
3D Reconstruction through Segmentation of Multi-View Image Sequences

Carlos Leung and Brian C. Lovell
Intelligent Real-Time Imaging and Sensing Group

School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, Queensland, 4072, Australia

Abstract

We propose what we believe is a new approach to 3D
reconstruction through the design of a 3D voxel volume,
such that all the image information and camera geometry
are embedded into one feature space. By customising the
volume to be suitable for segmentation, the key idea that we
propose is the recovery of a 3D scene through the use of
globally optimal geodesic active contours. We also present
an extension to this idea by proposing the novel design of
a 4D voxel volume to analyse the stereo motion problem in
multi-view image sequences.

1. Introduction

The reconstruction of a dynamic, complex 3D scene
from multiple images is a fundamental problem in the field
of computer vision. While numerous studies have been con-
ducted on various aspects of this general problem, such as
the recovery of the epipolar geometry between two stereo
images [10], the calibration of multiple camera views [30],
stereo reconstruction by solving the correspondence prob-
lem [24], the modelling of occlusions [9], and the fusion of
stereo and motion [14], more work needs to be done to pro-
duce a unified framework to solve the general reconstruc-
tion problem.

Given a set of images of a 3D scene, in order to re-
cover the lost third dimension, depth, it is necessary to com-
pute the relationship between images through correspon-
dence. By finding corresponding primitives such as points,
edges or regions between the images, such that the match-
ing image points all originate from the same 3D scene point,
knowledge of the camera geometry can be combined in or-
der to reconstruct the original 3D surface.

One approach to the correspondence problem involves
the computation of a disparity map, where each pixel in
the map represents the disparity of the matching pixels
between two images. The optimisation of a cost func-
tion is a common approach in order to obtain the dispar-

ity map [8, 21, 22]. Taking advantage of the epipolar con-
straint, which enables the search area to collapse from a
2-dimensional image to 1-dimensional epipolar lines, along
with the ordering [28], uniqueness and continuity constraint
[18], algorithms have been proposed which compute the
disparity map to sub-pixel accuracy. However, when fac-
tors such as noise, lighting variation, occlusion and per-
spective distortion are taken into account, stereo disparity
algorithms are still challenged to model accurately discon-
tinuities, epipolar line interactions and multi-view stereo
[6, 11].

Roy and Cox [22] and more recently Kolmogrov [15] de-
veloped an algorithm for solving the multi-view stereo cor-
respondence problem. By stacking the candidate matches
of range disparity along each epipolar line into a cost func-
tion volume, maximum flow analysis and graph cuts are
used in order to determine the disparity surface. While
these approaches to stereo analysis provide a more accu-
rate and coherent depth map than the traditional line-by-line
stereo, these methods remain dependent on and sensitive to
the uniqueness and the accuracy of the matching correspon-
dence stage. Although the optimisation of the cost function
is performed in a three-dimensional space, the computation
of a disparity surface remains only a 2.5-D sketch of the
scene [18].

While the aforementioned techniques operate in 1 or 2D
space, there also exists a class of stereo algorithms that op-
erate in 3D scene space. Introduced by Collins [5] and Seitz
and Dyer [23], these algorithms, instead of using dispar-
ity to compute the depth of an image point, directly project
each image into a 3D volume, such that the locations of 3D
world points are inferred through analysis of each voxel’s
relationship in 3D space. Kutulakos and Seitz recently pro-
posed the Space Carving Algorithm aimed at solving theN-
view shape recovery problem [17]. The photo hull, the vol-
ume of intersection of all views, is determined by comput-
ing the photo-consistency of each voxel through projections
onto each available image. While these approaches produce
excellent outcomes, apart from the fact that they require a
vast number of input images, improvements can be made



by imposing spatial coherence, replacing the voxel-based
analysis with a surface orientated technique.

