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Abstract

Hidden Markov Models have many applications in signal
processing and pattern recognition, but their convergence-
based training algorithms are known to suffer from over-
sensitivity to the initial random model choice. This paper
focuses upon the use of model averaging, ensemble thresh-
olding, and random relative model permutations for im-
proving average model performance. A method is described
which trains by searching for the best relative permutation
set for ensemble averaging. This uses the fit to the training
set as an indicator. The work provides a simpler alternative
to previous permutation-based ensemble averaging meth-
ods.

1 Introduction

The work of Davis and Lovell [1] focused upon Hid-
den Markov Model (HMM) ensemble learning using the
well-known Baum-Welch procedure [2, 5, 6] for individual
sequences and then averaging the resulting HMM ensem-
ble parameters. It was demonstrated that this is a superior
method to the standard method of converging a single model
using the multiple sequences simultaneously [4, 2] in per-
forming approximations to sequence distributions, and also
for performing classification tasks. Thresholded Winsoriza-
tion in which the best sub-ensemble is used was also shown
to provide further improvements.

This paper investigates the potential for still further im-
provements on these methods based on searches through
random relative permutations of the nodes of the ensem-
ble of models, prior to ensemble parameter averaging. The
methods investigated were based on varying the random
permutation probability and the number of node transpo-
sitions applied to each member of the ensemble.

By relabelling states, it is easy to show that many differ-

ent models can achieve the same probability despite large
differences in configuration. The possibility of finding
equivalently good models with large structural differences
argues against the parameter averaging method to obtain
improved models. In other words, it is quite possible that
the average of two good models may be a very poor model
in the same way that that the point midway between two
mountain peaks is quite often a valley. This was the moti-
vation for the method of searching through relative random
node permutations.

Levinson, et al. (see [3], appendix B) first proposed that
an approximation to bipartite graph matching be used for
permutating an ensemble of trained models to achieve a
good permutatation match, and good parameter estimates
through averaging the permutation-aligned ensemble. This
paper demonstrates that simpler randomised methods can
be used with good results for node matching when the best
method is selected according to the overall fit to the training
data set.

2 Permutations of representations of Hidden
Markov Models

The focus of this paper is on methods for permuting the
alignment of models in an ensemble of models with the
same structure.

A hidden Markov model ([2] chapter 6) consists of a set
of n nodes or states, each of which is associated with a set
of m possible observations (the structure of the model). The
parameters of the model include an initial state π which de-
scribes the distribution over the initial node set, a transition
matrix aij for the transition probability from node i to node
j conditional on node i, and an observation matrix bi(Oh)
for the probability of observing symbol Oh given that the
system is in state i. Rabiner uses λ = (A,B, π) to denote
the model parameters.

This paper is based around the method of ensemble aver-
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Figure 1. Illustration of the permutation aver-
aging method for two different permutations.

aging suggested by Levinson et al. [3] and tested in [1]. The
method is as follows. Consider an ensemble of N HMMs
{λk = (A,B, π)k; k = 1 . . . N} which are each trained
using the Baum-Welch method to a specific observation se-
quence in a set of training sequences. Select an alignment
of nodes across all N models, and then form a single model
λ by averaging the matrix elements of the ensemble, using
the selected node alignment (see figure 1).

In this paper we focus upon permutations which only af-
fect those nodes with zero entries in the starting matrix π.
These permutations will be termed π-free permutations.

Theorem. Random π-free permutations S = {Sk}
of HMM ensembles Λ = {λk} trained using multi-
ple Baum-Welch convergence have the same parameter-
averaged model performance as unpermuted ensembles.

Proof. For every model λk, partition the set N of nodes
into nodes Q with non-zero π values and a subset R with
zero π-values. π-free permutations only act on R. Since
initialisation of the BW procedure randomly selects π-free
nodes, then the Baum-Welch process produces models for
which the nodes in R are randomly permuted. Therefore,
a permutation of these nodes after convergence will not
change the result of the method.

This result means that the insertion of relative random
permutations at any stage of the process does not affect the
model performance. This paper concentrates on the poten-
tial for improvement in the model performance when a good
permutation (as measured by its Pall score on the training
set) rather than a random permutation is applied.

In cases where a permutation might involve a node with
a very small starting probability, it is not possible to use the
above proof. Permutations involving Q as well as R are less

easy to analyze and will not be tackled here. However many
models of interest have a well-defined, small starting node
set.

3 Classes of permutations in HMM ensemble
averaging

All methods investigated involve the use of the joint
emission probability Pall to quantify the model quality, and
also to select the permutation which maximises this func-
tion. Pall is defined as the product (over all sequences in an
ensemble) of the probability that the model generated those
sequences individually. This is used both in the training en-
semble and in the test ensemble for final evaluation of the
method.

The algorithms are all based upon the following set of
main design components:

• Winsorization threshold level search based on Pall.

• Permutation fraction: the fraction of models in the en-
semble being permuted which actually receive a per-
mutation prior to averaging

• Number of transposition: the number of nodes being
transposed in a given permutation in each model prior
to averaging

• Type of permutation: excluding certain types of per-
mutations from the set being considered, such as per-
mutations involving the starting nodes in π or permu-
tations which would change the transition structure of
the resulting average model (from left-right to ergodic,
for example)

There are many different ways in which these features may
be combined, so we restrict ourselves to those which seem
to represent the most important aspects of the ensemble per-
mutation idea.

