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Abstract

In order to develop a method for classifying masses in
digitised screening mammograms as benign or malignant,
260 image texture features were measured on 43 images of
known malignant masses and 28 images of known benign
masses. A genetic algorithm was used to select the opti-
mal subset of � features based on � � scores where � is a
natural number. The leave-one-out � � score for the opti-
mal � features ranges from 0.80 to 0.95 for � 	 � 
 � 
 � � � � � .
Since feature space reduction can result in optimistic esti-
mates of classifier performance, the statistical significance
of these scores were estimated by computing the empirical
distribution of � � scores in the context of the experimental
parameters. For � 	 � 
 � 
 � , the � � scores were found to be
significant at the � 	 " � " % level.

1. Introduction

In the field of computer-assisted diagnosis, many authors
have demonstrated that the texture of image intensity sur-
faces of screening mammograms provides information re-
garding the disease state of tissue [3, 4, 5]. Generally, these
texture features are ones that are not seen by radiologists
during visual inspection of the mammogram and are not
based on models of the appearance of cancer in mammo-
grams. Accordingly, the nature of texture features that are
likely to provide positive predictive power is not well con-
strained. The result is that researchers are obliged to search
far afield in order to discover optimal combinations of fea-

tures. In addition, obtaining large numbers of training im-
ages on which to base the development of algorithms is not
trivial and so a natural consequence is that studies comprise
relatively small numbers of training images compared to the
dimension of the feature space [2, 4].

Classification based on large number of features and a
small training set can be optimistically biased. It can be
shown that if the dimension of the feature space is greater
than, or equal to, one less than the number of training im-
ages, then for any assignment of the training images into
two groups, there exists a hyperplane which separates the
two groups perfectly. Moreover, the hyperplane can be cho-
sen so that the distance between an image in the feature
space and the hyperplane (magnitude of the discriminant
score) is the same for each training image.

One way to overcome this problem is to extract from the
original feature space, a low-dimensional subspace that is
realistic with respect to the size of the training data set. Se-
lecting an arbitrary low-dimensional subspace defeats the
purpose of considering many features, so the natural choice
is a subspace that is optimal in some sense with respect to
distinguishing between benign and malignant cases. How-
ever, the performance of the selected subspace in terms of
classification is bound to be high. This is because in order
to find the optimal subset, many different combinations of
features are tested. It is expected that some of them will
have a performance higher than average while others below
average. From this collection, the feature combination that
has the highest performance is selected, hence the perfor-
mance will be high. The question is: is the performance of
the optimal feature subspace selected greater than could be



expected by chance?
The above question can be answered by performing a

significance test. This will require knowledge of the distri-
bution of the maximal performance scores obtained by re-
peating the selection process described above many times
for data where there is no difference between the two
groups. The distribution of these maximal � � scores is not
known and so was estimated using simulations.

Here we report on an experiment in which 260 tex-
ture features were measured on 71 training images. A ge-
netic algorithm was used to select the � -dimensional fea-
ture subspace that is optimal with respect to � � score for

� � � 	 � � � 	 � � . The significance of the � � score was mea-
sured by constructing empirical distributions of � � scores
for each � based on the full feature selection process.

2. Methods and materials

2.1 Data set

The data set comprises a total of 71 screening mammo-
grams of which 43 contain malignant masses and 28 contain
benign masses. The mammograms were obtained from the
archives of BreastScreenSA, the South Australia branch of
the National Screening Program in Australia. All malig-
nant masses were biospy proven and the benign cases had a
three years elapse time showing no sign of malignance. As
the primary objective of the project is to assist diagnosis of
clinically difficult cases, only the recall cases were included
in the data set.

Electronic copies of the selected mammograms were ac-
quired with a Lumisys Lumiscan 150 laser digitiser. The
resulting images have a spatial resolution of 50 � � and
a depth resolution of 12 bits (4096 gray-level resolution).
The images were reviewed and annotated by a radiologist
experienced in mammography. Corresponding to the radi-
ologist’s annotation, regions of interest (ROIs) with a cen-
tering or near-centering mass were located. The size of each
ROI is � � � � � � � � � pixels at full spatial resolution.

2.2 Texture measures

A total of 260 texture features were measured. These
included 12 features based on image energy (see below), 8
based on gradients, and 240 based on co-occurrence matri-
ces.

