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Abstract

This paper presents an edge-based ball detection system
for use in RoboCup robots. The algorithm can be economi-
cally coded for real-time operation in integer maths digital
signal processing units. It allows colour dependencies in
existing ball detection algorithms to be relaxed. This work
is undertaken as part of the world-wide RoboCup project
which aims to stimulate robot development by investigat-
ing difficult test problems.

1 Introduction

The international RoboCup competitions stimulate
development in mobile robots that function collec-
tively and incorporate a team approach to problem
solving. While the RoboCup challenge is only part
way towards its stated 2050 goal of achieving au-
tonomous humanoid robots that can defeat humans
in soccer, the existing systems are relatively complex
and display team cooperation. A hierarchical view of
the RMIT University robot system shows a top-level
strategy module which coordinates the operation of
robot team members using sensory inputs such as vi-
sion and touch, and implements strategies via actua-
tor outputs including motor control, steering, and ball
kicking systems.

This paper presents research done at RMIT Univer-
sity to enhance the vision system of its middle league
(F2000) robots. In particular, the strict colour depen-
dency of previous ball detection systems has been re-
laxed by developing an adaptive arc identification and
location system that processes image data containing
edge information. Analysis of arc parameters such as
radius, location, and recent trajectory is then used in
revised ball identification schemes.

Examples are presented for a number of edge ex-
traction techniques applied to colour image field data,

and the adaptive arc detection scheme is shown ap-
plied to a ball in full view and also a ball obscured by
a (worst case) curved object.

This paper provides a brief description of the exist-
ing image processing system in order to set the context
for the arc-based scheme. Some preprocessing algo-
rithms used to generate edges are described, includ-
ing schemes with simplified computation to assist in
real-time application, and finally the edge tracking al-
gorithm is presented with field images.

2 Visual Environment

In current competitions, the robot environment is
tightly controlled so that robots can interact with
a world that can be understood with very limited
knowledge. The field lighting levels are specified so
that robots do not need to handle significant dynamic
lighting effects. In addition, the ball and each goal
region may be uniquely coloured to simplify robot
orientation and target acquisition. The dependency
of current robots on the use of colour in identifying
objects is highlighted by the need, in some tourna-
ments, to remove coloured items from spectators be-
cause they can confuse the vision systems.

Following the Melbourne 2000 event, a RoboCup
rules debate suggested the possibility of increasing the
complexity of the environment in which the robots
must compete, through such changes as removal of
field walls and unique colour schemes. This debate
has lead to the current work which attempts to in-
corporate additional shape information into ball iden-
tification while reducing the relative importance of
colour.

2.1 Overview of Existing System

The existing vision system [UVD,SBK] uses a Pul-
nix 1/3” CCD colour analogue camera attached to



a custom interface board that connects a Brooktree
video capture device to a Texas Instruments DSP
(TMS320C6211).

Figure 1 shows the
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Figure 1. System
Information Flows

information flows in the
three processing stages.
The first stage accepts
a video signal from
the camera, digitises it,
and reduces the video
resolution by coding
the digital data to 16
bits/pixel to allow more
efficient pixel data pack-
ing in DSP memory. In
the second stage, the
enhanced direct memory
access (EDMA) con-
troller provided by the
DSP is programmed to
be a state machine which
retrieves image frames
from the video capture
device at a rate of 25
frames/second and an
image size of 450x450
pixels with little CPU
intervention.

The DSP analyses the
image data and creates
an object table with
attributes of type (line,
solid, etc.), colour, and
image coordinates to
describe each element.
Field information is

based on straight line edges detected by a modified
Hough transform using integer maths. Information
relating to other robots and the ball is derived from
colour information.

The ball detection system analyses image scans and
detects colour transitions. Regions that match the
colour of the ball are then analysed and an estimate
of center and diameter are generated. If these param-
eters are within suitable limits, a ball detection occurs.

To reduce computation, the estimated diameter is
obtained from the widest horizontal scan segment
with the desired ball colour. If a closer object obscures
either side of a ball, then the estimate of center and
diameter will be incorrect. Ideally, both the largest
vertical and largest horizontal dimension should be
used to derive diameter estimates. However, the use
of overhead lighting systems in competition venues

may cause shadows which make the detection of the
bottom edge of the ball unreliable.

The final stage is implemented by interfacing the
DSP output to a robot-mounted laptop which pro-
cesses aims and strategies, and estimates range in-
formation based on the vertical position of an object
within an image. The laptop also handles the other
sensor inputs such as proximity detectors, and out-
puts such as motor controller commands.

2.2 Deployment of Image Analysis Algorithms

The system was developed by incorporating a
shape-based ball identification algorithm into the ex-
isting colour-based ball detection scheme. The new al-
gorithm initially provides an additional test of results
from the previous ball detection system.

