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Abstract 
This paper presents an object tracking technique based 
on the Bayesian Multiple Hypothesis Tracking (MHT) 
approach. Two algorithms, both based on the MHT 
technique are combined to generate an object tracker. 
The first MHT algorithm is employed for contour 
segmentation (based on an edge map). The second MHT 
algorithm is used in the temporal tracking of a selected 
object from the initial frame. An object is represented by 
key feature points that are extracted from it. The key 
points (mostly corner points) are detected using 
information obtained from the edge map. These key 
points are then tracked through the sequence. To confirm 
the correctness of the tracked key points, the location of 
the key points on the trajectory are verified against the 
segmented object identified in each frame. The results 
show that the tracker proposed can successfully track 
simple identifiable objects through an image sequence.   
 
Key words: Object tracking, Key points, Multiple 
Hypothesis Tracking, Contour segmentation, Edge 
grouping. 

1   Introduction  
The primary purpose of this paper is to track a selected 
object (as opposed to a single point feature) from the 
initial frame through the image sequence. The process is 
an attempt to extend the point feature tracking introduced 
in [13, 14] to object tracking. In this case, key points from 
the object are selected using a curvature scale space 
technique [11] to represent that object. The key points are 
temporally tracked and are validated against the object 
contour (obtained by grouping edge segments) in each 
frame. The tracking technique involves applying the MHT 
algorithm in two stages: The first stage is for contour 
grouping (object identification based on segmented 
edges) and the second stage is for temporal tracking of 
key features (from the object of interest). For the contour 
grouping process, we employed the algorithm developed 
by Cox et al [6], and for the key point tracking procedure 
we used the tracker introduced by the authors in [13]. 
Both algorithms combine to provide an object tracker.  
     The set of image contours produced by objects in a 
scene, encode important information about their shape, 
position, and orientation. Image contours arise from 
discontinuities in the underlying intensity pattern, due to 
the interaction of surface geometry and ill umination. A 
large body of work, from such areas as model-based 
object recognition and contour motion flow, depend 
critically on the reliable extraction of image contours. 
Reliable image contours are necessary to identify an 

object with certainty, which in turn is necessary for 
tracking the object over a period of time in a sequence of 
images. We use the term ‘object’ f or a group of edge 
segments that form a recognisable object (identified as 
belonging to the same object). The object will be 
identified by an enclosed (or near-enclosed) contour. 
     This paper is organised as follows: Section 2 gives a 
brief description of the Multiple Hypothesis Tracking 
(MHT) approach relating to edge segmentation. Section 3 
shows how the multiple hypothesis approach can be used 
for object recognition. In section 4 we briefly show the 
process to extract key points from an object, and the 
MHT approach for tracking key point features through an 
image sequence. Section 5 provides the object-tracking 
framework employed using methods described in section 
3 and 4. Section 6 gives results obtained from 
experiments. Section 7 gives a general discussion, and 
finally section 8 provides the conclusion. 

2   Multiple Hypothesis Framework for Contour 
Grouping 
This section briefly describes the multiple hypothesis 
approach in relation to contour segmentation. The details 
of which are discussed in [6-8]. 
     Fig. 1 outlines the basic operation of the MHT 
algorithm for contour grouping. At each iteration, there 
are a set of hypotheses (initially null ), each one 
representing a different interpretation of the edge points. 
Each hypothesis is a collection of contours, and at each 
iteration each contour predicts the location of the next 
edgel as the algorithm follows the contour in unit 
increments of arc length. An adaptive search region is 
created about each of these predicted locations as shown 
in Figure 2 [6]. Measurements are extracted from these 
surveill ance regions and matched to predictions based on 
the statistical Mahalanobis distance. This matching 
process reveals ambiguities in the assignment of 
measurements to contours. This procedure provides an 
associated ambiguity matrix (Ω) for each global 
hypothesis from which it is necessary to generate a set of 
legal assignments. As a result, the hypothesis tree grow 
another level in depth, a parent hypothesis generating a 
series of hypotheses each being a possible interpretation 
of the measurements. The probabilit y of each new 
hypothesis is calculated based on assumptions described 
in [6, 8]. Finally, a pruning stage is invoked to constrain 
the exponentially growing hypothesis tree. This completes 
one iteration of the algorithm.  
    In the following sections we briefly describe the 
contour-grouping algorithm employed, and the key point 
selection and tracking process used. Both these methods 
are based on the multiple hypothesis approach. 
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Figure 1: Outline of the multiple hypothesis algorithm for 

