
Polytopes, Feasible Regions and Occlusions
in the �-view Reconstruction Problem

David McKinnon�, Barry Jones� and Brian C. Lovell�
�School of Information Techology and Electrical Engineering

Intelligent Real-Time Imaging and Sensing (IRIS) Group
University of Queensland

�Department of Mathematics
University of Queensland

Abstract

This paper asseses the question, given a arbitrary point
in ��, can it be reconstructed by a given camera orbit? We
show that a solution to this problem can be found by inter-
secting the view frustums of the cameras in the sequence
creating a polyhedron that bounds the area in �� observed
by all cameras. For a projective set of cameras this can be
considered as an expansion of the cheiral inequalities. We
also show an exception to this basic principle is encoun-
tered when the point in �� is occluded. Thus giving a weak
condition for occlusion of an arbitrary point in ��.

1 Introduction

This work addresses the motivation to find the regions in
�
� observed by two or more cameras in a given sequence.

We will refer to this common region as the feasible region
for the given set of cameras, it represents the part of space
where depth fusion may occur through triangulation. This is
an expansion of the basic theory of cheirality [3], where in
this case the inequalities are expanded to constrain a point
to lie with the view frustum of each camera of interest. This
work is also partly inspired be the treatment of polyhedral
models in the computer graphics literature [5]. The follow-
ing subsections introduce the basic concepts and notation
maintained throughout the rest of the paper.

1.1 Set Notation

The feasible region for � views (��� � � � � ��) will be de-
noted as the set �������� of points (where �������� � �

�)
that project (un/occluded) into each of the �-images. The
problem of finding the feasible region for a sequence of

�-images has strong analogues with the set of the rele-
vant subproblems of finding the intersection of 2 or more
views ��� � � � � �� � ���� � � � � ���. Where ��� � � � � �� de-
picts the choice of � � � � � unique views from the
set of �, there are

�
�

�

�
such choices. The notation for the�

�

�

�
subsets of �������� is given as ��������

���������
. Feasible re-

gions and their
�
�

�

�
subregions have the inclusion relation

�������� � ��������
���������

.
We can now answer our initial questions with the set

notation. Firstly, which set of points in �
� can be recon-

structed by the given camera orbit?

��
�
�

�

��������	

	���

�����

��������
���������

(1)

Secondly, which set of points in �� can be reconstructed
using all the given views from the camera orbit?

��
�
�

�

��������	

	���

�����

��������
���������

(2)

Section 2 will explore the inequalities that bound these
sets and section 3 will present a rudimentary algorithm to
compute the bounds for an arbitrary camera orbit in pro-
jective space. Section 4 discusses some applications of the
feasible regions.

1.2 Projective Geometry of Linear Features in �
�

and �
�

This section will outline the notation and the basic build-
ing blocks for the representation of linear features in � � and
�
�. The development of the ideas in this section is heavily

influenced by the notation and stucture of the linear features
presented in [6], also drawing some similarities to the ori-
ented matching constraints in [7].

1

cfookes

The first consideration when dealing with the multi-view
geometry of linear features is their notation. Consistantly
we will refer to features as any type of geometric object
observed in a scene, be this points, lines or planes.

Table 1 summarises the notation and degrees of freedom
(DOF) for the group of linear features in the projective plane
(������� � ��).

Hyperplane �
�

�
�� DOF

Points �
�

�
���
� �����

�
� ����� 2

Lines �
����

�
����

� �����
��
� �� 1

Table 1. Linear features and there duals in �
�

Similarly, Table 2 summarises the notation and the DOF
for linear features in projective space (��� �� �� �� � ��).

Hyperplane �
�

�
�� DOF

Points �
�

�
���
� ������

�
� ������ 3

Lines �
����

�
����

� ������
��
� ����� 2

Planes �
�����

�
�����

� ������
���
� �� 1

Table 2. Linear features and there duals in �
�

These tables demonstrate the process of dualization for
linear feature types via the antisymmetrization operator
�� � ��. The antisymmetrization operator should be consid-
ered as a determinantal method to generate the algebra for
linear features, by performing an alternating tensor contrac-
tion over the space/s to which the operator is applied [?, ?].
The tensor notation will also convert directly into a compu-
tational scheme to evaluate the geometric entity in question.

