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Abstract

This paper presents an object tracking technique based
on the Bayesian Multiple Hypothesis Tracking (MHT)
approach. Two algorithms, both based on the MHT
technique are combined to generate an object tracker.
The firss MHT algorithm is employed for contour
segmentation (based on an edge map). The second MHT
algorithm is used in the temporal tracking of a selected
object from the initial frame. An object is represented by
key feature points that are extracted from it. The key
points (mostly corner points) are detected using
information obtained from the edge map. These key
points are then tracked through the sequence. To confirm
the correctness of the tracked key points, the location of
the key points on the trajectory are verified against the
segmented object identified in each frame. The results
show that the tracker proposed can successfully track
simple identifiable objects through an image sequence.

Key words: Objed traking, Key points, Multiple
Hypothesis Tradking, Contour segmentation, Edge

grouping.

1 Introduction

The primary purpose of this paper is to trak a seleded
objed (as oppcsed to a singe point feaure) from the
initial frame through the image sequence. The processis
an attempt to extend the point feature tradking introduced
in[13, 14] to ohjed tracking. In this case, key points from
the objed are seleded using a airvature scade space
technique [11] to represent that objed. The key points are
temporaly tradked and are validated against the objed
contour (obtained by grouping edge segments) in ead
frame. The tracking technique involves applyingthe MHT
agorithm in two stages. The first stage is for contour
grouping (objed identification based on segmented
edges) and the second stage is for temporal tradking of
key fedures (from the objed of interest). For the wntour
grouping process we amployed the dgorithm developed
by Cox et a [6], and for the key point tradking procedure
we used the tracker introduced by the authors in [13].
Both agorithms combine to provide an objed tradcer.
The set of image contours produced by objeds in a
scene, encode important information about their shape,
position, and orientation. Image ntours arise from
discontinuities in the underlying intensity pattern, due to
the interadion of surface geometry and illumination. A
large body of work, from such areas as model-based
objed recognition and contour motion flow, depend
criticdly on the reliable extradion of image @ntours.
Reliable image @ntours are necessary to identify an
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objed with certainty, which in turn is necessary for
tracking the objed over a period d time in a sequence of
images. We use the term ‘objed’ for a group of edge
segments that form a recognisable objed (identified as
belonging to the same objed). The objed will be
identified by an enclosed (or nea-enclosed) contour.

This paper is organised as follows: Sedion 2 gives a
brief description of the Multiple Hypothesis Trading
(MHT) approadc relating to edge segmentation. Sedion 3
shows how the multiple hypothesis approach can be used
for objed recognition. In sedion 4 we briefly show the
process to extrad key points from an objed, and the
MHT approach for tradking key point feaures throughan
image sequence Sedion 5 provides the objed-tracking
framework employed using methods described in sedion
3 and 4 Sedion 6 gives results obtained from
experiments. Sedion 7 gives a general discusson, and
finally sedion 8 provides the @nclusion.

2 Multiple Hypothesis Framework for Contour
Grouping

This wdion briefly describes the multiple hypothesis
approach in relation to contour segmentation. The detail s
of which are discussed in [6-8].

Fig. 1 outlines the basic operation of the MHT
algorithm for contour grouping. At ead iteration, there
are a set of hypotheses (initialy nul), ead one
representing a different interpretation of the elge points.
Eadch hypothesis is a olledion of contours, and at eadh
iteration ead contour predicts the location of the next
edgel as the dgorithm follows the ntour in unt
increments of arc length. An adaptive seach region is
creaed about ead of these predicted locaions as $rown
in Figure 2 [6]. Meaurements are extraded from these
surveill ance regions and matched to predictions based on
the datisticd Mahalanobis distance This matching
process reveds ambiguities in the asgnment of
measurements to contours. This procedure provides an
asociated ambiguity matrix (Q) for ead doba
hypothesis from which it is necessary to generate aset of
legal assgnments. As a result, the hypothesis tree grow
another level in depth, a parent hypothesis generating a
series of hypotheses eat being a posdble interpretation
of the measurements. The probability of eah new
hypothesis is cdculated based on assumptions described
in [6, 8]. Finally, a pruning stage is invoked to constrain
the exponentially growing hypothesis tree This completes
oneiteration of the dgorithm.

