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Abstract 
This paper describes our experiments to quantify the inher-
ent information content in images as a means to optimally 
present images where display pixels are limited.  Such low 
image quality applications include visual prostheses, or 
“ bionic eyes” , where implant electrodes are limited in 
number.  Results from subjective tests with 225 normally 
sighted viewers are compared to predictions made with a 
metric for information content.  

Keywords 
Information content, image presentation, low quality images 

INTRODUCTION 
Ideally image displays should be of highest spatial resolu-
tion for adequate human perception.  However in cases 
where size or manufacturing constraints limit the number of 
display pixels possible, intelligible perception is still de-
sired from these low quality coarse images.  One example is 
the developing area of visual prostheses, or “bionic eyes” , 
where implanted electrodes in contact with nerve cells in 
the visual pathway are stimulated by electric pulses.  Elec-
trode array sizes of current prototypes include 25x25 [1] 
and 10x10 [2] which result in significant information loss.  

 

We are reviewing image processing methods to efficiently 
use limited display pixels.  Previously we have determined 
the impact of several novel image processing techniques on 
object recognition [3].  The concept of importance mapping 
was found to improve recognition of low quality images.  
Importance mapping aims to predict where the human eye 
will fixate in an image, ie. what are the salient areas or re-
gions of interest in an image.  

 

In this paper we propose an improved model which maxi-
mizes the information content in the resulting final sali-
ency/importance map.  We describe the Importance Map 
concept and then introduce the concept of Visual Informa-
tion Content.  Our psychophysical experiments to quantify 
this term are outlined along with the development of our 
metric for information content in images.  Results of subjec-
tive visual information are compared to metric predictions.  
Finally we show that subjective information content is cor-
related with object recognition and is thus a suitable meas-
ure to use to optimise image presentation. 

 

IMPORTANCE 
Several region-of-interest algorithms which predict where 
the human eye fixates on an image are reported in the litera-
ture (eg. [4-7]).  When compared against subjective tests 
using eye-tracking machines or similar attention-recording 
devices, the region-of-interest algorithms correlate highly.  
An extension of these algorithms is the concept of assigning 
an importance score or weighting to each area in an image 
to generate an “ importance map”  [5,7].  This importance 
ranking has previously been applied in visually lossless 
compression, where improved compression ratios have 
been achieved with high perceived image quality.   
 
Several image features are known to influence attention in 
the human viewer, including motion, location, contrast, size 
and shape.  Feature maps/images are developed represent-
ing each feature and then combined to form an overall im-
portance map.  Several combination strategies have been 
attempted, ranging from linear summation of features (all 
weighted equally) [4,5] to weights selected in accordance 
with eye-tracker data [7].  We propose a new method where 
feature map weights are selected iteratively to maximise the 
information content in the resulting importance map.  Thus 
there is a need for defining the concept of information con-
tent. 
 

QUANTIFYING INFORMATION CONTENT 
We have conducted experiments to attempt to quantify the 
amount of inherent visual information in images.  In the 
experiments images were compared with each other to ob-
tain a ranking from most to least visually informative.   

 

There were 9 image quality classes tested.  Original images 
were 256x256 pixels representing a range of scene types.  A 
decreasing image quality scale was presented using spatial 
resolutions typical of visual prosthesis designs (25x25, 
16x16, 10x10) and reducing the grey levels from full grey-
scale to binary.  It was also of interest to expose the struc-
ture of an image by presenting image edges. 

 

A Metric for Information Content  
Reduced quality image sets were prepared for each of the 
images shown in Figure 1.  A visual information metric was 
developed from analyzing the subjective scores of subjects 
ranking the images. 



        

                 
 

Figure 1 – Visual Information Metric obtained from 7 
images representing a range of scene types. 

 

Participation was on a voluntary basis and comprised 271 
Year 11 students and 11 mature age respondents.  57 ques-
tionnaires (21%) were rejected due to invalid data.  Thus 
the final sample size was 225, representing sample sizes of 
25 for each of the 9 image quality classes. 