edge grouping 
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Figure 2: Predicted contour locations, a surveillance 
region and statistical Mahalanobis (elliptical) regions for 
a situation with two known contours (t1 and t2) and three 
new measurements (z1, z2 and z3). 

3   Object Recognition  
3.1   Contour Segmentation 
The contour grouping problem examined in this paper, 
involves assigning edge pixels produced by an edge 
detector [4, 5] to a set of continuous curves. Associating 
edge points with contours is diff icult because the input 
data  (from edge detectors) is noisy; there is uncertainty in 
the position of the edge, there may be false and / or 
missing points, and contours may intersect and interfere 
with one another. There are four basic requirements for a 
successful contour segmentation algorithm. First, there 
must be a mechanism for integrating information in the 
neighbourhood of an edgel to avoid making irrevocable 
grouping decisions based on insuff icient data. Second, 
there must be a prior model for the smoothness of the 
curve to base grouping decisions on. This model must 
have an intuitive parameterisation and suff icient 
generality to describe arbitrary curves of interest. Third, it 
must incorporate noise models for the edge detector, to 
optimally incorporate noisy measurements, and detect and 
remove spurious edges. And finally, since intersecting 
curves are common, the algorithm must be able to handle 
these as well . The algorithm due to Cox et.al. [6-8] is one 
which has a unified framework that incorporates these 
four requirements, and we will use this algorithm for 
contour segmentation. 
     The contour grouping is formulated as a Bayesian 
multiple hypothesis ‘ tracking’ problem (as in [12]). The 
algorithm has 3 main components. A dynamic contour 
model that encodes the smoothness prior, a measurement 
model that incorporates edge-detector noise 
characteristics, and a Bayesian hypothesis tree that 
encodes the likelihood of each possible edge assignment 

and permits multiple hypothesis to develop in parallel 
until suff icient information is available to make a 
decision. 
     A key step in assigning probabiliti es to segmentation 
hypothesis is the computation of the likelihood that a 
given measurement originated from a certain contour. 
This likelihood computation depends on two things: a 
dynamic model that describes the evolution of the curve 
in the image, and a measurement model that describes 
how curves produce edgels. In this formulation, the curve 

state vector is 
Tyyxx ][ �� (where (x, y) are the 

position in a Cartesian coordinate) and its dynamics are 
described by a linear noise-driven acceleration model 
common in the tracking literature [1, 2]. The 
autocorrelation of the white Gaussian acceleration noise 
can be varied to model curves of arbitrary smoothness. 
Thus the tip (end point) of the contour as a function of arc 
length, u, is ))(),(( uyux  and has tangent 

))(),(( uyux �� . Since many edge detectors provide 

gradient information, it is assumed that the entire state 
vector is available for measurement (a good edge detector 
such as Canny [5], Boie-Cox algorithm [4] etc. which 
provide both position and coarse gradient information 
(horizontal, vertical, and two diagonals) is employable for 
this application). A Kalman filter is then employed to 
estimate curve state and predict the location of edgels. 
These predictions are combined with actual measurements 
to produce likelihoods.  
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Figure 3: A contour, its surveill ance region (labelled 1 – 

5) and its validation region. 
 