In the following sedions we briefly describe the
contour-grouping algorithm employed, and the key point
seledion and trading process used. Both these methods
are based on the multi ple hypothesis approach.
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Figure 1: Outline of the multiple hypothesis algorithm for
edge grouping
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Figure 2: Predicted contour locations, a surveillance
region and statistical Mahalanobis (elliptical) regions for
a situation with two known contours (t1 and t2) and three
new measurements (z1, 22 and z3).

3 Object Recognition

3.1 Contour Segmentation

The ntour grouping problem examined in this paper,
involves assgning edge pixels produced by an edge
detector [4, 5] to a set of continuous curves. Associating
edge points with contours is difficult becaise the input
data (from edge detectors) is noisy; thereis uncertainty in
the position of the elge, there may be false ad / or
missng points, and contours may intersed and interfere
with one another. There ae four basic requirements for a
successul contour segmentation agorithm. First, there
must be amecdhanism for integrating information in the
neighbourhood d an edgel to avoid making irrevocable
grouping dedsions based on insufficient data. Seacond,
there must be aprior model for the smoacthness of the
curve to base grouping dedsions on. This model must
have a intuitive parameterisation and sufficient
generality to describe abitrary curves of interest. Third, it
must incorporate noise models for the elge detedor, to
optimally incorporate noisy measurements, and deted and
remove spurious edges. And finally, since interseding
curves are ammon, the dgorithm must be ale to handle
these @ well. The dgorithm due to Cox et.al. [6-8] isone
which has a unified framework that incorporates these
four requirements, and we will use this algorithm for
contour segmentation.

The ntour grouping is formulated as a Bayesian
multi ple hypothesis ‘tracking problem (as in [12]). The
algorithm has 3 main components. A dynamic contour
model that encodes the smoaothness prior, a measurement
model  that  incorporates  edge-detedor  noise
charaderistics, and a Bayesian hypothesis tree that
encodes the likelihood d ead possble edge assgnment
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and permits multiple hypothesis to develop in paralel
until  sufficient information is avallable to make a
dedsion.

A key step in asdgning probabiliti es to segmentation
hypothesis is the computation of the likelihood that a
given measurement originated from a cetain contour.
This likelihood computation depends on two things. a
dynamic model that describes the evolution of the airve
in the image, and a measurement model that describes
how curves produce algels. In this formulation, the airve

date vedor is [X X Y y]T(where (x, y) ae the

position in a Cartesian coordinate) and its dynamics are
described by a linear noise-driven acceleration model
common in the tracking literature [1, 2]. The
autocorrelation of the white Gaussian acceleration noise
can be varied to model curves of arbitrary smoothness.
Thus the tip (end point) of the contour as a function of arc

length, u, is (X(u),y(u)) and has tangent
(X(u), y(u)) . Since many edge detectors provide
gradient information, it is assumed that the entire state
vector is available for measurement (a good edge detector
such as Canny [5], Boie-Cox agorithm [4] etc. which
provide both position and coarse gradient information
(horizontal, vertical, and two diagonals) is employable for
this application). A Kaman filter is then employed to
estimate curve state and predict the location of edgels.
These predictions are combined with actual measurements
to produce likelihoods.
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Figure 3: A contour, its survellanceregion (labelled 1—
5) andits validation region.

