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Abstract

Previously the development of a cell nucleus segmenta-
tion algorithm had been evaluated by eye by the author. This
is an impractical method when attempting to evaluate and
compare many algorithms and parameter sets on very large
data sets. For this work, a dataset of 20,000 cell nucleus im-
ages was annotated by hand by three non-expert assistants.
This paper concentrates on comparing the previous inter-
active approach to evaluating a segmentation algorithm to
automated techniques using this annotated data.

1. Introduction

We have previously reported work on using a dynamic-
programming algorithm for cell nucleus segmentation [1].
In that work, almost 20,000 cell images were segmented
and the output judged as either a pass or a fail by the au-
thor (where any deviation from the perceived boundary was
declared a fail). Then, an attempt was made to tune the al-
gorithm parameter over a subset of the data using the same
evaluation method.

This is clearly an extremely time consuming and sub-
jective process. In fact, of the arguments encouraging
more evaluation in computer vision [2], it seems that find-
ing a better method than eye-balling results over the large
datasets required to develop real systems is the most com-
pelling! This is especially so if many algorithms and pa-
rameter sets are to be compared thoroughly.

The ultimate method of evaluating segmentation algo-
rithms is to use the final outcome of the complete vision
system as the performance metric [3]. Unfortunately this is
very difficult except in the simplest of cases. This is due
to the fact that there may be many processes, each with
their own sources of variability and complex interactions,
between the segmentation output and final measure [4], thus
requiring very large datasets in order to perform a robust
experiment. Attempts at evaluation therefore either evalu-

ate individual components in isolation or consider the final
outcome of the system [6].

Image segmentation is a module that is generally evalu-
ated in isolation. This is either done by eye, via annotated
examples or via some other goodness measure that does not
rely on ground truth (e.g. inter-region contrast). This lat-
ter method is generally the only available option to those
working in general recovery [2] work exemplified in [7]. Of
the methods that employ annotated examples (Zhang’s em-
pirical discrepancy methods [8]), either the segmentation
masks are pixel-wise compared or features extracted from
those masks are compared. The latter method has been crit-
icized as it is possible to obtain good agreement for a fea-
ture where the masks do not agree well [9] (trivial example:
area). Also extracted features can be very sensitive to small
differences in masks, complicating the detection of signifi-
cant differences [5].

The difficulties associated with empirical discrepancy
evaluation have been summarized to be [9]

• difficulties in defining measures/metrics,

• standardizing evaluation protocols, but mostly

• determining and acquiring ground truth data.

It is well known that image segmentation is a highly
application-dependent task. Previous approaches to eval-
uation, which are briefly summarized in the following two
sections, seem to show that this task is also more applica-
tion dependent that one may expect. Selected techniques
are then applied to the task of verifying results previously
obtained by eye for cell segmentation [1].

2. Error Measures and Metrics

A framework for evaluating segmentation methods has
recently been proposed where the measure was trained us-
ing examples of failure [10]. The error value measured
edge-detection type errors (bits - false positive edges, and



holes - false negative edges) that were assembled into pat-
terns and then rated by human observers. The individual
errors were weighted by a number of parameters and the
measure trained to match the observers’ score. This mea-
sure was classified as belonging to a group termed low error
models, i.e. suited only to problems where the segmentation
is already very near the final solution (and was tested upon
synthetic images).

We investigated the failure modes for a number of al-
gorithms in [1] and found that they generally either failed
quite dramatically or performed an acceptable job (little or
no perceived delineation error). Thus we are initially more
interested in employing a measure that is capable of mea-
suring large differences.

Zhang [8] reviewed a number of simple measures of
which only two are applicable here: the number and po-
sition of misclassified (segmented) pixels. Also reviewed
were methods for measuring over- and under-segmentation.
These errors, and those of Roman-Roldin [10], are of less
interest in this work as a well-formed mask is a pre-requisite
to accepting the segmentation. Thus we assume that a mask
for the object of interest is the final output of the segmenta-
tion stage (including all pre- and post-processing). A sim-
ple method of error checking, for this application, is then to
evaluate the Euler number of the mask image. If it is not
equal to one, then the mask is rejected outright and a failure
assigned to that segmentation - the failure need no longer
be quantitatively evaluated. This may be seen as first-step
goodness measure that requires no ground truth.