Once the location of a given curve has been predicted by 
the Kalman filter and discretized to image coordinates, a 
surveillance region is employed to extract measurements. 
A surveillance region is an adaptive variable sized 
window that travels with the tip of the contour and is used 
to extract measurements from the edge map. Every 
iteration, each contour searches for edge points in a series 
of circles of increasing diameter centred at the predicted 
contour endpoint. The search halts as soon as at least one 
measurement is found, or the maximum search radius is 
reached. The size of the surveillance region determines 
the distance the curve must travel in that time period, and 
is reflected in the step size for the curve. The use of a set 
of windows of increasing size ensures that no more than 
one measurement from the given contour will be found in 
a single time period.  
     The search for measurements takes place after the 
prediction phase of the state estimator generates an 
extrapolated endpoint location, (x, y), for the contour. 
This location determines the discrete image coordinates, 
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(xi, yj), at which the surveillance region is centred. If there 
is no edge at the predicted location, concentric circles 

(see Fig. 3), of radius 1 2 2 5, , , , are searched for 

edgels (the radii define discrete pixel neighbourhoods). 
These surveillance regions are labelled 1 to 5 in Fig. 3 (It 
should be noted that the surveillance region of a contour 
is not equivalent to its validation region, which is defined 
by the Mahalanobis distance and is depicted in Fig. 3 as 
an ellipse). It is these measurements that form 
segmentation hypothesis whose probabilities are 
computed. See [6] for details. 
 
3.2   Contour Merging 
The grouped contours resulting from the above mentioned 
process still might have breaks and gaps between 
segments of the same object. A further refinement process 
can be employed to merge segments to form identifiable 
objects. A merging technique is employed by using a 
distance test (eg: Mahalanobis distance) applied to the 
end points of contours (assuming a non-closed contour). 
In this case the multiple contours can be merged to 
recover the correct segmentation, compensating for the 
incorrect initial conditions. Two contours with state 
estimates �xi  and �x j  at common boundary are merged if 

dx dxij ij ij
' T− ≤1 δ , where dx x xij i j= −

� �

. Tij  is the 

covariance, and δ is obtained from χ 2  tables or set 

appropriately as a threshold. This test is applied after the 
algorithm produces an initial segmentation. The 
procedure resolves many ambiguities left by the contour 
segmentation algorithm. A simpler algorithm can also be 
used simply by using the end-point positions and 
derivatives of the end-point positions of each curve 
(produced by the edge detector) which can be quicker.  

4   Temporal Tracking of Key Feature Points 
In this section we discuss the process to extract key points 
from the object of interest and we also discuss the 
procedure to track them temporally.  
 
4.1   Extracting Key Feature Points from Objects 
In order to temporally track the object of interest, key 
points from the object are extracted to represent the 
object. The key point extraction method should ensure 
that only true corner points (or any clearly identifiable 
and definable points) are extracted. Extraction of multiple 
points within a small region should be avoided (eg: in a 
curved object, ideally only 1 point should be selected 
from the curved portion) for good tracking. Since contour 
grouping (discussed in the previous section) is based on 
an edge-map, it is desirable that key points should also be 
selected from the same edge map. Such a process will be 
efficient and will eliminate the requirement to employ a 
separate corner detection algorithm. Because of these 
limitations, we cannot effectively use any of the standard 
corner extraction algorithms [11] (these calculate corner 
values directly from the raw image). Instead we have 
employed a method called the curvature scale space 
technique [11], which selects key points directly from an 

edge map efficiently. In the next section the curvature 
scale space technique is discussed in brief. 
 
4.2   The Curvature Scale Space Algorithm (CSS) 
The CSS technique is suitable for recovering invariant 
geometric features (curvature zero-crossing points and / 
or extrema) of a planar curve at multiple scales. To 
compute it, a curve Γ is first parameterised by the arc 
length parameter u: 