Once the location of a given curve has been predicted by
the Kalman filter and discretized to image coordinates, a
surveillance region is employed to extract measurements.
A surveillance region is an adaptive variable sized
window that travels with the tip of the contour and is used
to extract measurements from the edge map. Every
iteration, each contour searches for edge pointsin a series
of circles of increasing diameter centred at the predicted
contour endpoint. The search halts as soon as at least one
measurement is found, or the maximum search radius is
reached. The size of the surveillance region determines
the distance the curve must travel in that time period, and
is reflected in the step size for the curve. The use of a set
of windows of increasing size ensures that no more than
one measurement from the given contour will be found in
asingle time period.

The search for measurements takes place after the
prediction phase of the state estimator generates an
extrapolated endpoint location, (x, y), for the contour.
This location determines the discrete image coordinates,
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(xi, y;), at which the surveillance region is centred. If there
is no edge at the predicted location, concentric circles

(see Fig. 3), of radius 1,,/2,2,+/5, are searched for

edgels (the radii define discrete pixel neighbourhoods).
These surveillance regions are labelled 1 to 5in Fig. 3 (It
should be noted that the surveillance region of a contour
is not equivalent to its validation region, which is defined
by the Mahalanobis distance and is depicted in Fig. 3 as
an édlipse). It is these measurements that form
segmentation  hypothesis whose probabilities are
computed. See [6] for details.

3.2 Contour Merging

The grouped contours resulting from the above mentioned
process ill might have breaks and gaps between
segments of the same object. A further refinement process
can be employed to merge segments to form identifiable
objects. A merging technique is employed by using a
distance test (eg: Mahalanobis distance) applied to the
end points of contours (assuming a non-closed contour).
In this case the multiple contours can be merged to
recover the correct segmentation, compensating for the
incorrect initial conditions. Two contours with state

estimates X; and X; at common boundary are merged if
axi T dXij <0, where dXij =X - X]-. T.

j Is the

covariance, and O is obtained from )(2 tables or set

appropriately as a threshold. This test is applied after the
agorithm produces an initiadl segmentation. The
procedure resolves many ambiguities left by the contour
segmentation algorithm. A simpler algorithm can also be
used simply by using the end-point positions and
derivatives of the end-point positions of each curve
(produced by the edge detector) which can be quicker.

4 Temporal Tracking of Key Feature Points

In this section we discuss the process to extract key points
from the object of interest and we aso discuss the
procedure to track them temporally.

4.1 Extracting Key Feature Points from Objects

In order to temporally track the object of interest, key
points from the object are extracted to represent the
object. The key point extraction method should ensure
that only true corner points (or any clearly identifiable
and definable points) are extracted. Extraction of multiple
points within a small region should be avoided (eg: in a
curved object, idedly only 1 point should be selected
from the curved portion) for good tracking. Since contour
grouping (discussed in the previous section) is based on
an edge-map, it is desirable that key points should also be
selected from the same edge map. Such a process will be
efficient and will eliminate the requirement to employ a
separate corner detection algorithm. Because of these
limitations, we cannot effectively use any of the standard
corner extraction algorithms [11] (these calculate corner
values directly from the raw image). Instead we have
employed a method called the curvature scale space
technique [11], which selects key points directly from an
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edge map efficiently. In the next section the curvature
scale space technique is discussed in brief.

4.2 The Curvature Scale Space Algorithm (CSS)
The CSS technique is suitable for recovering invariant
geometric features (curvature zero-crossing points and /
or extrema) of a planar curve at multiple scales. To
compute it, a curve [ is first parameterised by the arc
length parameter u:
T (u) = (x(u), y(u))

An evolved version ', of I' can then be computed. I,
is defined by:

(W) =(X(u,0),y(u,0))
where

X(u,0)=x(u)dg(u,0)  y(uo)=yu)dgo),

where [ is the convolution operator and g(U,0)

denotes a Gaussian of width o (o is also referred to as the
scale parameter). The process of generating evolved
versions of [T as o increases from zero to infinity is
referred to as the evolution of [. This technique is
suitable for removing noise from, and smoothing a planar
curve as well as gradual simplification of its shape. In
order to find curvature zero-crossings or extrema from
evolved versions of the input curve, one needs to compute
the curvature accurately and directly on an evolved

version [, . Curvature k on [, isgiven by [11]:
K(U,0) = Xu(u,a)yuu(u,cz) _XUU(U’ZU)/Z(U’U)
(. (u,0)? +y(u,0)?f

where

Xu(u,o)=x(u)g,(uo)  Xu(u,0)=x(u)g,(uo)