2.2.1 Textures Based on Co-occurrence Matrices

The co-occurrence matrix at distance � and direction � is
the array, � , where � � ! 	 # $ is the joint probability that a
pixel has image intensity value ! and that the pixel at dis-
tance � in direction � has value # . In addition to a choice of

direction and distance, a co-occurrence matrix also requires
a choice of quantisation of image intensity values. If the
range of image intensity values is quantised to % bins, the
co-occurrence matrix will be of size % � % .

Co-occurrence matrices were constructed for distances
� � � � 	 � + 	 � � 	 � + 	 0 � , directions � � � 	 2 4 � and quantisa-
tion resolutions % � � � � 	 � � � 	 + � for � � � � � half overlap-
ping blocks in the straightened border region. The straight-
ened border region, also called the rubber band straightened
image, is an 80 pixel wide ring about the mass [4]. The di-
rections � � � 	 2 4 � were chosen because they represent the
directions perpendicular and parallel to the boundary of the
mass. Radial structures near the mass boundary are known
signatures of malignant masses. These 30 co-occurrence
matrices were computed on two versions of the straight-
ened border region. The first, called the polygon method, is
found by connecting user defined points by line segments.
The second, called the threshold method is found by finding
a threshold for the ROI semi-automatically [2]. Hence a to-
tal of 60 co-occurrence matrices were constructed for every

� � � � � block. The number of blocks varied from image
to image depending on the size of the straightened border
region, which, in turn varied according to the size of the
mass.

For every co-occurrence matrix, the inverse distant mo-
ment (IDM) was computed according to the following for-
mula.
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� K � ! O # $ R � � ! 	 # $ (1)

For fixed values of � , � , % , and choice of boundary method,
the distribution of IDM values for all the � � � � � blocks in
the straightened border region was recored. The first four
moments of this distribution were recorded as features on
which to base classification. Hence there were a total of
240 features based on co-occurrence matrices.

2.2.2 Intensity Gradient Features

The mass border was determined in each ROI using a poly-
gon method. Background subtraction was performed. The
geometric center of the polygon was used to define an 80
pixel wide annulus containing the border of the mass. The
ROI was subsampled by a factor of 5 reducing the size from

� � � � � � � � � to � � � � � � � . The directional derivatives of
the image intensity surface were computed in the directions
both normal and tangential to the mass boundary. The first
four moments of the distributions of the magnitudes of these
directional derivates result in eight gradient features.



2.2.3 Local Image Energy Features

The local energy image � was computed from the image �
by

� � � � � �
� 
 � � � � � 
 � � � �

�

� � � �

�

� � � �
� � � � � � � � �  (2)

For the region within the mass, the values � � � � � 

were used to produce an energy image restricted to the mass
region. Two energy images were derived from the straight-
ened border region. One with values � � ( and � � � * ,
and the other with values � � � * and � � ( . These choices
were made to enhance features normal to the mass bound-
ary in the first case, and tangential to the boundary in the
second case.

For each of the three resulting energy images, the first
four moments of the distribution of energy values were
recorded resulting in a total of 12 image energy features
on which to base classification and an over all total of 260
features from all three classes of features combined.

2.3 Genetic algorithm

A genetic algorithm [1] was used for feature subsets se-
lection. The fitness criterion is based on the area under
the receiver operating characteristic (ROC) curve, / 1 , com-
puted using the trapesoidal rule. (Technically, / 1 referred
to the area under a binormal ROC curve.) The genetic al-
gorithm was initialised with a population of 1000 and is al-
lowed to evolve over 500 generations. The mutation rate
was set to 0.1. For each generation, the chromosomes with

/ 1 score higher than the average / 1 score of the current
generation were retained in the parent pool. The remaining
chromosomes were deleted from the population.

3. Classification results

The classification performance was evaluated using ROC
methodology and the area under the ROC curve / 1 was
measured. As the optimal number of features 3 is not
known a priori, classification using a range of feature num-
ber was performed. Figure 1 shows the training and the
leave-one-out cross-validated / 1 scores corresponding to

3 � 
 6 ( 6    � 
 . The feature subsets correspond to the leave-
one-out / 1 scores are shown in Table 1. None of the opti-
mal feature subsets include intensity gradient features, and
therefore, these are not shown in Table 1.