))(),(()( uyuxu =Γ  

An evolved version σΓ  of Γ  can then be computed. σΓ  

is defined by: 
)),(),,(()( σγσχσ uuu =Γ , 

where 

),()(),(),()(),( σσγσσχ uguyuuguxu ⊗=⊗= , 

 
where ⊗  is the convolution operator and ),( σug  

denotes a Gaussian of width σ (σ is also referred to as the 
scale parameter). The process of generating evolved 
versions of Γ  as σ increases from zero to infinity is 
referred to as the evolution of Γ . This technique is 
suitable for removing noise from, and smoothing a planar 
curve as well as gradual simplification of its shape.  In 
order to find curvature zero-crossings or extrema from 
evolved versions of the input curve, one needs to compute 
the curvature accurately and directly on an evolved 

version σΓ . Curvature κ on σΓ  is given by [11]: 
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4.3   CSS Key Point Detection Method 
4.3.1 Brief Overview 
The corners (key points) are defined as the local maxima 
of the absolute value of curvature. At a very fine scale, 
there exist many such maxima due to noise on the digital 
contour. As the scale is increased, the noise is smoothed 
away and only the maxima corresponding to the real 
corners remain. The CSS detection method finds the 
corners at these local maxima. 
     As the contour evolves, the actual locations of the 
corners change. If the detection is achieved at a large 
scale the localisation of the corners may be poor. To 
overcome this problem, local tracking is introduced in the 
detection. The corners are located at a high scale σhigh, 
assuring that the corner detection is not affected by noise. 
σ is then reduced and the same corner points are 
examined at lower scales. As a result, location of corners 
may be updated. This is continued until the scale is very 
low and the operation is very local. This improves 
localisation and the computational cost is low, as 
curvature values at scales lower than σhigh do not need to 
be computed at every contour point but only in a small 
neighbourhood of the detected corners.   
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     There are local maxima on the evolved contours due to 
rounded corners or noise. These can be removed by 
introducing a threshold value t. The curvature of a sharp 
corner is higher than that of a rounded corner. The final 
stage to the candidate corner declaration is that each local 
maximum of the curvature is compared to its two 
neighbouring local minima. The curvature of a corner 
point should be double the curvature of a neighbouring 
extremum. This is necessary since if the contour is 
continuous and round, the curvature values can be well 
above the threshold value t and false corners may be 
declared. 
 
4.3.2 CSS Detection Process 
The CSS key point detection process can be given by the 
following steps: 
1. Utili se an Edge detector (such as Canny [5] or Boie-

Cox [4] etc.) to extract edges from the original 
image. 

2. Extract the edge contours from the edge image: 
- Fill gaps in the edge contours 
- Find the T-junctions and mark them as T-corners 

3. Compute the curvature at highest scale σhigh and 
determine the corner candidates by comparing the 
maxima of curvature to the threshold t and the 
neighbouring minima. 

4. Track the corners to the lowest scale to improve 
localisation. 

5. Compare the T-corners to the corners found using the 
curvature procedure, and remove corners which are 
very close. 

 
The details of the CSS process can be found in [11]. 
 
4.4 Tracking Point Features 
The MHT-IMM (MHT coupled with a multiple model 
Kalman filter, as discussed in [13]) algorithm can be 
applied for tracking key point features through an image 
sequence. The measurements for the tracking filter in this 
case will be the key features extracted (from and near the 
object of interest) from every frame of a given image 
sequence (key points are searched within a region of 
interest surrounding the estimated object centroid). The 
object centroid position is initially calculated in the first 
frame by taking the mean of the sum of object key point 
positions. In the subsequent frames the object centroid is 
estimated using the MHT-IMM tracker. The extracted 
measurements are then matched to predictions based on 
the Mahalanobis distance. 
      The advantage in using the key point tracking 
algorithm is that we can verify each of the temporally 
translated key points on the object (selected) against the 
likely contour of that object in every frame. By doing so, 
we examine to see whether the object as a whole is 
tracked correctly (the process for doing this is explained 
in the next section). In the next section we give the 
procedure involved in combining the point feature 
tracking algorithm and the contour grouping algorithm for 
object tracking. 