Vo(uo)=y)DOg,(uo)  Vu(uo)=yudg,(uo)

4.3 CSSKey Point Detection M ethod

431 Brief Overview

The corners (key points) are defined as the local maxima
of the absolute value of curvature. At a very fine scale,
there exist many such maxima due to noise on the digital
contour. As the scale is increased, the noise is smoothed
away and only the maxima corresponding to the real
corners remain. The CSS detection method finds the
corners at these local maxima.

As the contour evolves, the actua locations of the
corners change. If the detection is achieved at a large
scale the localisation of the corners may be poor. To
overcome this problem, local tracking is introduced in the
detection. The corners are located at a high scale Oyign,
assuring that the corner detection is not affected by noise.
o is then reduced and the same corner points are
examined at lower scales. As aresult, location of corners
may be updated. This is continued until the scale is very
low and the operation is very local. This improves
localisation and the computational cost is low, as
curvature values at scales lower than oyg, do not need to
be computed at every contour point but only in a small
neighbourhood of the detected corners.
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There aelocd maxima on the evolved contours due to
rounded corners or noise. These car be removed by
introducing a threshold value t. The aurvature of a sharp
corner is higher than that of a rounded corner. The final
stage to the candidate crner dedaration isthat ead locd
maximum of the arvature is compared to its two
neighbouring locd minima. The arvature of a orner
point should be double the arvature of a neighbouring
extremum. This is necessry since if the contour is
continuous and round, the arvature values can be well
above the threshold value t and false crners may be
dedared.

432 CSSDetedion Process

The CSSkey point detedion processcan be given by the

foll owing steps:

1. Utilise an Edge detedor (such as Canny [5] or Boie-
Cox [4] etc) to extrad edges from the original
image.

2. Extrad the edge mntours from the edge image:

- Fill gapsin the edge mntours
- Find the T-junctions and mark them as T-corners

3. Compute the arvature & highest scde oyg, and
determine the crner candidates by comparing the
maxima of curvature to the threshold t and the
neighbouring minima.

4. Tradk the rners to the lowest scde to improve
locdli sation.

5. Compare the T-corners to the cornersfound using the
curvature procedure, and remove rners which are
very close.

The detail s of the CSSprocesscan be found in [11].

4.4  Tracking Point Features
The MHT-IMM (MHT coupled with a multiple model
Kaman filter, as discussed in [13]) algorithm can be
applied for tracking key point feaures through an image
sequence. The measurements for the tradking filter in this
case will be the key feaures extraded (from and nea the
objed of interest) from every frame of a given image
sequence (key points are seached within a region of
interest surrounding the estimated oljed centroid). The
objed centroid pasition is initially cdculated in the first
frame by taking the mean of the sum of objed key point
pasitions. In the subsequent frames the objed centroid is
estimated using the MHT-IMM tradker. The etraded
measurements are then matched to predictions based on
the Mahalanobis distance

The avantage in wsing the key point tradking
agorithm is that we can verify ead of the temporally
trandated key points on the objed (seleded) against the
likely contour of that objed in every frame. By doing so,
we eamine to see whether the objed as a whole is
tradked corredly (the processfor doing this is explained
in the next sedion). In the next sedion we give the
procedure involved in combining the point feaure
tradking algorithm and the contour grouping algorithm for
objed tracking.
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5 Objeda Tracking

This sdion shows how the cntour grouping and key
point fedure tracking procedures combined can be
applied for objed tracing in image sequences. One g¢/cle
of the dgorithm reaursion is displayed in Fig. (4).