An important aspect of the tensor notation, is the ease at
which linear features can be manipulated to form geometri-
cally intuitive combinations of each other. The tables given
above demonstrate this concept clearly, where lines are con-
structed from two points and planes (in ��) are constructed
from 3 points or a line and a point. This facet of the ten-
sor notation (Grassmann-Cayley algebra) greatly increases
it efficacy in solving for complex geometric configurations.

2 Feasible Regions

In this section we will introduce the basic camera model
(pinhole camera) and describe the process of projecting it’s
boundaries to form the view frustum. We will then discuss
the general intersection problem for 2 or more view frustum
and give bounds for the number of differentally oriented
solutions (cheirality), of which we will only be concerned
with the positively oriented solutions.

We will round-off this section by discussing the weak
condition for occlusion of an arbitrary point in �

�. We
call this condition weak because it not geometrically based,
rather it is based on a lack of the observation of the point in

the image, when the feasible region suggests that the point
should be observable within the view frustums.

2.1 Camera Model and View Frustum

The pinhole camera model is the standard for modelling
perspective distortion in image sequence. Perspective dis-
tortion is most prolific when a small focal length thus a
greater Field of View (FOV), is employeed to model a scene
that is both close to the camera and with a high depth vari-
ation.

Firslty, we must consider the projection operator (�
�) or

camera matrix that denotes the projection of linear features
from the scene to the image plane (�

� � �� � �
�). Table

3 summarises the range of projection operators for linear
features.

Hyperplane �
�

�
��

Point �
�
� �

�
� �

� -

Line �
����

� �
��

�� �
��

�� �
����

����� � �
��

���
��

�������

Plane - �� � �
�
���

Table 3. Projection operators for linear fea-
tures

Generally it may be stated that
�� � 	�
� �

� , where

is an arbitrary scale factor. The form of 	 �

� for a regular
point-to-point projection is,

	�
� � ���

�� ���
�

�� (3)

where ��
� is rotation from the center of the world reference

frame to the orientation of the camera and � is the location
of the camera in the world reference frame. This depiction
of the camera (3), is defined in a Euclidean metric and also
assumes calibration of the internal parameters. The more
general projective uncalibrated model differs according to
an affine (��

��
) and projective collineation (� ��

�) [1]. Thus,
the calibrated model for point projection is,

	�
� � ��

��
	

��
�� �

��
� (4)

where ��
��

represents the internal parameters of the camera
in an affine collineation,

��
��
�

�
�

�� � ��

� �� ��

� � �

�
� (5)

���� encorporate the focal length � into scale factors for
conversion between metric distances (mm) and pixels, � is
the skew of the CCD imaging array and �� and �� are the
coordinates of the cameras principal point [4].

2

cfookes

From this point, no assumptions will be placed upon
whether the cameras are un/calibrated. Instead, we will im-
plicitly assume that problems dealing with calibrated cam-
eras will present image coordinates as they would be read
from the image plane (� � ��� ����� ��	 � � ���
����)
and uncalibrated cameras present normalised image coordi-
nates in a square centered fashion (�� � ��� � ��	 �� �

��� �) [2]. The ranges given for pixel coordinates typify
the bounds for the camera. The projective (uncalibrated)
assumption removes the ability to measure metric distances
but can be made to preserve the orientation of an point-plane
pair which we will see is the only requirement needed to
build a proper view frustum.

The view frustum for the camera is found by an inverse
projection of the bounds of the camera into the scene. That
is, a projection of the lines that bound the image plane, into
their corresponding planes in the scene. Figure 1 demon-
strates the labelling of the vertices and edges for the stan-
dard camera.

Figure 1. The labelling of the boundaries of
projection for the standard view frustum.

