3. Do not connect any two points with a line that crosses any existing edge curve. 

This rule avoids crossing edge-curves and hence, minimizes surface depth and 
orientation discontinuities. 

4. Do not connect two points where the Euclidian distance is significantly greater 
than the average distance over a small neighborhood. This rule minimizes the 
effect of noise. 
 
Dense triangular meshes are built based on the rules mentioned above. The surface 

triangulation is then transformed into a triangle-adjacency graph G, as shown in Fig.2. 
In a such graph, the vertices represent the triangles and an edge (i,j) in the graph 
means that triangles Ti, Tj are adjacent. Four different types of triangle-to-triangle 
adjacency may result from such graph. These are those sharing: i) a non-edge 
segment; ii) jump-edge segment; iii) crease-edge segment; and iv) curvature 
extremum edge segment. These are respectively labelled 0, 1, 2 and 3. 

 
 
 
 
 

 
 
 

Fig. 2. Example of a Triangulation Graph 

Triangles are approximated by smooth piecewise hermite interpolation surfaces. A 
surface f = 0 interpolates a triangle I=(i,j,k) if it interpolates the three vertices (pi , pj , 
pk ) of I [19], so that: 

 
1. 0)( =mpf   for  kjim ,,=  
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The interpolation surface f(p)=0 is a cubic surface written in Bernstein-Bezier (BB) 
form (for more details about the BB form, see [11,19] ). To construct such a function, 
we first add a new point, pl , such that the three tangent planes at point pi , pj , pk are 
locally contained in tetrahedron H = [pi pj pk pl] [17]. The function f(p) is defined by: 

∑
=

=
3

)()(
λ

λλ αnBcpf  
(5) 

If we let 3000c = 0, 0300c = 0, 0030c = 0, then we obtain: 

f(pm) =  0  ,    for   m = i,j,k (6) 

Moreover, for  m = i,j,k, if we choose: 

m
T

mn
m

ee npp
c

c
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)(2 −=+ 3
,   for  n=i,j,k,l  ,   n ≠ m 

(7) 

where:  cm  is a nonzero constant.  We then obtain [11]: 

mmm ncpf =∇ )(  (8) 

The cubic interpolation surface f(p)= 0 as determined above interpolates the triangle 
vertices pi , pj , pk with given normal directions  ni , nj , nk. 

Let us now consider two adjacent triangles, I1=(i,j,k) interpolated by the cubic 
surface  f1 = 0, and triangle I2=(i,j,l),  so that the shared segment (i,j) is not an edge 
segment, which enforces the surface continuity precondition along their joint curve. 
The cubic surface f2 = 0, interpolating I2 and which results from the propagation of f1 

with G1-continuity is constructed by considering the cutting plane pij = 0 so that: 

2
12 )( ijpdczbyaxff +++−=  (9) 

It can be seen that f2 ∈ (f1, pij
2), the ideal generated by f1 and pij

2. Also, surface f2 = 0 
meets f1 = 0 with G1-continuity along the plane pij = 0. To ensure that f2 = 0 
interpolates point pl with normal direction nl = (nlx, nly, nlz), let: 
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(10) 

Thus we get a system of linear equations in a, b, c, d. Considering the linear 
dependence of the last three equations, there will remain a free coefficient which can 
be used as a shape parameter. 

Since surface propagation should not be performed across triangles sharing edge 
curves, a surface propagation graph Gp is extracted from G by removing edges with 
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labels 1, 2, and 3 from graph G. This may result into a graph, Gp, broken down into a 
number of connected sub-graphs representing smooth continuous surface patches. For 
each sub-graph 

riGp ..1= , where r is the number of connected sub-graphs, the following 

procedure is applied to propagate surface patches interpolating triangles belonging to 
that sub-graph,

iGp , into a larger surface, denoted by 
iSp . 

1. Choose arbitrarily an element I0i ∈T and construct an interpolation cubic surface f0i 
for I0i which is set as an initial surface. 

2. Generate a spanning tree Ti  with I0i as a root. 
3. Start from I0i, for any edge (Ik , Il) in the tree Ti, construct a propagation surface as 

described earlier. 
 