3 Edge-based Arc Detection

Arc detection is used to determine the ball center
and diameter as a full circle is not available when
the ball is partially obscured. Because there are po-
tentially many other arc sources in a field, additional
information such as dimensional constraints, relation-
ship to previous ball sightings, and colour is used to
filter out spurious responses.

To detect arcs, edges in the image are enhanced
and a contiguous set of straight line segments is con-
structed between adjacent pixels that may form an
edge. By interpreting the straight line segments as
chords of an arc, perpendicular projections from each
chord are used to identify the centers of these poten-
tial arcs. A cluster of centers will then confirm and
identify an arc.

3.1 Edge Detection

The edge information is obtained by applying a
spatial differentiation operator to the image — see for
example [SBA] . For colour independence, this oper-
ator can be fed a preprocessed image such as image
energy i.e. an L2 norm is applied to the raw image, or
the absolute value of the pixel i.e. an L1 norm is ap-
plied to the raw image. An advantage of preprocess-
ing with an L1 operator before applying the spatial
differentiation operator is a reduction of computation.
The application of these operators is now detailed.

Figure 2 shows an ideal ball image sampled hor-
izontally, an image energy curve, its first derivative,
and its second derivative.

Any rapid changes in image energy I across a small
region give rise to higher peak values in the differen-
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Figure 2. Ideal Ball

tiated image. An approximation to a one-dimensional
differential operator at position x = i∆ is dI

dx ≈
I(i+1)−I(i)

∆ , where ∆ is the spatial sample interval in
the x direction. Extending this to two dimensions
gives

∂2I

∂x2
+

∂2I

∂y2
= k (I(i + 1, j) + I(i− 1, j) + I(i, j + 1)

+I(i, j − 1)− 4I(i, j)) ; k = constant.

Applying this operator to the typical field view
of a robot soccer field as shown in Figure 3(a) gives
the result shown in Figure 3(b). Previous research in
[ERD,UVD] shows that binarisation of RGB compo-
nents of the image, in an image preprocessing stage
prior to differentiation, leads to an enhanced edge dis-
play as shown in Figure 4(a). This provides the added
benefit of data reduction.

A further improvement in edge definition may be
possible for a typical field view if the preprocessing
includes: a band-pass filter centered on the target
colour; and a norm operator to generate monochrome
image data where the maximum output corresponds
to the target object’s colour. Preprocessing is then
completed with binarisation and differentiation to
yield the image in Figure 4(b). In effect, this recog-
nises that typical field objects have a colour that is
clearly different to the target. Note that if the target
has a colour that matches one of the dimensions used
to represent colour, e.g. red, green or blue in an RGB
format, then further computation reductions present
themselves.

3.2 Radius Projection

Given a region of interest, our algorithm chooses as
a reference a pixel in the edge enhanced image with
significant energy1 i.e. point p0 in Figure 5. Then,

1In off-line testing, the initial pixel may be chosen as the largest
value in the edge enhanced image for comparison purposes.

a nearby pixel p1 with significant energy is located
such that the two points form a chord of length > l.
A perpendicular projection through the mid-point of
chord p0-p1 indicates potential locations for the cen-
ter of the arc p0-p1. This process is then repeated for
a sequence of pixels pairs located on the potential arc,
and the intersections between the sequential projec-
tions leads to a cluster of potential center points. This
example shows two chords p0-p1 and p1-p2 with pro-
jections intersecting at a potential arc center.

The minimum length constraint l is imposed on
each chord because the location of each point is spa-
tially discretised based on the pixels in the sampled
image, and so very small length chords would intro-
duce excessive error in the calculation of centers.

When this algorithm is applied to an unobscured
ball image, the result shown in Figure 6(a) is obtained.
In this example, the algorithm has been run a num-
ber of times with slightly different starting points, so
that a larger number of projections have been pro-
duced. The clustering of intersections between suc-
cessive projections gives the location of the center of
the arc (or in this case, circle).

Note that, while we have highlighted the projec-
tions in this image, the actual system is only con-
cerned with the intersection point of pairs of equa-
tions that are illustrated by the projections from pairs
of adjacent chords.

An advantage of this algorithm is that it can func-
tion on obscured balls. In Figure 6(b), a number of
irregular objects are covering parts of the right hand
side of the ball which is also slightly distorted verti-
cally. A number of potential centers are identified, in
rough proportion to the size of the corresponding arc.
In this example, an arc associated with the ball is a
dominant image feature so the ball center is correctly
found. If the ball is mostly obscured, then the result
is unpredictable without additional information. The
algorithm is now described in detail.

3.3 Arc Location Algorithm

As mentioned previously, the points located on the
potential arc or circle have a minimum spacing of l
enforced. The algorithm starts from the initial point
identified for the largest edge image pixel, and then
generates a sequence of points along the potential arc
or circle.

