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Abstract

This paper presents a novel theoretical approach to cal-
culating the apparent contour of a smooth surface. The
problem is formulated as a dual space intersection of alge-
braic tangent cones, which we will consider to be the mem-
bers of degree d hypersurfaces. The well known thereoti-
cal foundation for multi-view geometry is extended in light
of this to solve the problems of triangulation and forming
multi-view matching constraints for degree d apparent con-
tours.

1 Introduction

The problem of reconstructing a static scene from mut-
liple images is rich field of research [3]. There are a wide
range of algorithms that can be used to reconstruct linear
features such as points and lines from there projections in
mutliple images as well as the inverse problem of finding
the egomotion of the camera observing the scene.

However there has been far less research on the recon-
struction and multiple view geometry of arbitrary curves
observed in the scene [5], although the simplest cases of the
conic and quadric have been investigated to a greater extent
[4, 6, 1].

Broadly speaking, there are two different catagories of
curves commonly observed in a scene, these are the static
and apparent contours. Static curves are rigid curves they
may commonly occur as textures on a surface or a thin
thread of wire or other such objects. Each point on a static
curve obeys the regular epipolar transfer equations, however
presently there is only one approach to finding a closed form
algebraic solution for their geomerty in the general degree
d case [5] and several for the special degree 2 case [4, 6, 1].

We say the degree 2 case of the static curve is a special

case since it is the only type of 3D algebraic curve that can
be described by one equation. The other class of geomet-
ric objects that can be described by one equation in 3D are
the class of smooth degree d surfaces. The projection of a
smooth degree d surface forms a degree d apparent contour
in the image, the apparent contour in this sense is the in-
tersection of the dual of the surface with the image plane
[5, 1].

In this paper we consider the class of all degree d sur-
faces and their associated apparent contours to be repre-
sentable as degree d hypersurfaces, thus creating a generic
form of algebra for their manipulation. This paper will
only present a brief theoretical overview of the concepts, al-
though the computationally tractable cases of the apparent
contour triangulation and multi-view geometry have been
simulated in noise free conditions (up to degree 10). All the
geometry and algebra presented in this paper is projective
[8]

2 Linear Mutli-View Geometry

This section will outline the notation and the basic build-
ing block of linear mulit-view geometry. The development
of the ideas underlining multi-view matching constraints
and triangulation of linear features is heavily influenced by
the notation and stucture of the linear matching constraints
presented in [10]. Due to space considerations this paper
assumes that the reader is familiar with majority of these
concepts.

2.1 Features

The first consideration when dealing with the multi-view
geometry of linear features is their notation. Consistantly
we will refer to features as any type of geometric object
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observed in a scene, be this points, lines and planes in the
linear case or hypersurfaces in the degree � case.

Table 1 summarises the notation and degrees of freedom
(DOF) for the group of linear features in the projective plane
(������� � ��).

Hyperplane �
�

�
�� DOF

Points �
�

�
���
� �����

�
� ��� 2

Lines �
����

�
����

� �����
�
� ��� 1

Table 1. Linear features and there duals in �
�

Similarly, Table 2 summarises the notation and the DOF
for linear features in projective space (��� �� �� �� � ��).

Hyperplane �
�

�
�� DOF

Points �
�

�
���
� ������

�
� ���� 3

Lines �
����

�
����

� ������
��
� ��� 2

Planes �
�����

�
�����

� ������
���
� �� 1

Table 2. Linear features and there duals in �
�

These tables demonstrate the process of dualization for
linear feature types via the antisymmetrization operator
�� � ��. The antisymmetrization operator should be consid-
ered as a determinantal method to generate the algebra for
linear features, by performing an alternating tensor contrac-
tion over the space to which the operator is applied [2].

2.2 Triangulation

Triangulation is the process of calculating a feature in ��

from two or more of its projections in ��. Firslty, we must
consider the projection operator (	 �

� ) or camera matrix that
denotes the projection of linear features from the scene to
the image plane (	 �

� � ��
� �

�). Table 3 summarises the
range of projection operators for linear features.

Hyperplane �
�

�
��

Point �
�
� �

�
� �

� -

Line �
����

� �
��

��
�
��

��
�
����

����� � �
��

��
�
��

��
�����

Plane - �� � �
�
���

Table 3. Projection operators for linear fea-
tures

Generally it may be stated that 
�� � 	�
� �

� , where 
 is
an arbitrary scale factor.