Classical active contours such as snakes [12] and level
sets [1] have mainly been applied to the segmentation prob-
lem in image processing. The recent introduction of fast
implicit active contour models [16], which use the semi-
implicit additive operator splitting (AOS) scheme intro-
duced by Weickert et al. [26], is an improved version of
the geodesic active contour framework [4]. Given such ad-
vancements in active contour analysis, multi-dimensional
segmentation is becoming not only more robust and accu-
rate, but computationally feasible. The application of sur-
face evolution and level set methods to the stereo prob-
lem was pioneered by Faugeras and Keriven [7]. Although
Faugeras’ approach is limited to binocular stereo and the
epipolar geometry, their novel geometric approach to the
stereo problem laid the foundation for a new set of algo-
rithms that can be used to solve the 3D reconstruction prob-
lem.

In this paper, we will present two new techniques for
3D scene reconstruction. Firstly, we propose a new ap-
proach to 3D reconstruction through the use of globally op-
timal geodesic active contours. In order to formulate the
3D reconstruction problem suitable for segmentation anal-
ysis, we explicitly describe the design of a 3D voxel fea-
ture space, which integrates all the information available
from each camera view into one unified volume for pro-
cessing. Rather than solving the correspondence problem
between the images by computing disparity and matching
feature primitives, and instead of using photo-consistency
constraints to determine the colouring of each voxel, our
approach projects and integrates all the feature information
about each image into one voxel volume. By collapsing the
voxel space into a metric space, segmentation algorithms
can then be applied to directly reconstruct the complex 3D
scene.

Secondly, we propose a new approach for the recovery
of 3D models and its motion from multi-view image se-
quences. While there are many studies in the area of stereo
and motion analysis from stereo rigs, we propose the use
of a 4D voxel volume to recover not only 3D and motion
information from stereoscopic image sequences, but an al-
gorithm capable of processing multi-view image sequences.
By augmenting the design of our 3D voxel feature volume
to a 4-D feature space, we present a novel approach to the
analysis of stereo motion for the reconstruction of dynamic
3D scenes.

Section 2 of this paper will explain in detail the design of
the 3D voxel volume and how segmentation can be used to
compute the 3D scene. Section 3 will further describe how
the 3D voxel volume can be extended to solve the stereo
motion problem. The application of 4D reconstruction to
analysis multi-view image sequences will be presented. Fi-

nally, section 4 will provide a summary of the proposed
techniques and directions for future research.

2. 3D Reconstruction

A common approach to stereo reconstruction is the opti-
misation of a cost function, computed by solving the corre-
spondence problem between the set of input images. The
matching problem involves establishing correspondences
between the views available and is usually solved by setting
up a matching functional for which one then tries to find the
extrema. By identifying the matching pixels in the two im-
ages as being the projection of the same scene point, the 3D
point can then be reconstructed by triangulation, intersect-
ing the corresponding optical rays. Our proposed method
differs from this approach by projecting all the images into
a common space prior to analysing the correspondence be-
tween the images. The matching problem is then solved
not as a correspondence problem between images, but as a
matching functional, computed for each voxel in the vol-
ume. This functional is optimised through segmentation to
recover the 3D structure of the scene.

Prior to the construction of the 3D voxel volume, the
camera geometry of the images needs to be computed
through camera calibration. Knowledge of the camera ge-
ometry not only enables the construction of the projection
matrix, but also allows the computation of the polyhedral
intersection of the camera views. Although solving the
bounding region of interest of the images is similar in idea
to solving the space carving problem, our proposed method
differs greatly from space carving. Rather than deciding on
the likelihood of a photo-consistent match for each voxel in
3D space, our method does not perform any computation at
the projection stage. Instead, all the feature information is
stored inside each voxel and is dependent on the solution
to the segmentation problem in order to decide on the 3D
surface of the scene.

