
Comparison of Popular Non-Rigid Image Registration Techniques and a New
Hybrid Mutual Information-Based Fluid Algorithm

C. Fookes and A. Maeder
Research Concentration for Computer Vision and Automation

Queensland University of Technology,
GPO Box 2434 Brisbane, 4001 QLD Australia

c.fookes@qut.edu.au

Abstract

Recently there has emerged a need to compute mul-
timodal non-rigid registrations in a lot of clinical ap-
plications. To date, the viscous fluid algorithm is per-
haps the most adept method at recovering large local mis-
registrations that exist between two images. However, this
model can only be used on images from the same modal-
ity as it assumes similar intensity values between images.
This paper presents a solution to this problem by propos-
ing a hybrid non-rigid registration using the viscous fluid
algorithm and mutual information (MI). The MI is incorpo-
rated via the use of a block matching procedure to gener-
ate a sparse deformation field which drives the viscous fluid
algorithm. This algorithm is compared to two other popu-
lar local registration approaches, namely Gaussian convo-
lution and the thin-plate spline warp. Results show that the
thin-plate spline warp and the MI-Fluid approach produce
comparable results. However, Gaussian convolution is the
superior choice, especially in controlled environments.

1. Introduction

Non-rigid image registration is an essential tool required
for overcoming the inherent local anatomical variations that
exist between images acquired from different individuals or
atlases. The majority of these non-rigid algorithms assume
the existence of similar intensities between images, restrict-
ing their use to intra- or mono-modality registrations. Re-
cently, however, there has emerged a need to compute mul-
timodal non-rigid registrations in a lot of clinical applica-
tions. The most prominent application of this is in the reg-
istration of pre-operative and intra-operative images. This
allows the display of pre-operative anatomical and patho-
logical tissue discrimination in the interventional field [7].

An important concept that arouse in the computer vision

field during the mid 1990’s was an entropy-based measure
known as mutual information (MI). This measure has its
roots in information theory and has demonstrated its power
and robustness for use in multimodality registration in the
rigid domain repeatedly. The strength of this measure lies
in its simplicity as it does not assume the existence of any
particular relationship between image intensities. It only
assumes a statistical dependence.

MI has been incorporated into a non-rigid registration by
several researchers. The main distinction between the pro-
posed methods lie in the way the MI is calculated. This
is accomplished either globally or locally [4]. However, to
date MI has never been incorporated with a physical contin-
uum model, (such as the elastic or viscous fluid algorithm).
The viscous fluid algorithm is a popular approach which
is capable of recovering large local mis-registrations. It
also ensures that the deformation field is physically smooth.
However, like most other non-rigid registrations, it assumes
similar intensity values between images.

This paper proposes a novel hybrid non-rigid registration
using the viscous fluid algorithm and MI. This new tech-
nique is also compared to two other popular non-rigid reg-
istration approaches, namely Gaussian convolution and the
thin-plate spline warp. All three methods rely on the exe-
cution of a block matching procedure to generate an initial
sparse deformation field. However, the way in which this
sparse deformation field is propagated to the rest of the im-
age depends on the technique utilised.

The outline of the paper is as follows. Some MI pre-
liminaries are outlined in Section 2. Section 3 introduces
non-rigid image registration in general, while Section 4 de-
scribes the techniques examined by this paper. This in-
cludes a general block matching approach, Gaussian con-
volution, thin-plate spline warps, and the new hybrid algo-
rithm incorporating MI and the viscous fluid algorithm. Re-
sults are presented in Section 5 and conclusions are drawn
in Section 6.
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2. Mutual Information Preliminaries

MI is an information theoretic measure and was pro-
posed for use in image registration by two independent
groups, Viola et al. [10] and Collignon et al. [3], in 1995.
The basic concept behind the use of this measure is to find a
transformation, which when applied to an image, will max-
imise the MI between the two images.

The MI formulation used by the techniques described in
this paper is based on the Kullback-Leibler measure [9] and
is given by,

I�X�Y � �
X
x�y

pX�Y �x� y� log

�
pX�Y �x� y�

pX�x�PY �y�

�
(1)

where the densities are estimated by normalisation of the
2D frequency histograms. MI is a measure of the degree
of dependence of the random variables X and Y . When
formulated using the Kullback-Leibler measure in Equation
1, the MI measures the distance between the joint distribu-
tion pX�Y �x� y� and the distribution associated with com-
plete independence, i.e. pX�x��pY �y� [8]. This measure
is bounded below by complete independence and bounded
above by one-to-one mappings.