1. Obtain edge image via application of two-
dimensional differentiation operator or similar
transform;

2. Find the magnitude of the maximum pixel emax



(a) Typical RoboCup Field (b) Differentiated Image (smaller
after processing)

Figure 3. Field Views
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Figure 4. Field Views with Preprocessing
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(a) Test Circle Detection (b) Obscured Circle

Figure 6. Projections for Center Location

in edge image, and choose α such that threshold
et = αemax can be used as a lower bound to iden-
tify significant peak values e ≥ et. In our work,
we typically use α = 0.9;

3. Designate the first point p0 = {x0, y0} where
e(p0) = emax;

4. Find the next point, p1 = {x1, y1}, where e(p1) ≥
et and ‖p1 − p0‖2 > l2, by conducting a localised
horizontal and then vertical scan for a pixel with
significant energy in the next search region found
by extending the current chord (illustrated in the
2nd stage of Figure 5). Note that calculation of a
square root to ensure adequate spacing of points
pi is avoided by testing distance squared;

5. Identify the chord mid-point q0 = {(x1 +
x0)/2, (y1 + y0)/2}. The perpendicular projection
from point q0 to r0 is defined in terms of a vector
dot product i.e. r0 − q0.p1 − p0 = 0;

6. Repeat the previous two steps to generate the
point sequences {p0, p1, p2, . . .}, {q0, q1, q2, . . .},
and a set of equations for {r0, r1, r2, . . .};

7. Choose to solve for intersection equations for
{ri, ri+1} i.e. sequential projections, to generate
potential center locations ci. Solving for intersec-
tion of adjacent projections also minimises stor-
age of point data;

8. Finally, an average of the coordinates of potential
center locations ci gives an estimate of the arc (or
ball) center. For more complex field views, the
image may be segmented and the average ci in a
segment suggests a localised arc center.

The potential center locations ci can be interpreted as
a vote for a potential arc center and therefore a vote
for the presence of a ball. An additional filtering stage
under development is to reject ci values that are lo-
cated more than a specified distance from a potential
center, in order to obtain a more tightly bound clus-
ter that is not influenced by outliers. For the current
robots, an ad-hoc filtering stage rejects a potential cen-
ter that fails to have 60% of its center estimates within
±20 pixels of the horizontal center or 60% of its cen-
ter estimates within ±30 pixels of the vertical center.
However, this scheme needs to be recast in relation to
the object size.

Where ambiguous results are obtained, additional
information must be used to clarify the location of a
single ball. For the RMIT University systems, this arc
detection algorithm is being used to enhance reliabil-
ity of other ball location schemes.

3.4 Algorithm Tuning

The size of l can be found by testing the algorithm
on the top and bottom arcs of a test ball, and then on
the far left and far right arcs of a test ball. The smaller
l is, the better tracking is obtained for the edge. How-
ever, projection errors due to the spatial discretisation
due to horizontal and vertical (scan) image sampling
become significant if l is made too small. For the range
of ball sizes encountered when viewing a ball at a
range of distances, l is chosen so that the chord sub-
tending each arc is approximately 10 or more pixels
long.

The threshold selection parameter α is chosen so
that a suitable number of preprocessed edge peaks are



generated — if α is too small, the edge tracker can be
confused by noise while if α is too high, any arcs may
be undersampled. It is possible to add a feedback loop
that adapts α up or down in order to achieve a rea-
sonable number of peaks. However, the effect of α
is not unduly sensitive in typical field lighting condi-
tions due to the use of preprocessing stages (binarisa-
tion and differentiation).

4 Conclusion

We have presented an edge tracking algorithm and
arc location scheme that has been successfully ap-
plied to RoboCup field images. A number of image
data preprocessing strategies have been discussed,
with features such as data reduction and colour-
centered edge enhancement. The edge tracking al-
gorithm provides a means of locating arcs and cir-
cles to identify the soccer ball. In the implementation
on the TMS320C6211 DSP, the actual chord and as-
sociated perpendicular projection equations were im-
plemented with minimal transcendental function calls
because this DSP does not have a floating point unit.

The availability of alternative ball detection algo-
rithms allows comparison testing and also focusses at-
tention on benchmarking. Previous RMIT RoboCup
systems have concentrated on getting a single algo-
rithm working for each critical stage so comparison
testing was not possible. In the current robot archi-
tecture, target tracking is performed at higher levels
so comparisons will apply to the processing of indi-
vidual image frames with the assumption that a re-
cently acquired target allows analysis to be restricted
to smaller parts of an image over a short time interval.

As the whole system must operate in real-time, it
is desirable that partial results obtained in the sam-
ple time be of use — the algorithm proposed here can
identify a ball before all of the visible circumference
has been traversed if a suitable number of potential
centers has been found i.e. an early result is possible
without identifying all chords or processing all signif-
icant edge pixels.
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