 

Participants had no prior knowledge of the images.  Booklet 
instructions stated that a range of high quality and low qual-
ity images could be expected, and although the low quality 
images might just appear as a range of blocks, they may be 
similar to what a blind person might see with a bionic eye. 
Viewing conditions for the experiment were not controlled. 

 

Two questionnaire-based methods were used: 

1) Seven images presented all on one page 

The following instruction was presented with the images: 

Rank the images shown on each page for visual infor-
mation.  Place a number in each box beside the image. 

Rank the images for how much visual information they 
contain: 

1 = contains most visual information 

7 = contains least visual information 

 

2) Paired comparison (binary decision) questionnaire test  

Subjects were presented with an image pair and the instruc-
tion: 

WHICH IMAGE APPEARS TO CONTAIN MORE 
INFORMATION? 

Which image could you answer the most questions 
about? (eg. What is the scene? How many objects?) 

If you had to rely on only one of the images to perform 
a task which would it be? 

Subject response was measured on a 5-point scale: 

Box 1 = left image has much more information than right image 

Box 2 = left image has slightly more information than right image 

Box 3 = images have same amount of visual information 

Box 4 = right image has slightly more information than left image 

Box 5 = right image has much more information than left image 

Both methods gave similar results for ranking of subjective 
information content.  For example, when considering the 
ranking for all quality classes (n=225) both methods gave 
the following near identical ranking order: 

Face > Flower > Tree > Buildings > Lighthouse/Capsicum > Balloon. 

 

Subjective rankings have been used to propose a metric to 
quantify visual information that is stable across all image 
quality classes (not just the ones used in these tests).  15 
image attributes were considered for the visual information 
metric: 

1. file size 

2. standard deviation 

3. maximum standard deviation in 4 image quadrants 

4. variance 

5. maximum variance in 4 image quadrants 

6. entropy 

7. number of edges 

8. number of segments 

9. fractal dimension 

10. 11.  12. image internal similarity measures 

13. 14. 15. image symmetry measures 

 

Three measures were used for image internal similarity (ex-
act match across x and y axes) and image symmetry (mirror 
match across x and y axes): 

• exact pixel match - no sub-block analysis (same result 
operating on big or small block) 

• shaded pixel difference between blocks - 5 level sub-
block analysis (objects might be in a different position 
within a block) 

• average pixel value - 5 level sub-block analysis 

Stepwise regression was used to search for the optimum 
subset of variables.  The procedure was based on sequen-
tially introducing variables into the model one at a time and 
testing the significance of all variables at each stage.   The 
most stable performance was found to be from a metric 
consisting of the number of image edges alone. 

ie. Information Content = f(edges) 

This is an interesting result considering Marr’s emphasis of 
zero crossing (edge) detection in producing images of the 
external world [8].  This includes their role in the formation 
of a primal sketch to derive shape information from images, 
and biological mechanisms for detecting oriented zero-
crossing segments in retinal ganglion cells.  

 

This metric is now validated against additional data col-
lected in the experiment. 



Validating the Information Content Metric  
A number of additional aspects/dimensions were explored 
to provide data to validate the metric and also determine 
what impact (if any) they had on perceived information 
content.  These issues were assessed by comparing sets of 3 
images against each other.   

 

 

Predictive performance of the information content metric is 
tested against these results.  The additional dimensions ex-
plored are shown below in Figure 2.  Low quality image 
sets were developed for the images and subjects were asked 
to rank the images for the amount of visual information they 
contain. 

 

 

 

1. No. of Objects 

   
3 images of increasing object number. 

 

2. Angle of Object 

   
3 images of a fruit bowl at 90, 45 and 0 degrees. 

 

3. Distance to Object  

   
3 images of a couple on a bicycle with decreasing  

distance to the couple’s faces. 

 

 

 

 

 

4. Closeness between Image Objects 

   
3 images of different couples with decreasing  

closeness between the couple. 

 

5. Image Detail 

   
3 images of the same face with different  

edge detail (phone and second face). 

 

6. Contrast between Objects & Surround 

   
3 images of capsicums with varying contrast 

 

 7. Variety of Object Types 

   
3 images comparing different object types  

(orange, sunglasses, scissors, mug).  

