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Abstract. An algebraic curve is defined as the zero set of a multivariate
polynomial. We consider the problem of fitting an algebraic curve to a set
of vectors given an additional set of vectors labelled as interior or exterior
to the curve. The problem of fitting a linear curve in this way is shown to
lend itself to a support vector representation, allowing non-linear curves
and high dimensional surfaces to be estimated using kernel functions.
The approach is attractive due to the stability of solutions obtained, the
range of functional forms made possible (including polynomials), and the
potential for applying well understood regularisation operators from the
theory of Support Vector Machines.

1 DMotivation

Algebraic curves provide a powerful basis for a range of geometrical analy-
sis problems, including shape recognition and non-iterative shape registration,
largely due to the capacity for deriving geometric invariants [5, 3, 6]. Geometric
invariants are those properties of an algebraic curve that are not affected by a
particular group of transformations, for example the affine group.

The fitting of an algebraic curve to a set of vectors has proven to be a diffi-
cult problem, with simple approaches such as least squares having little practical
value due to the instability of the solutions obtained. In an attempt to improve
stability a number of improvements have been made to the least squares ap-
proach. Two of the more successful approaches are the so-called 3L method of
Lei, Blane and Cooper [2], and the Gradient-1 algorithm of Tasdizen, Tarel and
Cooper [7]. Both of these methods require some geometrical knowledge in ad-
dition to the known set of points on the curve. The 3L method requires a sets
interior and exterior points equidistant to the curve of interest. The Gradient-1
method requires the normal vector of the desired curve to be given for each data
vector on the curve. Our method requires similar information to the 3L method,
but without the equidistance constraint. Our approach is equivalent to a combi-
nation of Support Vector Machine (SVM) classification [9] of the interior/exterior
points, in combination with a least squares penalty on the vectors that lie on
the curve. Various classes of functions can be produced by the method, including
the implicit polynomials considered by the 3L and Gradient-1 algorithms.
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2 Least Squares Fitting

Perhaps the simplest approach to algebraic curve fitting is the minimisation of
the least squares criterion. That is, given a set of points {Z;}1<i<n (subject to
noise) that are known to lie on a curve, and a set of functions F, the least squares
heuristic chooses the function defined by minger Y 1, (f(Z;))?. The main prob-
lem with this method is that it does not penalise extraneous parts of the curve
that lie far from the data. Our modification to this simple and largely ineffec-
tive formulation turns out to be a variation of the standard hard-margin SVM
classifier, and we begin by reviewing this method.

3 Support Vector Machines

The formulation of Vapnik’s hard-margin SVM classifier is derived by first con-
sidering the problem of two-class linear data classification [9]. That is, given a
data set {(Z;, yi) }1<i<n Of training samples Z; € R4 belonging to classes labelled
by y; € {—1,1}, we wish to find a hyper-plane that separates the two classes.
The SVM approach to this problem finds the separating hyper-plane with max-
imum distance to the Z;, while preserving the separation of the two classes. If
we denote the hyper-plane by the set {# € R%| < @,% > +b = 0}, then finding
the optimal parameters 1w € R? and b € R is equivalent to minimising < w, @ >
subject to y;(< w,&; > +b) > 1,i=1...n.

The most important property of this formulation is that the derivation of the
Wolfe dual [1] results in an equivalent optimisation problem, but one in which
the data vectors only appear in the form of inner products with one another. As
a result of this, the so-called “kernel trick” [9] can be applied in order to find
non-linear separating hyper-surfaces. We now demonstrate how this approach
can be combined with the least squares criterion in order to perform algebraic
curve fitting.

4 Kernel Based Algebraic Curve Fitting

Here we have a set of points, {Z1,22,...2n.} C R? that lie on our hyper-surface,
as well as a set {(Z;,y;)}1<j<n, of labelled points ; € R? with associated labels
y; € {1,—1}, where Z; is interior to the hyper-surface of interest if y; = 1, and
exterior if y; = —1.