Having observed � � � � � image features, triangulation
proceeds through the reconstruction equations,

�
����

	��

� ��� � � � � �
	��

� � ��� � � � �
...

...
...

...
...

	��
� � � � � � ���

�
����

�
������

��


�


�

...

�

�
������

� � (1)

where the resulting nullvector of these equations presents
a solution for the scene feature and the scale factors 
�.
The stack of camera matrices on the left hand side of (1)
is referred to as the joint image projection matrix (	 �

� �

	���������
� ) and can be thought of as a vector of camera

matrices that projects a common feature from the scene (��)
to its joint image feature location (�� � ����������).

The reconstruction equations have,

�
�
�


���
� �
��� � ���
��� 	 ��� �	 � (2)

DOF, where 
�� �
� and 
��� denote the DOF of the n	


image feature and scene features respectively. Furthermore
the reconstruction equations are rank-�
��� 	 ��.

2.3 Multi-View Constraints

Mutli-View constraints provide a linear relationship be-
tween projections of scene features observed in two or more
images. Multi-View constraints provide a means to calcu-
late the structure of the scene and the egomotion of the cam-
era. The approach to building multi-view constraints stems
from the representation of a subspace in the Grassmann al-
gebra. Here we wish to find a ��-dimensional subspace for
the scene (where the scene is embedded in ���), from the
joint image projection matrix. This is achieved by antisym-
metrizing over �� 	 � of the joint images scene indetermi-
nants, with corresponding unique choices of any �� 	 � of
the images indeterminants,

�������� �
�

��� 	 ��

	 ��
� � � �	

��
� ������ � 	

��
�� � � �	

��
�� (3)

(3) is known as the Joint Image Grassmannian. The selec-
tion of the image indeterminants �� � � � �� from the rows of
the joint image projection matrix determines which images
the resulting matching constraint will represent. The choice
of rows obeys the simple rules that for an image to be in-
cluded in the matching constraint, it must be represented by
at least one row, and less than ��	� rows (where the image
plane is embedded in ���). This leads to well known set of
matching tensors (Table 4) and also explains why there is at
most 4-view matching constraints for points and lines.

There are many variations of the atypical matching con-
straints given in Table 4, see [10, 3].
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Views Tensor Constraint
2 �

�������� �
����������

���
���

� �

3 �
�������� �

����������
���

���
��� � ����

4 �
�������� �

����������
���

���
���

��� � ����

Table 4. Atypical Linear Matching Constraint
Tensors

3 Hypersurfaces

It is at this point that we enter into profitable new terri-
tory with the introduction of hypersurfaces into the tensor
notation.
Definition A degree � hypersurface is denoted as the �-fold
symmetric product (symmetrization) �� � �� of an indetermi-
nant [2]. The resulting hypersurface is considered to be em-
bedded in the space in which the symmetrization operator
is applied. That is,

��� � � � ��� �� �
������

(4)

or in the Algebro-Geometric notation [9],

�
� � � � �� �

�� �� �
������

����

where ��� is the �-fold symmetric permutation group, this
may also be considered as the degree �, � space Veronese
embedding (���).

We can state that hypersurfaces are generically points
in a ��

�

� dimensional space, where ��� �
�
���
�

�
� �, thus

they have ��� � � DOF. Some common examples of hyper-
surfaces are the conic ������

��� � �, and the quadric
������

��� � � hypersurfaces. Equivalent dual hypersur-

faces are simply ��������� � � where ����� � �
��
�
�.

4 Degree � Multi-View Geometry of Hyper-
surfaces

Now we are ready to observe the degree � triangulation
and Multi-View Geometry, of hypersurfaces. The develop-
ment in this section will follow the exact path we took in
Section 2, where in this case points and lines will be re-
placed by hypersurfaces and dual hypersurfaces.

4.1 Triangulation of Hypersurfaces

As in Section 2.1 our first step in solving the triangu-
lation problem is addressing the nature of projection op-
erators for degree � hypersurfaces. However, in this case

we are concerned with the degree � embedding of hyper-
surfaces in �� and �� respectively. Firslty, we should note
that this concept is not completely new, in [4, 1] an equiv-
alent observation was made for the projection of degree 2
hypersurfaces. Table 5 summarises the range of projection
operators for degree � hypersurfaces.