5   Object Tracking  
This section shows how the contour grouping and key 
point feature tracking procedures combined can be 
applied for object tracking in image sequences. One cycle 
of the algorithm recursion is displayed in Fig. (4). 
     For every frame in an image sequence we first apply 
the contour segmentation algorithm. This process will 
group segments of edges that are likely to be from the 
same object. The result of such a process applied to our 
test sequences are given in colour Figures 5(a) – 7(a). The 
procedure as seen from these figures, fail at high 
curvature contour regions, or is unable to bridge a gap in 
edgels extracted. As a result, contours from the same 
object are often broken or separated. To overcome this 
limitation we applied the contour merging algorithm, 
which resulted with recognisable object contours (colour 
Figs. 5b – 7b). 
     Once the object contours are categorised separately, 
we can now track a selected object (selection of object 
can be automated by using a snake type algorithm (eg: 
Gsnake [9, 10]) or any other suitable algorithm) from the 
initial frame through the sequence. To track the selected 
object, we first select some key features (points) from the 
object (these are selected using the edge map information 
and then applying the CSS algorithm) as discussed section 
(4).  
     The key features of the object are extracted in every 
frame and the object centroid calculated (this is the mean 
position of the sum of key points of the object contour). 
The key points (and the centroid) from the first frame are 
now tracked through the sequence using the MHT-IMM 
algorithm (as discussed in [13, 14]). The tracking process 
is achieved by predicting the object centroid position in 
the following frame, and then searching a region of 
interest surrounding the centroid to look for the key 
points, this process is followed by matching the key points 
to a grouped object contour within that region. This 
procedure will provide trajectories for every key point of 
the object. Each trajectory point is validated against a 
grouped contour in each frame. By imposing a distance 
threshold between the tracked key points and the key 
points on the segmented contour (in each frame), we can 
verify whether the points have been tracked to an 
acceptable level of precision. If an acceptable number of 
key points tracked are identified to lie on or near the 
object contour (that is passing the threshold test) in each 
of the frames, we conclude that the object has been 
tracked successfully. If a key point fails the threshold test, 
then that point will not be considered as part of that 
feature trajectory any further. 

6   Results 
Image 

Sequence 
(frames 
length) 

Number 
of key 
points 

selected  

Attempted 
number of 

points tracked 
(& percentage) 

Features tracked 
for more than 

2/3’s of the seq. 
length  

UMASS (11) 8 8 100 % 8 100 % 
PUMA (30) 4 4 100 % 4 100 % 
Outcones(20) 12 10 83.3% 10 100 % 

Table 1: Object tracking statistics for the 3 test image 
sequences considered. 
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The 3 sequences considered give a variety of scenarios to 
test our algorithm. In all 3 cases the tracking results are 
promising (see Figures 5 – 7). Table 1 provides 
quantitative performance values for the object tracker. For 
the UMASS lab sequence 100% of the key-points selected 
as forming the object (posters) in the first frame are 
successfully tracked for the entire sequence length. 

Frame 1

Select the object of interest
(eg: using a snake, gsnake

etc.)

Edge detect (use Canny,
or Boie-Cox etc.)

MHT for Contour
Grouping

(using edge map)

Merge Grouped Contour
to form Object

Label and Separate
Grouped Objects

Detect Key Points of the Object
(CSS technique, based on the

edge map)

Predict Key Point Positions
from Previous Frame (k-1)

Track Key points using MHT-
IMM algorithm

Search and identify objects in frame k
(use merged contour and key points

tracked to identify object)

Object Tracked in Frame k ?

Frame k
(k >1)

Estimate object
centroid in frame k

Yes
Exit

No

 
Figure 4: Overview (1 cycle) of the object tracker.  

 
Similar observations can be made for the PUMA 
sequence. Finally, a multiple object example is 
demonstrated. For the outdoor cone sequence, 4 cones are 
considered as part of an object. As the result suggests, 10 
out of the 12 key corner features are tracked successfully 
for more than 2/3’s of the sequence length.  
 

  
                      (a)                                       (b) 

  
                      (c)                                       (d)            

Figure 5: UMASS lab sequence result. 

   
 (a)                                         (b) 

   
 (c)                                        (d) 

      
Figure 6: PUMA lab sequence result.   

 

   
 (a)                                   (b) 

  
(c)                                   (d) 

   
 Figure 7: Outdoor cone sequence result.  