The following different permutation methods were eval-
uated:

• VariableProbPerm - this method scans through a
probability scale from 0 to 1 representing the proba-
bility that a given model will be permuted in the en-
semble.

• NumTrans - this method scans through the number of
random transpositions applied to each model. This is
limited by the size of the model, as applying too many
relative interchange operations per model in the search
has no extra benefit.

The ensemble used in both cases is a Windsorised ensemble
- with the fraction of models used being determined before
these trials were run. Code for training HMMs using these
methods is available [7].



4 VariableProbPerm trial

Davis and Lovell [1] gave an empirical study of the fol-
lowing idea (initially suggested by Levinson et al. [3]): In
HMM ensemble averaging, because the individual Baum-
Welch convergence runs are all initialized to a set of random
model parameters (random seeds) then applying another set
of random permutations to the models, either before or after
training to the observation sequence, will have no effect on
the final model formed using parameter averaging.

The next step is to investigate the effect of other, more
refined random permutation schemes. A similar strategy to
the Winsorization approach will be studied in which a small
set of relative permutation sets is compared in terms of the
performance of the ensemble-permuted average model on
the training data, as measured by Pall.

Methodology. In this trial of the VariableProbPerm
method, a set of 20 test and 20 training sequences was gen-
erated from an initial generating model. The models were
randomly generated left-right models with 5 nodes and 4
observation symbols. Pall values for the training data were
used to compare permutation sets. The best permutation
averaged model from those considered was selected. This
selected model was then evaluated on the test data. The
trial was repeated for 100 initial generating models. Permu-
tations were ensured to be π − free as they did not involve
the left-right model.

Results. The performance of the variable probability of
the small permutation method VariableProbPerm presented
in the previous section was investigated and the results are
displayed in figure 2. It shows the performance on 20 test
sequences of the average of ensembles in which each mem-
ber of the ensemble is permuted. The method shows steady
improvement up to 90% permuted. Clearly there are signifi-
cant improvements to be obtained by varying the probability
of permutation of models in the ensemble and selecting the
best fraction.

5 Trial of NumTrans

This trial of the NumTrans method was designed to in-
vestigate the best scale of permutations. The major issues
of interest were:

1. Is it worth probing the entire range of relative permu-
tations, and

2. Are there any gains to be made by looking at large
numbers of transpositions?

Methodology. In this trial of the NumTrans method, a
set of 20 test and 20 training sequences was generated from
an initial generating model. Pall values for training data
were used to compare permutation sets. Permutations of
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Model permutation fraction study on Windsorised Threshold models

Figure 2. Small permutations are applied to a
variable fraction of models in the ensemble.

the ensemble were constructed using a VariableProbPerm
method with a 50% probability of permuting a given model.
The parameter under investigation was the number of trans-
positions applied per model, when that model was selected
for permutation. The number of transpositions ranged from
1 to 15. It was anticipated that large numbers of transpo-
sitions would not show any benefit over small numbers be-
cause of the existence of permutation inverses (so a large
number of interchange operations is equivalent to its inverse
operation, which can consist of a small number of inter-
change operations).

The best permutation averaged model from those consid-
ered was selected. This selected model was then evaluated
on the test data. The trial was repeated for 100 initial gen-
erating models.

Results. The performance of the variable probability of
the small permutation method NumTrans presented in the
previous section was investigated and the results are dis-
played in figure 2. It shows the performance on 20 test se-
quences of the average of ensembles in which each mem-
ber of the ensemble is permuted. As can be seen from the
results of figure 3 transposition searches with more trans-
positions can be superior to smaller searches. Importantly,
the best performance was found when the number of ran-
dom transpositions was set to the number of states in the
model. There was not a very clear trend in this instance.
However we can deduce that applying large numbers of rel-
ative transpositions is not particularly helpful. This is due
to the following:

1. the models already have highly random relative per-
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Model permutation number study on Windsorised Threshold models

Figure 3. A variable number of permutations
is applied to each member of the ensemble.

mutations due to the random initial seed choice

2. it is counterproductive to apply large numbers of trans-
positions to all models as it is the relative permutation
which matters (so smaller numbers will give superior
performance)

3. As the number of transpositions approaches the size of
the model, performance will be similar to that in the
case of small numbers of transpositions.

That said, searches using more permutations do have a
slightly superior search ability. However, unless a high level
of computing power is available, it seems best to only use
permutations of one or two transpositions, in combination
with the VariableProbPerm search method.

6 Conclusions

We have demonstrated that substantial gains in averaging
can be made using either of two very simple random per-
mutation alignment schemes, VariableProbPerm and Num-
Trans. These are simpler alternatives to the more complex
scheme proposed by Levinson et al. in [3].

There are clear benefits to be found by applying ran-
dom permutations of the ensemble, using both methods. A
search is necessary to locate the best permutation size. In
general, the gains obtainable by varying the probability of
permutation are greater than the gains obtainable by varying
the number of permutations.

The use of the joint emission probability Pall for the
training set is a useful indicator in selecting the best per-
mutations.

It may be possible to construct more advanced schemes
based upon the findings of this paper. For example, a
gradient-descent method in which good permutations are
retained as the process continues may be a faster way of
locating the best ensemble permutation set.

A modification of this technique to include permutations
involving non-zero π vector elements may be possible, but
is likely to be more complex. From the success of this
method however, it seems a promising avenue for further
investigation.
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