�
�
�

� �
�
�

�
�

Hypersurface �
�����

�����
�
��

�� �
�����

����� �
��

��

Table 5. Projection operators for degree d hy-
persurfaces

Generally, it may be stated that projection of hypersur-
faces is denoted as ��������� � �

�����
������

��
���������� and dually

��������� � �
�����
����� �

��
�� �

�������. We can also state that these
projection matrices are the �-fold symmetric powers of the
regular point projection matrix (and its dual), thus resulting
in the dimension of these matrices being ��� ��������

�
�����

and ����� � ��� ���� � ��� respectively.

Since we are concerned with finding the the equation of
the surface generating the apparent contour in the image.
We must take the intersection of the dual hypersurfaces tan-
gent cone with the image plane. For notational compactness
we will assign ��� � � ���� � 	� and �
 � � �
� � �. This
leads us to the equivalent set of dual reconstruction equa-
tions for degree � hypersurfaces,

�
��

� ��
� ��� � � � �
...

...
...

...
� ��
� � � � � ���

	

�

�
����

��

�	
...
��

	



� � � (6)

again the resulting nullvector of these equations presents a
solution for the scene hypersurface (��) and the scale fac-
tors ��.

The minimum number of image hypersurfaces required
to reconstruct a degree d hypersurface is given as the lower
bound of,

��� � � �
��� � ��� ���

���� ��
(7)

[5] the lower bound � must be rounded up to the closest
integer value. The upper bound is the limit on the number
of images for the resulting matching constraint. The DOF of
these reconstruction equations and their rank are analogous
to those stated for (1).
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4.2 Multi-View Constraints for Degree 2 Hyper-
surfaces

Before we address the general formulation for the degree
� matching constraints for hypersurfaces, we will tred gen-
tly by outlining the concepts for degree 2.

Firstly, it is not clear in general the make-up or practical
relevance of features embedded in �� or �� that have DOF
other than �

�
�
� � (ie. hypersurfaces).

An application of (7) suggests the presence of degree 2
matching constraints for two through to ten image projec-
tions. Again, the object in building the matching constraints
is select ��

�
unique rows from the joint image projection ma-

trix to make up the matching constraints. The correspond-
ing matching constraints are given in Table 6.

Views Tensor Constraint
2 �

����������������� �
����
�
���

���
� �

3 �
����������������� �

����
�
���

���
���

� �
���

4 �
����������������� �

����
�
���

���
���

���
� �

���

...
...

...
10 �

����������
� � �

Table 6. Degree 2 Matching Constraint Ten-
sors

It is not clear what the actual effect of selection of differ-
ent rows from the joint image has on the resulting matching
constraint (future work may included a thorough investiga-
tion of this uncertainty along the lines of [?]). But from
the initial experimentation we have found that any combi-
nation of rows that meets the aforementioned requirements
for defining a Grassmann subspace is adequate to construct
the matching tensor. The most pertinent factor in selecting
a number of rows to form the matching constraints, is min-
imising the size of the actual matching tensor.

The selection of � rows from a space of size � will result
in the size of associated dimension of the matching tensor
being

�
�

�

�
, so naturally values close to either � or 1 will

yield smaller matching constraints.

4.3 Multi-View Constraints for Degree � Hyper-
surfaces

Finally, we can now see that an application of equation
(7) will give the upper and lower bounds for the degree �

multi-view constraints and an application of equation (6)
will generate the reconstruction equations for the problem.
Any selection of rows from the reconstruction equations
meeting the aforementioned criteria of a valid subspace,
will be adequate to reconstruct the degree � matching con-
straints.

5 Conclusions and Future Work

The authors have presented a general closed form lin-
ear method for the solution of degree 2 curves and surfaces
which extends to the solution of degree � surfaces. The es-
sential problems of triangulation and multi-view matching
constraints for these features have been considered, unfor-
tunately due space restrictions a full account of these ge-
ometries has been limited.

The authors have also considered a practical scheme to
calculate the apparent contours through the fitting of cubic
NURBS curves. NURBS are the only alternative since they
have the essential property of projective closure. Once the
NURBS curves have been fitted to the image data they must
then be converted into their implicit representation via the
process of implicitization [7]. This topic will be considered
in future work.
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