3. Non-Rigid Image Registration

A rigid registration is composed solely of a rotation
and translation and literally preserves the ‘rigid’ body con-
straint, i.e. a body is rigid and must not undergo any local
variations during the transformation. This type of registra-
tion is distance preserving and is adequate for many applica-
tions in medical imaging including multimodality and intra-
patient registration. However, for inter-patient registration
or patient-atlas matching, non-rigid algorithms are required.
In a non-rigid approach, the ‘rigid’ body constraint is no
longer acceptable as it does not account for the non-linear
morphometric variability between subjects [6], i.e. there
exists inherent anatomical variations between different in-
dividuals resulting in brain structures that vary in both size
and shape. These non-rigid algorithms allow one image to
deform to match another image, thus overcoming any local
variations.

A non-rigid registration defines a deformation field that
gives a translation or mapping for every pixel in the image.
This is generally described by the following relationship.

If � T �x� � If �x� u�x�� � Ir (2)

In the above expression, If is referred to as the floating im-
age that is undergoing the deformation while Ir is the refer-
ence image. T denotes the non-rigid transformation which
equates to a translation of every pixel x in the floating im-
age by a certain displacement defined by the displacement
field u�x�.

4. Description of Techniques

There are many ways of estimating the required dis-
placement field u�x� in Equation 2. This includes de-
formable models, optical flow, elastic and viscous fluid
models, spline warps, truncated basis function expansion
methods, and also local registration approaches [4]. The
type of method employed will also determine what con-
straints are imposed on the deformation field. Generally
speaking, the constraints are used to ensure the existence of
a smooth and continuous deformation field.

The techniques that will be described here however, are
all based on a local registration approach referred to as
block matching. This method is quite popular as it easily al-
lows the incorporation of the MI measure into the non-rigid
registration. This approach is described below, along with
the three techniques which are used to propagate the sparse
deformation field to the entire image. They are Gaussian
convolution, the thin-plate spline warp, and a new hybrid
algorithm incorporating MI and the viscous fluid algorithm.

4.1. Block Matching

Non-rigid registration can be made possible through lo-
cal registration approaches and several methods exist to
accomplish this. One common method, known as block
matching, is where a grid of control points are defined on an
image which are each taken as the centre of a small window.
These windows, which usually overlap their neighbours, are
then translated to maximise a local similarity criterion. MI
is used as the similarity measure in order to obtain a robust
multimodality non-rigid registration.

The location of the maximum can then be found through
an exhaustive search or with the use of local optimisation
strategies. The location of the maximum then represents
the existence of a corresponding window in the second im-
age, the centre of which being the homologue point of the
corresponding grid point defined in the first image. Thus,
this block matching approach can be used to generate two
corresponding sets of control points (or landmark points)
between two images. This information can then be used
to generate a sparse deformation field with the translations
known at each of these grid points. An example of a sparse
field generated using block matching procedures is shown
in Figure 1.

4.2. Gaussian Convolution

As described above, the execution of a block matching
procedure results in the generation of two corresponding
sets of control points. By using these control points with
known deformations in a non-rigid registration, constraints
are being imposed on the space of possible deformations.
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Figure 1. Sparse deformation field calculated
using a block matching procedure.

This has been described as a static constraint problem [5],
or an interpolation issue as the problem then becomes one
of how to interpolate the deformations at these known lo-
cations to the rest of the image. Several techniques exist to
accomplish this.

One of the simplest approaches is to convolve this sparse
deformation field with a 2D Gaussian kernel (Gaussian
smoothing), to propagate the deformations to the rest of the
image. It has been described in [6] that Gaussian smoothing
is equivalent to solving a heat or diffusion equation. Thus,
this approach equates to an oversimplified version of a phys-
ical model-based algorithm (such as the elastic or viscous-
fluid model). As model-based techniques are solved in an it-
erative process, the two choices essentially become whether
to perform Gaussian smoothing on either the final or in-
cremental deformation field. The first choice equates to
an oversimplified elastic transformation while the second
choice equates to an oversimplified viscous fluid transfor-
mation [6].