4. Statistical significance estimation

In estimating the statistical significance of the classifica-
tion results, the null hypothesis was that there is no differ-
ence between the two groups with respect to the 3 selected
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Figure 1. The classification results, both train-
ing and cross-validated / 1 scores, are plotted
against the number of features 3 . The cross-
validated / 1 scores are shown with error bars
of one standard deviation.

features. The null hypothesis implies that the observed clas-
sification results are no better than would be expected by
chance. An empirical distribution of the maximal / 1 scores
based on the null hypothesis was simulated for each 3 . This
was done by using a bootstrap method to generate 500 dif-
ferent 260 dimensional feature spaces with 71 data points
and randomly assigning the data points to one group of 28
and the other of 43. For each of the 500 feature spaces,
the genetic algorithm was used to search for the optimal

3 -dimensional subspace where 3 � ( 6 < 6    � * , and the as-
sociated optimal / 1 score was recorded. Figure 2 shows the
training maximal / 1 distributions for 3 � ( and 3 � � * .
For 3 � < 6 ? 6    A , the distributions were intermediate to the
ones shown in the figure.

The statistical significance of the cross-validated / 1
scores are the ones of interest since the cross-validated / 1
scores provide a better (less biased) estimate of the classi-
fication performance. In order to estimate such statistical
significance, the cross-validated / 1 scores should be com-
pared to the cross-validated / 1 score distributions. Unfor-
tunately, the cpu time needed to compute the cross-validated

/ 1 score distributions was prohibitively large. Instead, the
training / 1 distributions were used. This gives a conser-
vative estimate of the significance because / 1 scores based
on training data are positively biased when compared to the
leave-one-out / 1 scores. The statistical significance esti-
mates of the leave-one-out / 1 scores 3 � ( 6 < 6    � * are
shown in Figure 3. For 3 � E 6 G 6 H the / 1 scores were
found to be significantly larger than predicted by the null
hypothesis at the I � *  * ? level.
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Figure 2. The empirical distributions of the
training � � score for � � � and � 	 . Each dis-
tribution consists of 500 data points.

5. Discussion and conclusion

Drawing conclusion regarding classification experiments
comprising data sets that are small in size relative to the
dimension of the feature space is always tenuous. Merely
reporting the classification scores without incorporating the
bias originating from the optimisation steps used to arrive
at these scores does not provide sufficient information to
judge the classification. Reporting confidence intervals for
the classification performance score still does not acknowl-
edge the bias of the method used to arrive at the score. This
is borne out by the fact that the � � score for some values of

� were high but not significant. For example, for � � � 	 ,
� � � � � � � � but the � -value was near 0.3. By generating
an empirical distribution of classifier performance values, it
is possible to address the question of the significance of the
classification performance measured experimentally.
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Table 1. Optimal feature subsets corresponding to the leave-one-out � � scores in Figure 1. Table
entries are the values of � for which that feature appeared in the optimal � feature subset. � , �
and � are parameters of the co-occurrence matrices where � is the gray-level scale quantisation,

� is distance in pixels and � is the direction measured anti-clockwise with � pointing vertically
downward. M1, M2, M3 and M4 are the first 4 moments of the distribution of the inverse difference
moment measured on co-occurrence matrices. Local images A,B and C are mass center region 25

� 25 pixels, straightened border regions 7 � 21 pixels and 21 � 7 pixels, respectively. m1, m2, m3
and m4 are the first four moments of the distribution of the energy values.

Co-occurrence matrix based features Local image energy features

Border region by Border region by
threshold method polygon method

Q d � M1 M2 M3 M4 M1 M2 M3 M4 m1 m2 m3 m4
400 	 � � 3 4 A 7-12 9-11

� � �
� � � 8,10,12

� � �
� � � 2,4-12 3 2

� � �
� � � 12 11 8-10

� � � 6-7,12
� � �

� � � 4
100 	 � � 5-10,12 B

� � �
� � � 6-7,9

� � � 11 11
� � � 12

� � �
� � � 12

� � � 8-11 5
� � �

� � � 8-10 11 5-7,12
50 	 � � 11 11 C 12

� � � 3 4
� � � 11

� � � 8-10 5-7,12
� � � 12

� � � 10
� � �

� � �
� � �

� � �
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