 

Figures 5-7 (colour figures): (a) Contours grouped by 
applying the contour segmentation algorithm based on 
the edge map obtained (one frame of the sequence is 
displayed). Each segmented contour (grouped edges) is 
shown with a different colour. (b) Result after the 
application of segment merging algorithm (observe that 
the segments that are identified as forming the same 
object are merged together in most instances). (c) The 
trajectory of the key points by applying the MHT-IMM 
algorithm. The ‘x’ shows the start of the trajectory while 
the littl e white circle indicates the end of trajectory. (d) 
The identified object trajectory. The white contours 
(identified as belonging to the same object in each frame) 
are superimposed on the first frame of the sequence to 
show the motion of the object.  
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7   Discussion 
Colour figure 5(a) – 7(a) shows the result of applying the 
contour segmentation algorithm. It can be seen that the 
segmentation algorithm fails to group segments of the 
same edge around sharp curves. Since the algorithm scans 
the edge image by “walking” along the contours, it may 
encounter a new contour at any point along its length. 
When tracking begins in the interior of a curve, it is 
usually partitioned, erroneously into two or more 
segments sharing common boundary points.  As a result 
of this, contours belonging to the same object can be 
grouped as separate objects. To overcome this limitation 
we applied the contour-merging algorithm (as described 
in section 4) which provided better results (colour figures 
5(b) - 7(b)). It can be clearly seen that most of the 
segments belonging to the same object have now been 
grouped together successfully (the quality of the 
segmentation also depends on the thresholds that are used 
for both algorithms [6-8]).  
     For the PUMA sequence, the window on the top left 
corner of frame 1 (see Figure 6) was tracked through the 
sequence. The result of the tracking is given in Figure 
6(d) and the corresponding trajectories of the key points 
are given in Figure 6(c). From visual inspection the 
results are promising. Similar results are observed for the 
UMASS lab sequence (Fig. 5(c, d)), despite the short 
irregular translation of the posters (top right corner of 
frame 1). The qualitative results are supported by 
quantitative results presented in Table 1. 
    Figure (7) shows the result of the outdoor cone 
sequence. In this case, multiple objects are tracked (4 
cones on the right). Each cone is treated as a separate 
entity, while all 4 cones combine to form a ‘grouped-
object’ . Each of the key points from the 4 cones are 
tracked and matched to the segmented shape (the 4 
cones). Apart from the last frame, where the cone in the 
front gets segmented with the road, 83% of the key points 
have been tracked correctly, thus successfully tracking the 
4 cones.  

8   Conclusion  
In this paper we have shown how the multiple hypothesis 
technique can be used for rigid object tracking in image 
sequences. The contour of object tracked is achieved by 
first applying the MHT approach to group segments of the 
same object. This process is followed by applying the 
contour merging algorithm to identify recognisable object 
contours. Then by selecting key point features of this 
object, temporal tracking (matching) of key points is 
achieved by using the MHT again. The validity of the 
trajectory of the key points is verified by inspecting 
whether the key points were lying on or near the contour 
of the tracked object (searched within a region of 
interest). The results are promising for objects that are not 
occluded and can be recognised clearly in every frame.  
     One of the main drawbacks of the system is that the 
contour grouping process can break down due to 
occlusion of the object being tracked. The MHT can 
predict possible trajectory for the key points despite the 
occlusion [7] and thus retain the trajectory (as shown in 
[13, 14]). But the contour segmentation and grouping 

process will fail , as it considers only the edge map to 
group contours. As a result the object tracker fails in its 
primary purpose. The tracking process presented may also 
fail for deforming objects. This is because the key point 
tracking phase will not be robust enough to track 
unexpected deformation of object contours. 
     Recognising and tracking objects using point features 
as presented in this paper is possible for relatively simple 
objects (as demonstrated in the results). For complex 
objects the process is ineff icient, and can lead to errors in 
object identification and tracking. A more versatile 
method of object tracking will require an object contour 
to be represented using a parameterised curve, such as 
using Snakes, Deformable templates, or using B-splines 
(see [3, 9, 10]).  
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