Moving clockwise from the top left of the camera, the
vertices ��� ��� �� ��	 �� represent the corners of the im-
age plane and �� is assigned to the cameras optical center
(for finite cameras this is found as the nullvector of the cam-
era matrix ��

� or ������
� �

�
� �

�
� �

����). The polyhedron
formed by the planes passing through �� and the joins of
����� � ��� ����� � ��� ����� � �� ��	 ����� �
��, gives a set of boundary conditions for a point in �

�,

where �� � ������ � � � ���� �� � are the lines (edges) join-
ing the vertices of the image plane. A further set of inequal-
ities should also impose the image plane (although this is a
largely redundant constraint) as another boundary and the
cheiral inequalities (�’s). These boundary conditions are
expressed as a set of algebraic inequalities for a given point
�� � ��, camera center � �� and plane-at-infinity � �����.

	��
������ �����
 �

	��
������ �����
 �

	��
������ �����
 �

	��
������ �����
 �

	��
���� ��� �����
 �

� 	��
�������
 �

� 		�
����� ���
 �

(6)

The scalars (�) ensure the cheirality (orientation) of each
plane with respect to the view frustum. This is achieved by
making sure each point in the view frustum has a positive
projective distance from the camera (only the sign is impor-
tant). The last two inequalities (�’s) in (6) can be omitted
from the boundary conditions if the scene points and cam-
eras are know to be correctly oriented. Figure 2 shows some
randomly generated positively oriented view frustums that
have been clipped for display purposes. Note that not all of
the cameras in this configuration are positioned to view the
same part of space.

Figure 2. Four randomnly generated posi-
tively oriented view frustums for a square
camera with a focal length of 1.

3

cfookes

2.2 Feasible Regions and Cheiral Intersections

This section will move the discussion onto the case of
multiple (�) cameras. Running out of meaningful indices,
our first step will be to rewrite (6) in a symoblic vector no-
tation, feeling comfortable that we have an effective means
to compute the various vectors in the inequalities.

���
���

�
� �

���
���

� � �
���

���
�

� �
���

���
�

� �
���

���
�

� �
� ���

�� � �
� ���

��
�

� � �

(7)

The superscript on the vectors denotes the image number
and the subscript reflects the labelling (Figure 1) of the
planes (� �

�), points (� �
�) and plane-at-infinity (�) where

��
�

is the ��� image plane. The inequalities given in (7) can
now be considered to represent a valid set of points in the
feasible region for the �-view reconstruction problem (� �

�)
and the entire set of points that are reconstructable (� �

�
)

can be found as the union of the
�
�
�

�
subproblems (where

� � � � n).
This definition of the feasible regions for the �-view

reconstruction problem is tractable, however we are com-
pelled to find a more definitive statement for the regions
that captures their geometric structure more precisely allow-
ing visualisation, volume calculations and a more compact
representation. This is where we introduce the language of
polytopes.

Polytopes [8] allow us to represent the feasible regions
as a convex hull of vertices (points), edges (lines) and facets
(planes) in ��, thus providing a bounding polyhedra for the
various linear programming problems implied by the ap-
plication of the inequalities in (7). Since all planar inter-
sections occur either before the plane-at-infinity or at the
plane-at-infinity (for parallel planes) we will strip the last
two inequalities (�’s) along with the ��� (to cut down com-
putation) from (7) leaving just the boundary conditions for
the outer planes in the view frustums.

The bounding polyhedra will be constructed from the in-
tersection of pairs of the four remaining planes from each
camera (ie. lines � �

�
� � �

� for camera � there is
�
�

�

�
such

lines for each camera) with the set of four remaining planes
in each other camera (� �

� where 	 �� �). In the general
case there are two different ways that a line can intersect
a plane. Firstly, if the points on the line and the plane are
coplanar then their intersection will be the original line, or
if the line and the plane are not coplanar then their inter-
section will result in a point. The points resulting from the
line-plane intersections will form the vertices of the bound-
ing convex hull representing the feasible region for a given

set of cameras.
In summary we can consider the upper and lower bounds

for the number of line-plane intersections for �-views (
�)
to be,

� �
� � ��

�
�

�

�
�

��

��� ���
(8)

the lower bound is the case of �-views with the same inter-
nal camera parameters all lieing in the same position with
the same orientation, this is clearly a critical configura-
tion where no depth can be recovered. The upper bound
is formed by the general case given by �-views of a regular
pinhole camera where the set of four lines from each camera
must intersect each plane from each other camera. The in-
tersection points will be positively and negatively oriented
(ie. lie in front of the cameras and behind).