After constructing all smooth continuous surfaces 

riSp ..1= , we then start blending 

surfaces that share curvature extrema (smooth) edges. This is done by constructing 
blending surfaces of degree five from those surfaces sharing edge segments labelled 3 
in the graph }{ ..1 riGpG =− U . This process ensures that surfaces are blended if and 

only if they share a curvature extremum edge, that is an extremum with low slopes of 
curvature values in both of its sides, in a direction normal to that extremum. To blend 
two cubic surfaces patches, f1 = 0 and   f2 = 0, sharing a smooth edge (i,j), we  
consider p1, p2 : two cutting planes, both containing the line pipj . The surface G 
defined by [20]: 

0)1( 1
12

1
21 =−−= ++ nn pufpfuG ,    0 <  u  < 1 (11) 

is the blending surface that joins the two cubic  surfaces  f1 = 0, f2 = 0 with Gn-
continuity along p1=0, p2=0 respectively. Fig.3. shows an example of surface 
blending. 

 

Fig. 3. Surface Blending along Smooth Edges 

Once surface blending is completed, the surface description of the scene is 
finalized by identifying those adjacent   surfaces sharing crease edges (labeled 2) from 
the refined graph. 

4   Experimental Results 

In order to show the performance of the present system, several experiments were 
carried out on both noisy synthetic and real range images. Range images are captured 
using a digital stereo head device which consists of two progressive scan CMOS 
greyscale imagers with a resolution of (1288 x 1032) pixels. For image rendering 
purpose, the average greylevel (taken from the correlated stereo image) of the vertices 

S2 

S1 
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spanning each triangle is used for line drawing of surface triangulation. Similarly, the 
generated surfaces are rendered using greylevel taken from the correlated stereo 
image. Fig.4. shows the surface segmentation results of a noisy synthetic image. 
Fig.4.a shows the computed stereo depth image while Fig.4.b shows the edge 
detection results. The surface triangulation, which is built from the edge map, is 
shown in Fig.4.c  and the surface fitting results are presented in Fig.4.d. It can be seen 
from Fig.4.b that a reliable edge map is extracted, showing most of the boundaries of 
the horse’s mane which have low depth values.  The extracted edge map is 
successfully used to build a precise triangulation as shown in Fig.4.c. Finally, Fig.4.d 
shows the results of the surface fitting process. 

 

 
            a. Synthetic depth image                              b. Edge detection  

 
              c. Surface triangulation                                       d. Surface fitting 

Fig. 4. Surface Fitting Results for a Synthetic Range Image 

The results in Fig.5, which consist of a real range image, show some of the 
limitations of the proposed segmentation technique. It can be seen from Fig.5.c that 
incorrect triangulation may results from occlusion effects. Although, the results 
reported in Fig.5.b show that the employed edge detection technique is not too 
sensitive to occlusion as demonstrated by the accurate segmentation of most 
occlusions resulting from the overlapped plant leaves. However, if a single occlusion 
defect is reported, this will lead to over-segmentation. In this case, a defect is shown 
from the occlusion of one of the leaves with the pot (located on the right side of the 
scene). This is may be due to noise at the jump boundaries. This occlusion defect has 
in turn affected the surface triangulation as clearly shown in Fig.5.c.  
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             a. Stereo depth image          b. Edge detection  

 
      c. Surface triangulation                                   d. Surface fitting 

Fig. 5. Surface Fitting Results Showing Occlusion Effects 

5   Conclusion 

A new technique for 3-D surface segmentation of free-form objects using algebraic 
implicit surfaces is presented. This technique is based on piecewise hermite 
interpolation surfaces which are propagated and blending to reduce the number of 
used surface patches. The proposed technique also preserves surface orientation and 
depth continuity by using information extracted from the edge map. The technique 
has been tested using noisy synthetic data and real range images. The experimental 
results have shown that reliable 3-D surface description of the scene can be 
reconstructed. However, the surface triangulation technique has been found to be 
sensitive to occlusion effects resulting from edge detection. Further research work is 
underway to investigate occlusion effects. 

Occlusion effects 
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