 

 

 

Figure 2 – Visual Dimensions used to validate the metric 



Results 

63 visual information rankings were obtained (7 fac-
tors/dimensions x 9 image quality classes).  Dominant pat-
terns (ie. the most frequently specified ordering in terms of 
perceived information content) were identified for each 
case.  The strength of the dominant patterns (ie. the fre-
quency with which that pattern was specified by observers) 
ranged from 96% (24 of 25 respondents ranking images in 
that order) to 28% (only 7 of 25 respondents).  The number 
of cases for each ten percentile class is given in the first 
column of  Table 1. 

 

Table 1 – Metric Performance 

Strength and 
number of cases 
for dominant 
viewer patterns 
(63 in total) 

Frequency 
of image 
with highest 
info content 
being pre-
dicted by 
metric 

Frequency 
of exact 
ranking 
being pre-
dicted by 
metric 

90-100%:  3 100% 100% 

80-89%: 4 75% 75% 

70-79%: 1 100% 100% 

60-69%: 12 67% 25% 

50-59%: 6 83% 50% 

40-49%: 16 38% 19% 

30:39%: 19 32% 21% 

20-29%: 2 100% 100% 

10-19%: 0 - - 

0-9%: 0 - - 

 

 

The performance of the Information Content metric in pre-
dicting subjective dominant viewer patterns is also shown in 
Table 1.  Out of the 63 test cases examined, three cases had 
90% or above consensus from subjects viewing the sample 
set.  For each of these cases, the metric successfully pre-
dicted not only which of the 3 images had the highest in-
formation content (2nd column above) but also the ranking 
order chosen by subjects (3rd column above).  Metric per-
formance at weaker subject consensus levels are also 
shown. 

 

It was of interest to further examine strong dominant viewer 
patterns in the data.  Eight of the 63 rankings had 70% or 
above consensus among viewers.  Five of these related to 
the number of objects in the scene. 

 

Strong viewer preferences are shown in Figure 3. 

 

Number of Objects in Scene 

5 image quality classes: 16x16_Binary (88%), 
25x25_Binary (92%), 256x256_Edges (84%), 
256x256_Binary (96%), 256x256 (96%) 

Highest   Lowest 

    
All 5 cases predicted by metric?: Yes 

Closeness between image objects 

1 image quality class: 25x25greyscale set (80%) 

Highest   Lowest 

   
Case predicted by metric?: Yes 

Image Detail 

1 image quality class: 16x16greyscale set (80%) 

Highest   Lowest 

   
Case predicted by metric?: No  

(Metric prediction: phone > 2 faces > single face) 

Contrast between Objects &  Surround 

1 image quality class: 256x256_Edge set (72%) 

Highest   Lowest 

       
Case predicted by metric?: Yes 

 

Figure 3 – Strong viewer preferences (70% or above 
consensus among viewers) showing images ranked 
from highest to lowest perceived information content 

Four conclusions can be drawn from Figure 3: 

1. the more objects in the scene, the higher the visual in-
formation  

2. the closer the objects in the scene, the higher the visual 
information 

3. a simple face with no surrounding clutter was most 
visually informative at low resolution levels 

4. strong edges, arising from high intensity contrast, cor-
respond with high perceived information content 

STRONG 
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The visual information metric predicted 7 of the 8 strong 
viewer preferences (70% or above consensus level).  View-
ers of the 16x16 greyscale Image Detail set ranked a simple 
face as containing most visual information, while the metric 
ranked the image of the phone and two faces ahead of the 
single face.  The familiarity and strong recognition of the 
human face at low levels of image quality may cause view-
ers to select it over others containing unrecogniseable 
blobs.  

  

The metric was found to work best with binary images, 
which are expected from at least early prototype designs.  
(Limited greyscale may be possible by modulating stimulus 
amplitude, frequency and pulse duration [9]).  The number 
of ranking cases where the metric was able to predict the 
image with the highest information content is shown in Ta-
ble 2 below.  There are a total of seven ranking cases for 
each image quality class, corresponding to each visual di-
mension explored. 