4.3. Thin-Plate Spline Warp

Another popular approach very suited to the propaga-
tion of a sparse deformation field is the thin-plate spline
warp. In this method, an image is represented as a thin
metal plate which undergoes certain deformations at se-
lected points, defined by the sparse deformation field. The
thin-plate spline has an elegant algebra that expresses the
dependence of the physical bending energy of the thin metal
plate to these point constraints [1].

For 2D image registration, two 2D thin-plate spline
warps are used to describe an interpolation map from R� to
R� relating two sets of landmark points, (one for the defor-
mation in the x and y-directions respectively). The funda-
mental basis function used by the thin-plate spline is given
by the following expression,

z�x� y� � �U � �r� log r� (3)

where r is the distance
p
�x� � y�� from the Cartesian ori-

gin. The functionU�r� also satisfies the following equation.

��U �

�
��

�x�
�

��

�y�

��

U � ���� (4)

Thus, U is a fundamental solution of the biharmonic equa-
tion ��U � �, the equation for the shape of a thin metal
plate vertically displaced as a function z�x� y� above the
�x� y�-plane. Note that this basis function is the natural gen-
eralisation to two dimensions of the function jxj� which de-
scribes the common 1D cubic spline [1].

A thin metal plate which is subjected to vertical displace-
ments at selected points with any arbitrary spacing will min-
imise the 2D bending energy of the metal plate. This is
equivalent to minimising the following expression.
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(5)

The minimisation of this energy represents a smoothness
criterion which imposes constraints on the deformation
field, ensuring that the deformation in between the known
landmark points varies smoothly. Note that this process is
repeated twice - for the deformation in the x and y direc-
tions respectively.

4.4. A New Hybrid MI-Based Fluid Algorithm

To date, the viscous fluid registration algorithm is per-
haps the most adept method at recovering large local mis-
registrations that exist between two images. This is due to
the internal restoring forces which relax as the image de-
forms over time. This method ensures that the deformation
field is physically smooth. However, like the elastic model,
the viscous fluid model can only be used on images from
the same modality as it assumes similar intensity values be-
tween images.

In the viscous fluid model, the instantaneous velocity
field v�x� t� is linked to external forces by the Navier-
Stokes viscous fluid partial differential equation which is
shown below [2],

�r�
v�x� t� � ��� ��r�rT � v�x� t�� � b�x�u�x� t�� � �

(6)

where v�x� t� is the instantaneous velocity of the displace-
ment field u�x� t� at time t. The term b�x�u�x� t�� repre-
sents the applied forces and the parameters � and � are the
viscous fluid coefficients. This equation is solved at each
time step and the driving forces are derived from image dif-
ferences and intensity gradients.

The main motivation behind the creation of a hybrid al-
gorithm was to incorporate the strengths of both the viscous



fluid algorithm and an information theoretic measure such
as MI. This would allow the execution of a fluid registration
on multimodal images. In the original viscous fluid algo-
rithm described above, the driving forces are formulated in
the most possible local manner, i.e. the force acting at a
particular voxel is derived from the intensity difference and
gradients of a point, not a region. However, in the approach
of the hybrid algorithm, these driving forces are replaced
with those derived from the MI block matching scheme.
As mentioned in Section 4.1, the block matching is used
to produce two sets of corresponding point sets with known
deformations at each point. MI is the similarity criterion
used in order to allow for a multimodal registration. The MI
is also formulated using the frequency histogram approach
and Equation 1.

The forces derived from the sparse deformation field are
then fed into the viscous fluid algorithm which are used as
the driving potentials instead of the original image differ-
ences and gradients. The significant difference however,
lies in the manner in which the forces were calculated. In-
stead of utilising the intensity difference and gradients of a
point, the block matching approach estimates the displace-
ment field and hence the driving forces of a point by in-
corporating information that is contained in a small region
around the point.

5. Results

The three local registration approaches were tested on
a pair of simulated multimodal images with known defor-
mations. The simulated multimodal images were gener-
ated from a single MR image and a deformed version of it-
self. The intensities of the reference image were also trans-
formed using I� � sin�I � �

���
� to simulate images from

different imaging modalities. These images are shown in
Figure 2, along with a rescaled difference image. This dif-
ference image however, was computed without the intensity
transformation in order to display more meaningful results.
This is also the case for other difference images displayed
later.