Assuming a pinhole camera model, the 3D voxel volume
is created by projecting all of the images into a 3D polyhe-
dron, such that each voxel contains a feature vector of all
the information contained in each camera view. For exam-
ple, the feature vector can include the RGB values of the
voxel’s projection into each camera image, the gradient of
the image, and even information relating to the projected
pixel’s neighborhood. A metric volume can then be derived
from this voxel space to become the input to the segmen-
tation stage. Cost functions such as the variance between
the projections or even a probability density function can be
used. Furthermore, by altering the resolution of the voxel
volume, the segmentation can output either a dense or a
sparse reconstruction of the 3D scene.



Figure 1. Multi-View Projection. 3D point P0 is
projected onto Images I1, I2, I3. (Image cour-
tesy of S. Roy and I. J. Cox, Figure 1 [22])

2.1. Voxel Volume

We briefly present the well-studied general framework
of projective geometry required in the construction of the
3D voxel volume [10]. A set ofn input imagesI1, . . . , In

of a 3D scene are projected fromn camerasC1, . . . , Cn,
as depicted in Figure 1 withn = 3. In our formulation, we
will assume a pinhole camera model and that all surfaces are
Lambertian (i.e. the intensity of a 3D point is independent
of viewing direction). The projective coordinate of a 3D
point Pw in world space is expressed with homogeneous
coordinates as

Pw = [ xw yw zw 1 ]T

while the projective image coordinate of a pixel in imageIi

is
pi = [ xi yi zi ]T

such that the corresponding pixel coordinatep′
i of the pro-

jected pointpi can be obtained by applying a homogenising
functionH where

H(

 x
y
z

) =
[

x/z
y/z

]
(1)

Given the volume of interest of the 3D space for recon-
struction, we can obtain each voxel’s feature vector by pro-
jecting everyPw in the 3D volume onto each of then im-
ages available. Withf features for every pixel in the image,
each voxel will contain anf × n matrix, such that the col-
lection of all voxels will contain all the information all the

images. In other words, given the 3D voxel volume, all the
processing and analysis can be achieved without the need
of the original images. We define 4 matrices to describe
the projection from a voxel in the volume to a pixel in the
image.

Given a volume ofM voxels, each voxel will be indexed
by its voxel coordinates,vm = [va, vb, vc, 1]T , whereva, vb

andvc will range from 1 to the dimensions of the volume.
The extra parameter appended at the end of the voxel coor-
dinate is for consistency with the augmented homogeneous
coordinate in projective space. To transform from voxel co-
ordinates to 3D world coordinates, we compute

Pw = V vm

where

V =
[

I3k tv

0T 1

]
andI3 is the3× 3 identity matrix,tv the translation vector
for specifying the world coordinate of the voxel volume’s
origin, andk = [kx, ky, kz]T is the stride in each voxel
dimension, i.e. the number of units between each voxel in
3D world space. The choice ofk andtv is dependent on the
resolution desired for the voxel volume and the origin of the
volume of interest respectively.

From world coordinates, the classical3 × 4 perspective
projection matrix,P , can be applied to obtain the projection
of the 3D world point in image coordinates. In the case
where we define the optical centre of the base camera,C0,
to coincide with the origin of the world coordinate system,
the projection matrix will be simplified to be

P0 =

 1 0 0 0
0 1 0 0
0 0 1 0


subsequently, we can define a transformation matrixWi

Wi =
[

Ri ti

0T 1

]
with rotation Ri and translationti to define the position
and orientation of cameraCi relative to the base camera,
C0. The relative positions and orientations of each camera
i is determined by a calibration procedure. Thus forCi, the
projective projection matrix will be

Pi = P0Wi

From the image coordinates, the pixel coordinates of a
projective point can be recovered up to a scaling factor,
given knowledge of the internal parameters of the camera.
Neglecting radial distortion from calibration, a matrix of in-
trinsic parameters can be computed such that

A =

 −fx 0 ox

0 −fx/α oy

0 0 1





wherefx is the focal length in effective horizontal pixel size
units,α the aspect ratio (i.e. the vertical to horizontal pixel
size), and(ox, oy) the image centre coordinates.