 

Table 2 – The number of correct metric predictions of 
images with the highest information content 

10x10 Binary set  - 4/7 10x10 Greyscale set – 1/7 

16x16 Binary set - 6/7 16x16 Greyscale set – 1/7 

25x25 Binary set - 4/7 25x25 Greyscale set – 3/7 

256x256 Binary set - 6/7 256x256 Greyscale set – 3/7 

256x256 Edge set - 6/7 

 

This may be another reason why the metric prediction for 
the 10x10 greyscale Image Detail set did not agree with the 
ranking chosen by 80% of viewers.  Table 2 shows that for 
16x16 greyscale images, the metric was successful in pre-
dicting the image with the highest information content in 
only 1 out of 7 cases.  However for 16x16 binary images, 
the metric prediction was correct for 6 out of 7 cases.  It 
should be remembered that the strength of dominant pat-
terns on which metric performance is assessed range from 
96% to 28%.  At high levels of viewer consensus, the met-
ric is accurate in predicting images with the highest infor-
mation content, and is thus considered acceptable for this 
application.  

 

It is useful to now show that this measure for information 
content is an adequate pointer to how well an image might 
be recognised. 

 

CORRELATIONS BETWEEN RECOGNITION RATE 
AND PERCEIVED INFORMATION CONTENT 
We wished to determine if there was any relationship be-
tween recognition rates and the amount of visual informa-
tion as perceived by viewers. 

 

The experiment also included a component where recogni-
tion ability was assessed.  Subjects were presented with 
images shown in Figure 1 and the following instruction: 

CAN YOU TELL WHAT IS SHOWN IN EACH IMAGE. 

Write a word under each image to describe the main object or 
content of the scene. 

Put a circle around the images that you are confident about. 

 

There were no clues provided as to the context of the image 
(ie. an open-ended guess).  Relationships between correct 
object recognition and subjective information content 
scores were obtained for each image quality class (for ex-
ample, Figure 4 shows the relationship for 25x25 binary 
Paired Comparison experiments ).   

Figure 4 – Example relationship between recognition 
and information content (25x25 Binary Paired Compari-
son data) 

 

We then assessed the significance of these relationships. 
Linear regression models for each quality class were devel-
oped for two series of data: 

1. where images were presented at one time 

2. paired comparison data  

The significance of the models and correlation coefficients 
appears in Table 3 over. 

 

There was some evidence for correlation between ranked 
information content and recognition rates with significance 
levels ranging from P=0.05 to P=0.1 for all but the 10x10 
greyscale image set.  Thus the concept of visual information 
content can be considered an adequate measure to optimise 
in importance map generation to enhance recognition. 
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Table 3 – Correlation coefficients between recognition 
rate and perceived information content 

 Images presented at one 
time 

Paired Comparison 

Image 
Quality 
Class 

R 

Correla-
tion 

Coeff. 

Significance 

F(1,7-1-1) test 

R 

Correla-
tion 

Coeff. 

Significance 

F(1,7-1-1) test 

10x10 Binary 0.76 0.05 0.76 0.05 

10x10 G.S 0.54 0.21 0.36 0.43 

16x16 Binary 0.69 0.09 0.71 0.07 

16x16 G.S 0.70 0.08 0.61 0.15 

25x25 Binary 0.90 0.01 0.85 0.01 

25x25 G.S 0.75 0.05 0.81 0.03 

256x256Edge 0.70 0.08 0.66 0.10 

256x256 Bin 0.69 0.09 0.73 0.06 

 

CONCLUSIONS  
In the field of low quality vision, there is a need for deliver-
ing maximum scene information to a limited number of 
display electrodes/pixels.  In this paper we have proposed a 
method to enhance recognition using importance maps 
weighted to maximise the “ information content”  in the re-
sulting importance map.  We have described our experi-
ments to quantify this term.  The number of edges in an 
image was found to be the best statistic out of a 15-variable 
multiple regression analysis, to correlate with subjective 
rankings of visual information.  The metric was tested on 
additional data and found to be appropriate in assessing 
information content.  Finally we showed that subjective 
information content was significantly related to object rec-
ognition.  We are applying this now to generating improved 
importance maps which will be compared to other predic-
tive algorithms and eye-tracker data. 
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