More recently Chalana [9] employed the Hausdorff dis-
tance and average distance between human and computer
boundaries. The Hausdorff distance is an attractive met-
ric for this application as segmentation algorithms gener-
ally tend to fail in one localized position around the nuclear
border - an error that may become masked when using nor-
malized or average values [11]. The Hausdorff distance is
defined to be the maximum of the set of shortest distances
between corresponding points of two shapes.

3. Evaluation Protocols

Algorithms are generally evaluated using either the raw
measures to establish how close competing algorithms (and
different parameters sets) get to the annotated (observers’)
data or by thresholding the measures in order to obtain per-
centage success rates which are then compared. Chalana [9]
used both methods and a number of observers’ data to de-
termine whether the computer boundary differed from the
observers’ boundaries as much as the observers’ bound-
aries differed from one another. This was evaluated using
a modified Williams’ index and a percent statistic. The
Williams’ index, I ′, divides the average number of agree-
ments (inverse disagreements, Dj,j′ ) between the computer

(‘observer’ 0) and n−1 human observers (j) by the average
number of agreements between human observers (eq. 1).
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If the upper value of the confidence interval of the result is
greater than one, then it is concluded that the computer is
a reliable member of the group of observers. The percent
statistic measures the percentage of cases where the com-
puter boundary lies within the inter-observer range.

Finally Everingham [12] has recently suggested an in-
teresting method for combining large sets of results into
an ROC type curve, where only the best performing results
contribute to the final output.

4. Method

Although no ground truth exists for cell segmentation,
the images do not necessarily require expert annotation.
Figure 1 shows an example image and three correspond-
ing non-expert annotations. This is quite a deviation from

Figure 1. Example from dataset and corre-
sponding observers’ boundary

other imaging modalities where inter- and intra- observer
variance can be very high, but valid (e.g. ultra-sound [9]).
It is however desirable to obtain a number of interpretations
so that inter-observer variability may be nonetheless inves-
tigated.

A Wacom PL400 pen-and-tablet was used to input the
data. This device enabled almost immediate use by the
observers to delineate the cell nuclei. The observers were
instructed to draw a continuous line between the nucleus
and background (cytoplasm), i.e. on the transition region
[13] of the edge. Due to the low pass filtering effect of the
optics used to capture the images, this covers a number of
pixels and is readily identifiable in the majority of exam-
ples. However the exact area for delineation was not overly



specified and left to the individual. Three observers were
employed to annotate the entire 20,000 image dataset. The
nucleus images are of the order of 128x128 pixels. The
PL400 LCD screen has square pixels of pitch 0.264mm. By
displaying the images at the native screen resolution there-
fore produced cell nuclei of approximately 1-2cm diameter
on screen. This was found to be too fiddly and handshake
became a problem. Thus the images were first upsampled
to twice the original dimensions using a nearest-neighbour
algorithm. The pen line thickness on the screen was made
equal to one pixel at the original image resolution (i.e. four
pixels on screen). This also assisted to reduce handshake.

There has been considerable work in improving the im-
plementational performance of the Hausdorff metric for the
more general problem of comparing shapes under transfor-
mation [14]. Here, we have implemented a rapid and sim-
ple routine to obtain the maximum distance between corre-
sponding points, dMAX , on two binary masks by

1. Obtaining the distance transforms, ADT and BDT , of
the perimeter of the mask images, A and B.

2. Obtaining the pixel-wise maximum of ADT and BDT

to produce ABDT .