Our proposed method of utilising this information is to perform SVM clas-
sification of the Z; with a squared error penalty on the value of the func-
tion at the Z;. To this end, we begin with the following optimisation problem,
which is equivalent to hard-margin linear SVM classification of the z;, with
a penalty proportional to ¢ associated with the square of the functional value
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(f(Z) =< w, % > +b) at each Z;:

Minimise 4,5
<, > +e T &2

Subject To:

<w,z; >4+b< &, i=1...N,
<w,zZ; >4+b>-=¢&, i=1...N,
yi(<w,z; >+b)>1, j=1...N,

Note that choosing ¢ = 0 makes the first two constraints superfluous, and
we are left with the standard hard-margin SVM. We now proceed to derive the
Wolfe dual problem [1]. In the following equations, the summations over i are to
be taken from 1 to N, and those over j from 1 to N,. The Lagrangian function
is then:

L=1<w,d>+3c>, -3, 0;(&— <, % > —b)

=207 (&t <, 2 > 4b) = 32 5ly (< @, &5 > +b) — 1] (1)
By the convexity of the problem, at the optimal solution we have:
e =0=w+ Y, (i —a})Z — >, 95%; (2)
G =0=> (i —a}) =3 75 (3)
Ge =0=c& — (s +aj) (4)

So @ has the “support vector expansion”:
W=3 VY% — >, Bi%i

where we have written ; = a; —a]. We now use the above relations to eliminate
the primal variables from (1). Putting (2) and (3) into (1) leads to:

L=¢&"4+1e3,6 - (0w +a))& — $BTH.B — 37T HoA + 3T Hy. B

where ¢ is a vector of ones, and we have defined the matrices H,, H, and H,,
with elements defined as follows:

(Halj 50 = yiyyr < &5, 85 >

J
=< Zi, Zi >

[H];

1,0

[Hmz]i,j =y < Z,T; >

Now we use (4), which implies 3¢ 3, &2 =3 (o + ))& = =2 3 (ai+a)&,
and we have:
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Since the solution depends on «; — o rather than either of the «o; or o
individually, the positivity constraint on the Lagrange multipliers «; and o
allows us to remove an unnecessary degree of freedom by constraining a;af = 0,

) %12 2 2
and so that we can write Mfa’) = @ = %, and the expression for L
becomes:

L ="~ 3BT (Hy + C)3 — 57 HoA + 7 o3

where C' is a diagonal matrix with entries %

The final matrix form of our dual problem is then:
Minimise 55
30T (Hy + C)3+ §7THA = 7T Hyof - €75
Subject To:
eTh—y'=0,
¥>0

As is the case with the primal problem, setting ¢ to zero leads to an equiv-
alence with the standard hard-margin SVM. To see this, note that as the ¢
approaches zero, any non-zero 3; will cause the objective function above to ap-
proach the value co. This guarantees that at the optimal solution all the 5; will
equal zero. The remainder of the problem (containing only the % terms) is equiv-
alent to the Lagrangian dual form of the standard hard-margin SVM problem,
as can be seen by comparing with [9].

Note that the optimal value of b can be found directly from the Karush-
Kuhn-Tucker (K.K.T.) optimality conditions [1], which are in this case:

a;i(§&— <w,z; >-b)=0
af (&4 < W, % > +b) =0
vily; (< @, &; > +b) —1] =0
Since only the inner products of the data appear in the dual problem, we can

find non-linear hyper-surfaces by using a kernel function K that corresponds to
an inner product after mapping under @ to some feature space H, that is,

K(7,7) =< ¢(&), p(&') >3, V7,3 € R?
The point, familiar to the SVM community, is that we do not need to know
explicitly the mapping @ : R? — H in order to find non-linear hyper-surfaces,
we simply replace the inner products < Z,Z’ > in our dual problem with ker-

nel function evaluations K (z, '), and the corresponding hyper-surface is the set
{VZ|f(Z) = 0}, where f(&) has become:

‘%) :ZA/jyj CL'], Z/Bz Z“
J
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5 Results and Discussion

The method has been implemented using Platt’s Sequential Minimal Optimi-
sation algorithm [4] to solve the Quadratic Programming (QP) problem. First,
we construct from our data set the matrices appearing in the final form of our
dual problem. These matrices are passed to the QP solver, which returns the
optimal values of the 3; and ;. Next, we solve for b, which is attained directly
from the K.K.T. conditions (see Sec. 4), and we have completely defined our
implicit function according to the final equation given in Sec. 4. In each of the
two following subsections, we investigate the results obtained using one of two
different kernel functions.

5.1 Polynomial Kernel Function

The kernel function used in this subsection is the so-called “polynomial kernel”

[9]:
K(z,3) = (< 2,3 > +1)?

The free parameter d € N* corresponds to the order of our implicit polyno-
mial. In general, choosing a greater value of d makes possible a more complex
family of curves.

In the first test, simple morphological operations were used to preprocess
the binary image of Figure 1 into sets of interior, exterior, and edge points, as
marked in Figure 2 by the crosses, plus-signs and dots, respectively. The figure
also includes the zero contours of the resultant function for various values of c.
An 8th order polynomial kernel was used for all the curves of Figure 2, that is, we
chose d = 8. Note that the same image was used in a similar test in both [2] and
[7]. We have added noise to the Z; in order demonstrate robustness with respect
to the location of these vectors. We note in passing however that an equidistant
set of Z; (as required by the 3L method) would result in further improvements
of stability and accuracy.

A more complex data set is depicted in Figure 3, which demonstrates our
observation that the desired manifold tends to be approximated poorly by the
polynomial kernel (as we increase ¢) in those regions where the ¢ = 0 solution is
not already close to the desired manifold. Correspondingly, choosing a “tighter”
set of Z; in the neighbouring region tends to improve the performance. In gen-
eral we found that continually increasing the ¢ value eventually results in the
appearance of extraneous components of the zero set, as is the case in Figure
3 for the ¢ = 0.00042184 solution, which is also rendered in Figure 4. Note the
correspondence between the extraneous parts of the zero set shown in Figure 3,
with the three dimensional rendering of the same function in Figure 4.
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Fig. 2. Results for the polynomial kernel,

Fig. 1. Original shoe test image. degree 8, as a function of ¢ (¢ values -
dashed line: 0, dotted: 0.02, dash-dot: 10,
solid: 10,000).
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Fig. 3. Results for the polynomial kernel, degree 12, as a function of ¢ (¢ values —
left-hand side — dotted line: 0, solid line: 0.00042184; right-hand side — dotted line:
0.042184, solid line: 42.184).
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Fig. 4. 3-Dimensional rendering of the implicit polynomials corresponding to the ¢ = 0
(left-hand side) and ¢ = 0.00042184 (right-hand side) solutions of Figure 3
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5.2 Rational Polynomial Kernel Function

In this subsection we improve upon the results in the previous subsection by
using instead the following kernel function:

= ~1 —— = ~ }~ —— ¢ eRT
e+ -2 et+<z-T,2-% >

k(%,7)

This kernel function, which does not appear to have been used previously
in the context of the SVM, has for our application several advantages over the
polynomial kernel of the previous subsection. In particular, it is trivial to show
that using this kernel guarantees the boundedness of the resultant algebraic
curve, a property which has previously been imposed by more direct means, as
for example by Taubin et. al. [8]. Additionally, the kernel function (and therefore
the resultant algebraic curve) is independent of the absolute position of the
data vectors. Finally the kernel function can be considered (for small ), as
an approximation to the inverse square of Euclidean distance. This is desirable
according to the widely held view within the SVM community that a kernel
function should represent a good similarity metric for the problem it is being
applied to.
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Fig. 5. Results for the rational polynomial kernel, ¢ = 0.05, as a function of ¢ (¢ values
— left-hand side — dotted line: 0, solid line: 0.012296; right-hand side — dotted line:
0.12296, solid line: 122.9618).