Combining all the described matrices, each voxel can be
projected into each imagei by computing

pi = APiV vm

From the obtained projective pixel coordinates, the ac-
tual pixel coordinates can be obtained by applying the ho-
mogenising function described in Eq. 1.

2.2. The Correspondence Problem

The construction of the voxel volume is purely based on
image projections and thus does not require the solution to
the correspondence problem in order to produce a dense re-
construction. Unlike algorithms that use disparity maps to
guide the 3D reconstruction, dense feature correspondence
or area-based matching of every pixel is no longer neces-
sary. However, while the computation of the 3D volume
does not require dense correspondences, feature correspon-
dence is needed in establishing the camera geometry and
for the purpose of camera calibration. The accuracy of the
projections and the reliability of the volume are highly de-
pendent upon robust and accurate camera calibrations. As
noted by Medioni [19], in multi-view stereo, there is an
imperative need for camera calibration and consistency of
matches between multiple-views. Therefore full calibration
information needs to be provided with the image set or tech-
niques similar to [31] must be used to obtain the calibration
parameters.

The construction of our voxel volume is similar to the
concept proposed by Kimura, Saito and Kanade [13] in re-
covering the 3D geometry from the camera views. Their
method is, however, restricted to three images since it is
dependent on dense feature correspondences between the
input images in order to model the 3D surface and can-
not overcome the problem of occlusion since there are no
matching points in those regions. Algorithms that depend
on dense feature correspondence have much difficulty mod-
elling occlusions. Our proposed method overcomes this
problem by redefining the problem, using a new approach
that does not depend on pixel to pixel feature correspon-
dence. One of the advantages of our approach is that oc-
clusion does not need to be explicitly modelled. Occluded
regions visible in a limited number of images are still pro-
jected validly into 3D space for analysis, with the major
difference being that less images project to that region. The
occluded regions, however, can still be modelled, only that
the 3D reconstruction for those region depends on less data.
This scheme subsequently also allows for occluded region
to be iteratively improved as more images of the occluded
scene are available.

2.3. Segmentation

The development of algorithms that can provide glob-
ally optimal solutions to segmentation problems makes its
application in image processing very attractive. By design-
ing a volume appropriate for maximum-flow analysis, the
minimum-cut associated with the maximum flow can be
viewed as an optimal segmentation. While Roy and Cox
have demonstrated a version of maximum-flow to analyse
stereo images, a more computationally feasible method was
recently proposed by Sun [24]. A two-stage dynamic pro-
gramming (TSDP) technique was introduced to obtain effi-
ciently a 3D maximum-surface, which enables the compu-
tation of a dense disparity map.

In our voxel volume formulation, since our projected
volume enables us to work directly in true 3D coordinates,
we aim to output a 3D surface representative of the com-
plete 3D scene rather than using a disparity map to ob-
tain a 2.5-D sketch of the scene [18]. Formulating the
3D reconstruction problem as a segmentation problem has
many advantages over the use of the classical dynamic pro-
gramming technique. In segmentation, optimisation is per-
formed along a surface rather than along a line. This sub-
sequently provides segmentation methods with the advan-
tage of outputting contours that wrap back on themselves,
while dynamic programming will have difficulty following
these concave surfaces. Rather than reformulating dynamic
programming or similar techniques in order to model occlu-
sions and concavity, we propose the use of segmentation to
approach 3D reconstruction from a new point of view.

Active contours have been demonstrated to be a useful
tool in the segmentation problem. Geodesic active contours
that use a variational framework have been shown to obtain
locally minimal contours [4]. Fast implicit active contour
models, that use the semi-implicit additive operator splitting
(AOS) scheme introduced by Weickert et al. [16, 26], and
shortest path algorithms [3], have been used to avoid the
variational framework producing optimal active contours.
By formulating a volume appropriate for 3D segmentation,
we propose the use of a form of geodesic active contours
recently introduced by Appleton and Talbot [2] which has
been demonstrated to be globally optimal. By choosing a
positive scalar metric,g, such thatg can be assured to be
always greater than zero, the minimisation of the energy
functionalE, can be formulated to describe the segmenta-
tion

E(C) =
∫

C

g(C(s))ds

whereC is the segmentation contour.



3. 4D Reconstruction

The fusion of stereo and motion has been recognised by
many researchers as a means of providing additional infor-
mation that were not previously obtainable through their
independent analysis. Waxman and Duncan pioneered the
analysis of stereo motion by considering binocular image
flow [25]. Many studies have subsequently tackled this
problem through the use of Kalman filtering, optical flow
and feature tracking [14, 20]. While these methods have
demonstrated reasonable success, they are limited by prob-
lems inherent in the correspondence problem, as described
in section 2.2. Similar to our proposed approach in the use
of segmentation, rather than reformulating optical flow or
Kalman filtering to model stereo motion, we propose the
use of a 4D voxel volume in order to analyse the stereo dy-
namics in stereoscopic image sequences.

By embedding the design of our 3D voxel feature vol-
ume into a 4-D feature space, we present a novel approach
to the analysis of stereo motion for the reconstruction of
dynamic 3D scenes. Given a set of images captured over
different time frames, we can compute the camera geometry
and projection parameters for each image through the use of
the many calibration techniques developed, such as Zhang’s
four point algorithm for stereo rig analysis [29]. From the
set of projection matrices computed, we can construct a
voxel volume for each time frame. Since geodesic active
contours can be applied to segment multi-dimensional vol-
umes, similar to the analysis of our 3D voxel volume, we
can compute a segmentation in 4D in order to produce a
3D surface in time. The use of this 4D voxel volume also
has the advantage of not only recovering the 3D and mo-
tion information from stereoscopic image sequences, but is
capable of processing multi-view image sequences. The
computational feasibility of multi-dimensional segmenta-
tion makes this 4D approach to stereo motion an attractive
alternative to the analysis of dynamic, complex 3D scenes.

4. Summary and Future Directions

We have proposed two novel approaches to the 3D recon-
struction problem through the design of a 3D and 4D fea-
ture voxel volume. While current techniques depend heav-
ily upon the solution to the correspondence problem in or-
der to guide the 3D analysis, by taking advantage of the re-
cent developments in segmentation and the introduction of
globally optimal algorithms, our method reformulates the
computation of correspondence as a segmentation problem.
Furthermore, we present a novel approach to the analysis of
stereo motion by transforming the problem into a 4D seg-
mentation analysis.

The success of this approach is dependent on the accu-
racy of the construction of the 3D and 4D voxel volume.

Subsequently, the shortcomings of this method are related
to its sensitivity to errors in camera calibration and projec-
tion. However, with the many developments and studies
completed in this area, the error can be minimised. The
accuracy of this method also increases as the number of in-
put images increases, making this approach well suited for
analysing multi-view image sequences.

The size, shape and location of the voxel volume is also
currently manually estimated. Although a difficult and com-
plex problem, a dramatic improvement to the algorithm will
be the direct computation of a polyhedral volume of in-
terest. Similar to solving the space carving problem, the
polyhedral volume can be obtained by computing the inter-
sections of all camera’s field of view. Assuming a pinhole
camera model, each camera projection will be a rectangular
pyramid, thus the bounding polyhedron will be the solution
to the problem of intersecting multiple rectangular pyramids
of varying orientations.

The design of a multi-dimensional voxel volume also
lays the foundation for 3D or even 4D recognition. A ball
for example in 3D space would occupy a spherical volume,
while a ball in trajectory can be recognised as a cylindri-
cal tube with hemispherical ends in 4D space. Previous
works by Xu [27] have attempted to unify stereo, motion
and object recognition into one approach by observing their
common use of feature correspondence. Using our new pro-
posed approach, feature correspondence is replaced with a
voxel volume that contains all feature information. Thus,
through the analysis of a multi-dimensional feature volume,
it is possible to design a unified framework for multi-view,
motion and object recognition.
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