3. Obtaining the XOR of the mask images, ABXOR

4. Using ABXOR to mask ABDT to produce ABMASK

5. Obtaining dMAX as the maximum value in ABMASK .

These steps are illustrated in figure 2. The average distance
between the masks was also computed. Chalana [9] used an
iterative technique to evaluate the average distance between
two curves, which yielded an average curve as a result. Here
we implemented a rapid method of evaluating the average
distance, dAV , as the average value in ABMASK . These
two measures can be obtained very rapidly using operations
for which implementations are widely available.

The above data and measures were then used to confirm
the results reported in [1]. This was done by comparing
the algorithm performance against its (regularisation) pa-
rameter, λ. The Williams’ index was first computed, us-
ing dMAX as the discrepency measure Dj,j′ , over half of
the data over the full range of permissible [1] values of λ
(∈ [0, 1]) at increments of 0.1. Figure 3 shows an exam-
ple distribution of the Williams’ index for λ = 0.2. This
plot shows a group of (normally distributed) values near
the observers’ boundaries with a mean value near 1.0. In
addition, there are a number of out-lying counts between
0.0 and roughly 0.5. These correspond to the failed seg-
mentations. Thus rather than compare performance versus
λ using summary statistics, as in [9], the Williams’ index
was thresholded in order to determine the percentage of cor-
rect segmentations at that threshold. However the selection

(a) (b)

(c) (d)

(e)

Figure 2. Steps for deriving the maximum dis-
tance between two binary masks. (a) and (b)
are the two masks to be compared. (c) is
the pixel-wise maximum of the distance trans-
forms (DT) of the perimeters of (a) and (b). (d)
is the result of the XOR operation on the two
masks. (e) shows the final masked DT, the
maximum value of which is the desired value,
corresponding to the length of the protrusion
in the mask (b).

of such a threshold is at this stage an arbitrary process -
what constitutes a correct segmentation? Therefore algo-
rithm performance was plotted over the natural range of the
Williams’ index, i.e. ∈ [0, 1]. At a value of 0, the computer
boundary is infinitely far from those of the observers. At
a value of 1 the computer boundary is as close to the ob-
servers as they are to each other. Values above 1 are of less
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Figure 3. Distribution of the Williams index for
λ = 0.2

interest - this can be understood to occur when one of the
observers disagrees with the other two more than the com-
puter does. Therefore all values greater than 1 are treated
as a correct segmentation. Figure 4 is a convenient nor-
malised and bounded representation to view segmentation
algorithm performance against multiple observers in a sin-
gle output. As a measure of overall performance at each
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Figure 4. Plot of cumulative percentage suc-
cess segmentation versus Williams Index for
values of λ.

value of λ, the area under this curve was computed and is
represented in figure 5. The maximum value of these area
values is 95.16% which occurs at λ = 0.5.
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Figure 5. Plot of area under curves of figure 4
against λ.

5. Conclusion

We have considered methodologies for evaluating cell
segmentation using annotated examples in an automated
fashion. We found that recent approaches to segmentation
evaluation have concentrated on low error models where the
measures and metrics for segmentation error, in addition to
the evaluation procedures, were unsuitable for this applica-
tion. The shape of the graph in figure 5, the optimal value
of algorithm parameter λ and the overall performance rate
all agree well to the results reported in [1]. However, they
were attained using a far more satisfactory and repeatable
method.

This work represents a very early part of a greater project
to thoroughly evaluate cell segmentation methods using an-
notated examples. The next stage is to attempt to compare
other algorithms for this task. In addition, individual mod-
ules may be evaluated in isolation. For example marker ex-
traction algorithms may be evaluated using the same data
but measures that detect whether an inner marker is com-
pletely within the desired object. This work will then be
expanded to include the original scene images from which
the nucleus images were captured, representing a different
segmentation task. Also, methods that use annotated data to
obtain edge and region models, enabling the improvement
or design of algorithms [15] will eventually be investigated.
Finally, once a small number of discrepancies in the ob-
servers’ data have been fixed (i.e. where the Williams’ in-
dex is significantly greater than one!), this dataset will be
made publicly available.
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