Of the collection of intersection points formed in the
planes, only a certain number will be valid (feasible) points.
Valid points are those that conform to the inequalities given
in (7). This is to say that we are only interested in posi-
tively oriented intersection points that lie on the boundary
of the �-view feasible region. An algorithm to find the in-
tersection points that construct the bounding polyhedra will
be considered in section 3.

2.3 A Weak Condition for Occlusions

The formulation for the feasible region given above will
determine if a point lies within the intersection of the view
frustums for the camera involved. However, this provides
no indication as to whether the point of interest is occluded
by some other object in the scene.

This is brings us to consider a statement about whether a
point that lies in a valid feasible region for a set of cameras
is observable or not. Firstly, a strong statement of observ-
ability requires a precise model of the scene in question and
typical ray casting process (analogous to a image-to-world
graphics engine) can resolve geometrically whether there
exists a clear line of site from the point in the scene to the
image.

Unfortunately, this strong statement of observability as-
sumes that a complete 3D model has already been obtained.
This is prohibitive for the purpose of building a 3D model
from images, see we must seek another statement without
this prerequisite.

The weak statement of observability requires that the
assumed texture surrounding the point in the scene is ob-
servable in the expected location in image. This statement
is clearly less precise, but practically quite an acceptable
means to determined whether a point has been occluded.
With the discussion of the feasible regions above and this
statement of observability a robust method to locate the im-
ages where a feature is present ensues.

4

cfookes

3 An Algorithm to Compute the �-view In-
tersection Polytope

We present a rudimentary algorithm to find the bounding
polytope containing the set of points ��

�
for �-views. The

algorithm is geometrically intuitive, but far from optimal for
task. For an optimal approach refer to [?].

The algorithm will follow along the lines of the discus-
sion given in the previous section for isolating the line-plane
intersection points. Then, application of the first 4 inequal-
ities in (7) will reveal the superfulous intersection points
which are not feasible. Of the remaining points which will
now lie on the convex hull of the feasible region’s polyhe-
dra, edges must be selected to intersect points that lie only
on a common plane of one of the view frustums. The pro-
posed algorithm is given in Table (4).

Algorithm for the polyhedra bounding ���

1. Find the �� intersections, where � � �� � � � � �

1.1 Find the vertices �� ������
�� � ����	��
���.

2. Store the vertices that fulfill the first 4 inequalities (6).
3. Find the edges from ��� and the joins of ��� in each plane.

Table 4. Proposed algorithm for calculating
the bounding polyhedra for ��

�

4 Applications

This section discusses some of the perceived applications
of the concept of feasible regions in computer vision. It
should be noted that this concept is very new and the authors
are still considering the scope and application of the theory.

4.1 Object Querying

The motivation here is to be able to query a sequence of
images of a static scene (and the corresponding 3D recon-
struction of the scene) to see if a feature lies within the view
frustum of a given camera or a given set of cameras.

Principally, we feel that this process may enhance the
regular Structure From Motion (SFM) pipeline [?] with the
ability to relocate lost or occluded tracks based on an ex-
pectancy for when they will return into the camera’s field
of view. Another related application would be to retrospec-
tively update the tracking profile of a feature found in image
� to all the previous images where the feature was observ-
able.

This process could be used to great effect in the SFM
pipeline for long sequences, where the camera completes a
loop (ie. viewing the same area of the scene multiple times
with some seperation in the exposure) which we will refer to

as sub/sequence closure. In this case a very valuable align-
ment of the same set of features can be achieved to correct
any drift in the egomotion estimation up until that point.
This philosophy has been used with great success in closed
turntable sequences.

4.2 Path Planning

Another perceived application of feasible regions is an
autonomous robot fitted with either one or multiple cam-
eras. If the robot is equipped with the mechanism to recog-
nise certain objects in the scene (for our purpose we will
imagine that these are polytope models), then the feasible
region will allow the robots to plan a path around the ob-
ject whereby the entire object of interest remains within the
feasible regions of the camera at each time instant.