Although the kernel function is a rational polynomial, since the denominator
is non-zero, we can rewrite our implicit equation as an implicit (non-rational)
polynomial. To do this, we simply multiply the original equation by the product
of the denominators of each of the summands. That is, as an alternative to the
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original equation (for simplicity we write §; instead of both f; and v;y;):

1
o : v b
@) ¥§a+<x—xi,x—xi>+

we have the following non-rational polynomial equation, which has an identical
zero set:

F@=> &t <d-a,i—&>) +0][(e+ <& — 3,2 — & >)

i VED 4

It is important to note that the order of the above polynomial depends on
the number of non-zero Lagrange multipliers, rather than being chosen a priori
as is the case with the polynomial kernel of Sec. 5.1. In fact, the order of the
polynomial will be equal to twice the number of non-zero Lagrange multipliers,
typically resulting in very high order polynomials.

The improvement in performance afforded by the rational polynomial kernel
function is evident in Figure 5, in which the solutions are well behaved under the
variation of the ¢ parameter. We have found that the solutions are well behaved
under a wide range of ¢ values. As a result, a ¢ value can easily be found that
produces good results on a wide range of different data sets. This is demonstrated
by Figure 6 on Page 9, where we have used identical processing for all of the test
images. The interior and exterior points were obtained from the input image by
taking the edges of six-pixel morphological erosions and dilations of the original
binary image, respectively. Two thirds of these interior and exterior points were
then selected at random and discarded.

Although this simplistic approach produced a relatively poor set of points on
the guitar image (ie. the “hole” in the guitar is unaccounted for), the method
succeeded in producing the correct topology. The only image which resulted in
a solution with an incorrect topology was the butterfly image, however it could
be argued that this is the fault of the preprocessing step, and that the cluster of
points around the abdomen of the butterfly are nonsensical in terms of defining
a contour. Note that the correct topology would be produced for some ¢ < 30.
Moreover, the butterfly example is included here for illustrative purposes only -
such errant input data could easily be avoided with a slightly more sophisticated
preprocessing step.

6 Conclusions

One of the major difficulties faced by algebraic curve fitting algorithms is the
topological instability of the solutions. We have met this problem with the in-
herent regularisation of the SVM classifier in conjunction with a least squares
penalty on the data points. We have given two main options for fitting algebraic
polynomial curves.
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Fig. 6. Results for the rational polynomial kernel, e = 0.05. The original binary images
are on the left-hand side. The same parameters were used for all of the results shown
on the right-hand side: dash-dot line - ¢ = 0, solid line - ¢ = 30. The ¢ = 30 solutions
are largely obscured by the data points. NB: This figure is best viewed by “zooming in”
on an electronic copy of the document.
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The first, using the polynomial kernel of Sec. 5.1, allows the order of the
polynomial to be chosen a priori. While this approach is useful in simple cases,
it is unsuitable for complex shapes that are not coupled with a suitably precise
set of interior/exterior points, as the incorrect topology may result.

The second method involves using the rational kernel of Sec. 5.2. This method
allows the accurate estimation of complex shapes, with minimal requirements
on the accuracy of the interior/exterior points. In this case, the order of the
polynomial is determined by the complexity of the data at hand, often resulting
in high order polynomials.

Finally, it is interesting to compare the algorithm with the standard hard-
margin SVM, in the problem domain of machine learning (data classification). In
this perspective the z; could be considered as training vectors that an expert has
labelled “too hard to classify”. The algorithm uses this information by trying to
find a decision function that places the class membership boundary near the Zz;.
A possible application for the algorithm as a data classifier is in the domain of
handwriting recognition, in which a human could label some sample characters
as being, say, “either an eight or a six”.
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