For every frame in an image sequence we first apply
the ntour segmentation agorithm. This process will
group segments of edges that are likely to be from the
same objed. The result of such a process applied to our
test sequences are given in colour Figures 5(a) — 7(a). The
procedure & e from these figures, fail a high
curvature aontour regions, or is unable to bridge agap in
edgels extraded. As a result, contours from the same
objed are often broken or separated. To overcome this
limitation we gplied the @ntour merging agorithm,
which resulted with recognisable objed contours (colour
Figs. 5b —7b).

Once the objed contours are cdegorised separately,
we can now trak a seleded ojed (seledion of objed
can be aitomated by using a snake type dgorithm (eg:
Gsnake [9, 10]) or any other suitable dgorithm) from the
initial frame through the sequence To trad the seleded
objed, we first seled some key feaures (points) from the
objed (these ae seleded using the edge map information
and then applying the CSSalgorithm) as discussed sedion
(4).

The key fedures of the objed are extraded in every
frame and the objed centroid caculated (thisis the mean
pasition of the sum of key points of the objed contour).
The key paints (and the centroid) from the first frame ae
now tradked through the sequence using the MHT-IMM
algorithm (as discussed in [13, 14]). The tradking process
is achieved by predicting the objed centroid pasition in
the following frame, and then seaching a region of
interest surrounding the centroid to look for the key
points, this processis foll owed by matching the key paoints
to a grouped oljed contour within that region. This
procedure will provide trajedories for every key point of
the objed. Each trgedory point is validated against a
grouped contour in ead frame. By imposing a distance
threshold between the tradked key points and the key
points on the segmented contour (in ead frame), we can
verify whether the points have been tracked to an
acceptable level of predsion. If an acceptable number of
key points tradked are identified to lie on or nea the
objed contour (that is passng the threshold test) in ead
of the frames, we mnclude that the objed has been
tracked succesdully. If akey point fail s the threshold test,
then that point will not be cnsidered as part of that
feaure trajedory any further.

6 Results
Image Number Attempted Featurestracked
Sequence of key number of for more than
(frames points points tracked 2/3's of the seq.
length) seleded (& percentage) length
UMASS(11) 8 8 100% 8 100%
PUMA (30) 4 4 100% 4 100%
Outcones(20) 12 10 83.3% 10 100%
Table 1: Object tracking statistics for the 3 test image
sequences considered.
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The 3 sequences considered give a variety of scenariosto
test our algorithm. In all 3 cases the trading results are
promising (see Figures 5 — 7). Table 1 provides
guantitative performance values for the objed trader. For
the UMASSIab sequence 100% of the key-points sleded
as forming the objed (posters) in the first frame ae
succesqully tradked for the entire sequencelength.

Seled the objedt of interest
(eg: using asnake, gsnake
etc)

Edge detect (use Canny,
or Boie-Cox etc.)

MHT for Contour
Grouping
(using edge map)

Deted Key Points of the Objed
(CSStechnique, based onthe
edge map)

Predict Key Point Positions
from Previous Frame (k-1)
Trac Key paints using MHT-
IMM agorithm
A

Search andidentify objedsin framek
(use merged contour and key points [«
tracked to identify object)

Yes No
Object Tracked in Frame k ? Exit

Figure 4: Overview (1 cycle) of the object tracker.

Merge Grouped Contour
to form Objea

v
Estimate object
centroid in frame k-

Label and Separate
Grouped Objeds

Similar observations can be made for the PUMA
sequence. Finaly, a multiple objed example is
demonstrated. For the outdoar cone sequence, 4 cones are
considered as part of an objed. As the result suggests, 10
out of the 12 key corner feaures are tradked successully
for more than 2/3's of the sequencelength.

(©) d)(
Figure 5: UMASSIab sequenceresult.
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Figure 7: Outdoar cone sequenceresult.

Figures 5-7 (colour figures): (a) Contours grouped by
appying the ntour segmentation dgorithm based on
the elge map ohkained (one frame of the sequence is
displayed). Each segmented contour (grouped edges) is
shown with a dfferent colour. (b) Result after the
apgication d segment merging dgorithm (observe that
the segments that are identified as forming the same
objed are merged together in most instances). (c) The
trajedory of the keypoints by appying the MHT-IMM
algorithm. The ‘X' shows the start of the trajedory while
the littl e white drcle indicates the end d trajecory. (d)
The identified oed trajedory. The white cntours
(identified as belongng to the same objed in each frame)
are superimposed on the first frame of the sequence to
show the motion o the objed.
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7 Discussion

Colour figure 5(a) — 7(a) shows the result of applying the
contour segmentation algorithm. It can be seen that the
segmentation algorithm fails to group segments of the
same alge aound sharp curves. Since the dgorithm scans
the edge image by “walking” along the wntours, it may
encounter a new contour at any point aong its length.
When tradking begins in the interior of a airrve, it is
usually partitioned, erroneously into two o more
segments daring common boundary points. As a result
of this, contours belonging to the same objed can be
grouped as sparate objeds. To overcome this limitation
we gplied the mntour-merging algorithm (as described
in sedion 4) which provided better results (colour figures
5(b) - 7(b)). It can be dealy seen that most of the
segments belonging to the same objed have now been
grouped together succesfully (the quality of the
segmentation also depends on the thresholds that are used
for bath algorithms [6-8]).

For the PUMA sequence, the window on the top left
corner of frame 1 (seeFigure 6) was tracked through the
sequence. The result of the tradking is given in Figure
6(d) and the arresponding trajedories of the key points
are given in Figure 6(c). From visual inspedion the
results are promising. Similar results are observed for the
UMASS lab sequence (Fig. 5(c, d)), despite the short
irregular trandation of the posters (top right corner of
frame 1). The qudlitative results are suppated by
quantitative results presented in Table 1.

Figure (7) shows the result of the outdoar cone
sequence. In this case, multiple objeds are tracked (4
cones on the right). Each cone is treded as a separate
entity, while dl 4 cones combine to form a ‘grouped-
objed’. Each of the key points from the 4 cones are
tracked and matched to the segmented shape (the 4
cones). Apart from the last frame, where the cne in the
front gets segmented with the road, 83% of the key points
have been tracked corredly, thus suiccessully tracking the
4 cones.

8 Conclusion

In this paper we have shown how the multiple hypothesis
technique can be used for rigid ojed tracing in image
sequences. The @ntour of objed tradked is achieved by
first applyingthe MHT approach to group segments of the
same objed. This process is followed by applying the
contour merging algorithm to identify recognisable objed
contours. Then by seleding key point feaures of this
objed, tempora tracking (matching) of key points is
adhieved by using the MHT again. The validity of the
trajedory of the key points is verified by inspeding
whether the key points were lying on or nea the cntour
of the trakked oljed (seached within a region of
interest). The results are promising for objeds that are not
ocduded and can be recognised clealy in every frame.
One of the main drawbadks of the system is that the
contour grouping process can bre&k down due to
ocdusion of the objed being tradked. The MHT can
predict possble trgjedory for the key points despite the
ocdusion [7] and thus retain the trajedory (as $own in
[13, 14]). But the contour segmentation and grouping
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process will fail, as it considers only the edge map to
group contours. As a result the objed tradker fails in its
primary purpose. The tradking processpresented may also
fail for deforming objeds. This is becaise the key point
traking phase will not be robust enough to track
unexpeded deformation of objed contours.

Remgnising and tradking objeds using point feaures
as presented in this paper is possble for relatively smple
objeds (as demonstrated in the results). For complex
objeds the processis inefficient, and can leal to errorsin
objed identification and tradking. A more versatile
method d objed trading will require an objea contour
to be represented using a parameterised curve, such as
using Snakes, Deformable templates, or using B-splines
(see[3, 9, 10]).
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