Complex polyhedral objects can be represented as the
convex hull of vertices encompasing the poylhedra, if each
of the vertices is visible un/occluded in each view of the
camera/s views then the robot has maintained a suitable per-
spective on the object.

A robot fitted with cameras could then be instructed to
model an entire area (at its own pace) making sure that it
has gathered an adequate amount of information to fulfill
the accuracy requirements of the mission.

4.3 Building Voxel Volumes

The final application we have considered is building an
arbitrary indexed voxel volume given a sequence of camera
motions. Currently, the authors are yet see an application of
voxel volume modelling where the voxel space has not been
predesignated to house the object of interest. We feel that if
the voxel volume 3D reconstruction technique is to reach its
full practical value, the voxel spaces must be defined purely
by the path of the camera, not placed at a point in space as
a priori to reconstruction.

Furhermore, information about the number of views that
a feature is observable in and whether there are occlusions
of the feature for a given path of the camera, is invaluable
for the construction of the metric space and the subsequent
optimisation problem for the building of the voxel volume.

5 Conclusions and Future Work

We have presented a novel idea that sets the boundary
for points in space that are reconstructable by an arbitrary
camera path. We have considered which points are recon-
structable in the general case and which points are observ-
able in every image. We have also shown that this formula-
tion leads to a weak condition for occlusions.

As a matter of future work the authors would like to con-
sider the quality of observation for a point and the subse-

5

cfookes

quent quality of reconstruction for a point given multiple
observations. The envisaged formulation is to consider the
expected error in the observation of a feature in the image
and the projection of this error into space forming a cone.
The intersection of multiple error cones gives something
akin to a set of geodesic probability surfaces, representing
the likelihood of the corresponding 3D feature lieing in this
part of space.

The introduction of such a concept would lead to a so-
phisticated method to determine the overall quality of re-
construction for the scene given a specific camera orbit.
Then, points that are positioned poorly in the scene for re-
construction purposes can treated with a greater caution.

In this manor the quality of reconstruction can be set as
an input parameter to the SFM pipeline and made to repli-
cate the average depth fusion for human vision. This can be
considered as the ideal quality of reconstruction for visual-
isation with VR glasses.

The authors are also looking into optimal algorithms to
intersect the view frustums and create the resulting polyhe-
dron.

6 Acknowledgements

The authors would like to thank Carlos Leung and Ben
Appleton for many interesting discussions on the develop-
ment of the ideas presented in this paper. Also we would
like to thank Bob Andrews for his assistance in editing this
paper.

References

[1] R. I. Hartley. Euclidean reconstruction from uncali-
brated views. Applications of Invariance in Computer
Vision - LNCS, 825:237–256, 1994.

[2] R. I. Hartley. In defense of the eight-point algorithm.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(6):580–593, 1997.

[3] R. I. Hartley. Chirality. Int. Journal of Computer Vision,
26(1):41–61, 1998.

[4] R. I. Hartley and A. Zisserman. Multiple view geometry
in computer vision. Cambridge University Press, 2000.

[5] S. Savchenko. 3D Graphics Programming : Games and
Beyond. SAMS Publishing, 2000.

[6] W. Triggs. The geometry of projective reconstruction i:
Matching constraints and the joint image. Int. Conf. on
Computer Vision, pages 338–343, 1995.

[7] T. Werner and T. Pajdla. Oriented matching constraints.

[8] G. M. Ziegler. Lectures on Polytopes. Graduate Texts
in Mathematics, Springer-Verlag, 1994.

6

cfookes

	Numbx:
	C:
	L:
	R:

	P1:
	Numb:
	Numbx:
	C: 77
	L:
	R:

	P2:
	Numb:
	Numbx:
	C: 78
	L:
	R:

	P3:
	Numb:
	Numbx:
	C: 79
	L:
	R:

	P4:
	Numb:
	Numbx:
	C: 80
	L:
	R:

	P5:
	Numb:
	Numbx:
	C: 81
	L:
	R:

	P6:
	Numb:
	Numbx:
	C: 82
	L:
	R:

