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Abstract

Training a Hidden Markov Model (HMM) to maximise
the probability of a given sequence can result in over-fitting.
That is, the model represents the training sequence well,
but fails to generalise. In this paper, we present a possi-
ble solution to this problem, which is to maximise a linear
combination of the likelihood of the training data, and the
entropy of the model. We derive the necessary equations for
gradient based maximisation of this combined term. The
performance of the system is then evaluated in comparison
with three other algorithms, on a classification task using
synthetic data. The results indicate that the method is po-
tentially useful. The main problem with the method is the
computational intractability of the entropy calculation.

1 Introduction

In recent years, the HMM has become one of the main
tools for spatio-temporal pattern recognition, especially in
the area of speech recognition [8]. In 1983, Levinson, Ra-
biner and Sondhi described a method of estimating HMM
parameters from multiple training sequences in the maxi-
mum likelihood sense, via a special case of the expectation-
maximisation algorithm. This method, known as the Baum-
Welch algorithm, has been widely used, however it is well
known that it is susceptible to the problem of “over fitting”.

Several attempts have been made to deal with the over-
fitting problem. In 1998, Brand described an effective
method involving maximum likelihood parameter estima-
tion, but with the additional constraint of an “entropic prior”
[1]. That is, an a priori assumption was made regarding
the probability distribution of the HMM parameters them-
selves.

Recently, Davis et al have explored [2] the possibility
of using parameter averaging, as suggested by Mackay in
1997 [6]. This method involves training a separate HMM
for each training sequence, and then averaging the param-

eters of the resulting HMMs. The reported results indicate
that the averaging method offers an improvement over the
basic Baum-Welch algorithm.

This paper presents another method of HMM parameter
estimation which is intended to overcome the over-fitting
problem. The method herein was mentioned by Brand in
1998, with reference to combinatorial optimisation prob-
lems [1], however the approach does not appear to have
been investigated for the task of HMM parameter estima-
tion.

2 Background Theory

2.1 HMM Preliminaries and Notation

An HMM can be described as a probabilistic function of
a Markov Chain. For the case of HMMs with discrete out-
puts and discrete states, we can assume that the underlying
Markov Chain hasN states,q1, q2, . . . , qN . Such a Markov
chain can be specified in terms of an initial state distribution
vector,π = (π1, π2, . . . , πN ), and a state transition proba-
bility matrix, A = [aij ], 1 ≤ i, j ≤ N . Here,πi is the
probability ofqi at time timet = 0, andaij is the probabil-
ity of transiting to stateqj given that the current state isqi,
that isaij = p(qj at time t + 1|qi at time t). In the previ-
ous expression and the remainder of the paper,p(x) is to be
taken as the probability of occurrence of eventx.

Each of the Markov states have an associated random
process which provides a probabilistic mapping to the out-
put of the HMM, which is drawn from an alphabetV of
M possible outputs,v1, v2, . . . , vM . These probabilistic
mappings from hidden state to observed output can be col-
lectively specified by another stochastic matrixB = [bjk]
(the “observer matrix”) in which for1 ≤ j ≤ N and
1 ≤ k ≤ M , bjk is the probability of observing symbol
vk given that the current state isqj , that is,bjk = p(vk at
time t |qj at time t).
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2.2 Entropy of a Random Variable

Consider a random variableX, with N discrete out-
comes,x1, x2, . . . , xN . The “information” of outcomexi

is [4]:

I(xi) � − log p(X = xi)

The entropy ofX is the expected information [4]:

H(X) � −
N∑

i=1

p(X = xi) log(p(X = xi))

2.3 Entropy of an HMM

From the equation of Section 2.2, the entropy of a se-
quence of lengthT produced by HMMλ can be written as:

H(λ, T ) = −
∑

∀O∈ÕT

p(O|λ) log p(O|λ) (1)

WhereÕT is the set of all sequences of lengthT that
can be produced byλ. For a symbol alphabet sizeM ,
|ÕT | = MT , so the computation in equation 1 is intractable
for largeT .

2.4 Maximum Entropy Parameter Estimation

Let X be a random variable taking on values
x1, x2, . . . , xK , with an unknown probability mass function
(pmf ), pk = p(X = xk). Suppose we would like to esti-
mate thepmf of X given only the expected value of some
functiong(X) of X:

K∑
k=1

g(xk)pk = c (2)

For example ifg(X) = X then c is the mean ofX.
Since Equation 2 does not, in general, specify thepmf of
X uniquely, we must apply further constraints in order to
solve for thepk. One additional constraint that is com-
monly applied [4, 3] is that of “maximum entropy”. That
is, we seek thepmf that maximises the entropy subject to
the constraint in Equation 2. This is intuitively appealing,
since the maximum entropy solution is that which satisfies
our known constraints, while asserting as little as possible
about the nature of the underlyingpmf. The maximum en-
tropy parameter estimation can be set up as an optimisation
problem and in some cases solved using classical methods
such as Lagrange multipliers [4, 3].

3 Maximum Entropy HMM Parameter Esti-
mation

In its most fundamental form, HMM parameter estima-
tion proceeds as follows [5]. First of all, the source which
is to be modelled is sampled one or more times, to pro-
vide “training data” for the parameter estimation. An HMM
topology is then chosen, and an HMM is initialised ran-
domly within the chosen topology. The HMM parameters
are then adjusted so as to maximise the likelihood of the
HMM producing the training sequence(s). This is known as
“maximum likelihood” parameter estimation. For the case
of HMMs, maximum likelihood parameter estimation is in
itself a difficult problem: in general only locally optimal
solutions can been found. A well known problem with the
maximum likelihood approach is that of “overfitting” to the
training data. That is, the model fits the training sequences
too well, thereby failing to generalise.

In 1998, Brand proposed a means of dealing with the
overfitting problem [1]. The method is essentially Bayesian
inference with an “entropic prior”. That is, maximum a pos-
teriori (MAP) parameter estimation using an a priori distri-
bution over parameter space. Formally, the method seeks
the parameter setθ which maximises the posterior

pe(θ|x) ∝ p(x|θ)pe(θ) (3)

wherex is the observed (training) data, andpe(θ) is the
entropic prior:

pe(θ) ∝ e−H(θ) (4)

whereH(θ) is the entropy of the model. A detailed ex-
planation of the method can be found in [1].

The method proposed in this paper is similar to that of
Brand [1], in that the generality of the model (as measured
by its entropy) is accounted for during the training process,
however the knowledge of model entropy is used in in a
different way. Following the same approach as the classical
maximum entropy method, we would like the model to have
high entropy as well as to match our knowledge of the data.
This leads to the following idea: rather than maximising
the probability of the training sequences, maximise a linear
combination of the likelihood and the model entropy. For-
mally, we seek to maximise the following “objective func-
tion”:

C = b log p(O|λ) + (1 − b)H(λ, T ) (5)

Whereb ∈ [0, 1], the “balancing parameter”, is the free
parameter that sets the desired “generality” of the model,
andO is our training sequence. For example,b = 1 results
in normal maximum likelihood learning, whereasb = 0
ignores the training data and maximises the entropy of the
model.
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In equation 5, log p(O|λ) is maximised rather than
p(O|λ) to ensure that we are comparing equivalent units
of likelihood and entropy – log of probability is informa-
tion, and entropy is expected information, so the units are
comparable. If thelog is to base2, then the units are “bits”,
while a natural log has units “nats”.

In the next section we begin describing how the model
can be optimised according to the objective function above.
Before proceeding, however, it is worth making a few com-
ments regarding theb parameter of Equation 5. The inclu-
sion of the parameter can be justified by the following ar-
gument. In an extremely “data poor” training problem in
which we have only one training sequence, it may be possi-
ble to find a deterministic (zero entropy) HMM that fits the
data perfectly in the maximum likelihood sense, however
this would obviously be of no value for either regression or
classification tasks. By applying domain knowledge, it may
be possible to sensibly chooseb such that a useful model is
obtained. The necessity for the free parameter is a symptom
of the inherent difficulties of all inductive inference tasks –
as is well known, logical induction is a flawed process, and
one that requires the assumption of some prior knowledge
in order to reach a conclusion [7].

4 Gradient Descent Equations

To maximise the objective function in equation 5, we can
perform gradient descent w.r.t.C. To do this we need the
partial derivative ofC w.r.t. an arbitrary HMM parameter,
θ. This follows directly from equation 5:

∂C

∂θ
=

b

p(O|λ)
∂p(O|λ)

∂θ
+ (1 − b)

∂H(λ, T )
∂θ

We now proceed, in a top-down approach, to relate the
above expression back to all of the specific HMM model
parameters.

4.1 Partial Derivatives of HMM Entropy with re-
spect to Model Parameters

Taking the partial derivatives of equation 1 with respect
to an arbitrary parameterθ we get,

∂H(λ, T )
∂θ

= −
∑

∀O∈ÕT

∂p(O|λ)
∂θ

(1 + log p(O|λ)) (6)

Next we need the expressions for∂p(O|λ)
∂θ .

4.2 Partial Derivatives of Likelihood with respect
to HMM Parameters

This is our own derivation of the partial derivatives of
likelihood with respect to HMM parameters. An alternative
derivation is available in [5]. From [5] we have the proba-
bility in terms of the forward variable,αt(n):

p(O|λ) =
N∑

n=1

αT (n) (7)

αt+1(n) =
N∑

m=1

αt(m)amnbn(Ot+1) (8)

α1(n) = πnbn(O1) (9)

WhereOt is thet-th observation symbol in our training
sequence,O. From equation 7 we get:

∂p(O|λ)
∂aij

=
N∑

n=1

∂αT (n)
∂aij

∂p(O|λ)
∂bj(k)

=
N∑

n=1

∂αT (n)
∂bj(k)

∂p(O|λ)
∂πi

=
N∑

n=1

∂αT (n)
∂πi

From equations 8 and 9 we get, foraij :

∂αt+1(n)
∂aij

= αt(i)bj(Ot+1) +
N∑

m=1

amnbn(Ot+1)
∂αt(m)

∂aij

∂α1(n)
∂aij

= 0

for bj(k),

∂αt+1(n)
∂bj(k)

=
N∑

m=1

(δ(vk, Ot+1)δ(j, n)amnαt(m)+

bn(Ot+1)amn
∂αt(m)
∂bj(k)

)

∂α1(n)
∂bj(k)

= πnδ(O1, vk)δ(j, n)

and forπi:

∂αt+1(n)
∂πi

=
N∑

m=1

amnbn(Ot+1)
∂αt(m)

∂πi
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Figure 1. Mean classification performance for
various model pairs.

∂α1(n)
∂πi

= bi(O1)δ(i, n)

In the above,δ(x, y) is the Kronecker delta function:

δ(x, y) =

{
1 if x = y,

0 otherwise
(10)

The equations above provide a recursive means of com-
puting the partial derivatives of probability, w.r.t. model pa-
rameters, for a given observation sequence. The time com-
plexity of the calculation is linear w.r.t.T . This and the
results of section 4.1 allow us to calculate∂H(λ,T )

∂θ for all
parametersθ, ie. aij , bj(k) andπi. Unfortunately the com-
plexity is then exponential w.r.t.T , that is, the operation has
time complexity of orderO(MT ).

Since we now have the partial derivatives of both entropy
and likelihood with respect to all of the HMM parameters,
we can calculate∂C

∂θ using Equation 4, and so we can max-
imiseC using standard hill climbing/gradient descent based
numerical optimisation.

5 Results

The performance of the method has been tested in a clas-
sification task with the following methodology. An HMM
topology of two hidden states and two observation symbols
was chosen, with a “feed forward” structure (upper trian-
gular in the transition matrix). Two HMMs were then ran-
domly initialised subject to the topology and structure con-
straints above, and a bias was placed on the long diagonal

of the transition matrix by choosing uniformly random (in
the range[0, 1]) transition probabilities, then adding 3 to
the long diagonal and normalising eachpmf to satisfy the
stochasticity constraint. Structure was also added to the ob-
server matrix by similarly biasing a single randomly chosen
probability from the observationpmf of each state. From
each of these two “true” or “generating” models, 5 training
and 500 testing sequences of length 4 were randomly gen-
erated. The sequences were chosen to be so short, and the
number of states so few, due to the exponential time com-
plexity the entropy calculation (see Section 2.3).

The training set of each model was then used to esti-
mate an HMM with the same topology as that of the ini-
tial models, using the following training algorithms: Baum-
Welch maximum likelihood [5], Mackay model averaging
[2], Brand’s entropic prior [1], and finally the maximum
entropy method presented in this paper. For the maximum
entropy method, theb value of Equation 5 was varied from
0 to 1 with a step size of 0.05. Following this, the test set
was then classified by all of the pairs of learnt models, and
also by the “true” models. This entire procedure was re-
peated 252 times with different random seeds. The mean
classification performance over the 252 trials is shown for
each model pair in Figure 1.

6 Discussion

Before considering the information presented in Figure
1, it should first be noted that the amount of data used to
construct the curves is somewhat insufficient. For exam-
ple, the sign test shows that the hypothesis “Mackay Model
Combination is no better or worse than Brand’s entropic
MAP” is correct to the significance levelp ≤ 0.796, how-
ever the true models are significantly better than all others,
and the entropic MAP and Mackay model averaging meth-
ods are better than Baum Welch at the 90% significance
level. With these considerations of statistical significance
in mind, we proceed to discuss those features Figure 1 that
are likely to be significant.

The first thing to notice is that there are indeed improve-
ments to be made over the Baum Welch algorithm. Next,
we see that the “Entropy-Likelihood Combination” method
is no better or worse than random forb = 0 – this is to be
expected sinceb = 0 corresponds to pure entropy maximi-
sation, which gives an HMM equivalent to the independent
sampling of a random variable with uniformpmf. As b in-
creases, so does the performance of the maximum entropy
models, untilb = 0.2. This may seem to be a surprisingly
small value for optimumb, but this is partly due to the fact
that in our implementation of the training method, the log-
likelihood term of Equation 4 is in fact the sum of the log-
likelihood for each of the five training sequences used in
the test. This results in the likelihood term effectively being
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increased in magnitude by a factor of five. Our conjecture,
however, is that the optimal value forb is a function of the
entropy of the generating HMM (or more generally, the en-
tropy of the generating source, which in most practical ap-
plications will not be an HMM). If this conjecture is correct,
then it may well be possible to determine the correct value
of b for a given application, based on the statistics of known
sequences.

The main problem with the algorithm in its current form
is the computational intractability of the entropy calcula-
tion. Unfortunately, it is unclear whether an efficient cal-
culation exists. It may be possible to use an ad-hoc func-
tion that is similar to entropy, however it is unclear whether
this will be effective. To illustrate some of the difficul-
ties, imagine that our ad-hoc “approximation” ofH(λ) is
HA(λ) + HB(λ), whereHA(λ) is the entropy of the states
given the transition matrix and initial statepmf, andHB(λ)
is the sum of the entropies of the observer matrixpmf s.
Now consider the pathological case in which all of the ob-
serverpmf s have zero entropy except one, then by varying
only the transition matrix, the maximum entropy HMM is
obtained when the transition matrix always transitions (with
probability 1) to the state with the non-zero observationpmf
– that is, whenHA(λ) = 0! Nonetheless, there may exist a
function that performs well, for example the “variance” of
an HMM as defined in [9].

7 Future Work

Some possibilities for the continuation of the work are
the following:

• Attempt to find an efficient calculation forH(λ). Fail-
ing that, prove the hardness of the problem.

• Examine the performance of the system using various
easily calculated ad-hoc alternatives toH(λ).

• Investigate the relationship between the optimalb
value (of Equation 5) and the entropy of the generating
source.
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