The results of the registration are shown in Figure 3. The
letters (a), (b), and (c) are used to represent results com-
puted with Gaussian convolution, the thin-plate spline warp,
and the MI-Fluid algorithm respectively. The numbers (1),
(2), and (3) are used to represent the final image after reg-
istration, the rescaled difference image, and a histogram of
the intensity differences respectively. Quantitative results
are shown in Table 1. This includes the SSD (sum of square
differences) and SAD (sum of absolute differences) mea-
sures, and the mean � and standard deviation � of the error.
These results are also shown for the two images before reg-
istration described by the term ‘pre-reg’.

From the rescaled difference images shown in Figure

3, it appears that all three algorithms have reduced lo-
cal anatomical differences quite considerably when com-
pared to the differences before registration. However, these
rescaled difference images can be a little misleading as the
intensities representing the differences are scaled to fit into
the range f�� ���g, no matter how large the actual differ-
ence. Thus, the histogram of intensity differences is also
presented as another helpful avenue for evaluating the re-
sults.

Method SSD SAD Error � Error �

Pre-Reg ����� ��
�

����� ��
�

����� ������

Gauss Conv ����� ��
�

���	� ��
�

������ ����

TPS ����� ��
�

����� ��
�

����� �����

MI-Fluid ����� ��
�

����� ��
�

����� �����

Table 1. Quantitative error measures of regis-
tration results.

From the histograms, it can be seen that all methods
have errors concentrated around the origin. However, Gaus-
sian convolution has a much lesser spread of its errors than
the other two approaches. This is also illustrated in Ta-
ble 1. The Gaussian convolution method also has signifi-
cantly lower SSD and SAD scores, as well as a mean error
closer to the origin, and a much smaller error standard devi-
ation. The MI-Fluid algorithm has a larger SSD score than
the thin-plate spline warp, yet it has a smaller SAD score.
This suggests that overall, the MI-Fluid approach produces
less errors than the thin-plate spline warp. However, MI-
Fluid has more errors in the outer regions which carry more
weighting in the SSD measure, resulting in a higher SSD
score than the thin-plate spline warp. Other results between
these two methods are comparable.

6. Conclusion

This paper has proposed a hybrid non-rigid registration
algorithm using MI and the viscous fluid algorithm. The MI
is incorporated via the use of a block matching procedure to
generate a sparse deformation field which drives the vis-
cous fluid algorithm. Results show that the hybrid approach
is successful in recovering local deformations between mul-
timodal images. However, it is susceptible to interpolation
artifacts which prevent the estimation of sub-pixel transla-
tions. Thus, the estimated deformation field will not vary
smoothly, instead it will vary with integer valued steps.

This algorithm was also compared to two other popular
local registration approaches, namely Gaussian convolution
and the thin-plate spline warp. Results showed that the thin-
plate spline warp and the MI-Fluid approach produced com-
parable results. However overall, simple Gaussian convolu-
tion was significantly superior. The main drawback of using
Gaussian convolution is that appropriately sized variances
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Figure 2. Manually deformed simulated multimodal images. (a) Reference image with intensity trans-
formation I

� � sin�I � �

���
�, (b) Deformed floating Image, (c) Rescaled difference image.

and window dimensions must be selected for the Gaussian
smoothing functions. The size of the variance will deter-
mine the extent of the deformation and its region of influ-
ence. In controlled environments, these variances can be
manually selected for good results, as was the case in this
paper. However, for situations where the amount of defor-
mation involved and the spacing of control points in the
block matching are unknown, then variance selection can
have a much greater impact on final results.

From the results it is concluded that the thin-plate spline
and hybrid MI-Fluid approach would be appropriate for
multimodal applications that require a coarse-to-medium
registration. However, these two methods do not rely so
heavily on parameter selection. This suggests that these two
methods may be the optimal choice in unknown situations.
Overall though, if conditions are known, then Gaussian con-
volution is the better selection as it can be tailored to a sit-
uation, is simpler and also computationally faster than both
the thin-plate spline and the MI-Fluid approaches.
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Figure 3. Registration results. Letters (a), (b), and (c) represent results computed with Gaussian
convolution, thin-plate spline warp, and MI-Fluid algorithm respectively. Numbers (1), (2), and (3)
represent the final image after registration, the rescaled difference image, and a histogram of the
intensity differences.
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