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Abstract

An extension of the gradient vector flow snake (GVF
snake) is presented. The method is based on combining two
other external forces. First, the adaptive balloon force has
been developed to increase the GVF snake’s capture range
and convergence speed. Then, a dynamic GVF force is in-
troduced to provide an efficient evolution-stop mechanism.
In this way, we prevent the snake from breaking through the
correct surface and locking to other salient feature points.
Preliminary segmentation results demonstrate the potential
of our approach in comparison with the original GVF snake
method.

1. Introduction

There has been a substantial amount of research on seg-
menting images with deformable models in recent years [4].
Notably active contours, known as “snakes”, have been
widely studied and applied in medical image analysis, their
applications including edge detection, segmentation of ob-
jects, shape modeling and motion tracking [7, 11]. Snakes
were first introduced in 1987 by Kasset al. [5]. They gen-
erally represent an object boundary as a parameter curve or
surface. An energy function is associated with the curve,
so the problem of finding an object boundary is cast as an
energy minimisation process. Typically, the curves are af-
fected by both an internal force and external force. A snake
can locate object contours well, once an appropriate initial-
isation is done. However, since the energy minimisation is
carried out locally, the located contours can be trapped by
a local minimum. A number of methods have been pro-
posed to improve the snake’s performance [8, 1]. A balloon
model was introduced by Cohenet al. to enlarge the snake’s
capture range [2, 3]. Recently, Xuet al. have proposed
a new deformable model called the “gradient vector flow

snake” (GVF) [11, 12]. Instead of directly using image gra-
dients as an external force, it uses a spatial diffusion of the
gradient of an edge map of the image. GVF snake was pro-
posed to address the traditional snake’s problems of short
capture range and inability to track at boundary concavity.
But GVF still may not be able to capture object contours
in some medical image segmentation. Efforts at improving
the original GVF snake’s performance have been published
recently. Xuet al. combined GVF force with a constrained
balloon force to segment gyri in the cortex [10]. Although
this combination works well on this case, its requirement of
ana priori knowledge of the region of interest may restrict
its application. Yuet al. proposed to compute the GVF
using a polar coordinate representation instead of cartesian
coordinates [13]. In this way, the method can perform better
than the original GVF snake in areas of long thin boundary
concavities and boundary gaps. But the capture range of
this improved GVF does not seem larger than the original
method.

In our paper, after presenting the properties of the GVF
snake, we propose a new approach to enhance the GVF
snake performance on segmentation. The method consists
of two major parts. First, an adaptive balloon force is incor-
porated into internal forces to increase capture range and
speed-up evolution. Secondly, a dynamic GVF force is in-
troduced to provide an evolution-stop mechanism. With this
ability, the located contours are less sensitive to local min-
ima.

This paper is organized as follows. First the mathe-
matic foundation of active contour models, including con-
ventional snakes and GVF snakes, are introduced in sec-
tion 2. We detail in section 3 the different aspects of our
improved GVF snake using an adaptive ballon model and a
dynamic GVF. In section 4, we present some preliminary re-
sults of tumour segmentation on brain MRI and compare the
performance of our approach with the GVF snake. Finally,
we propose several avenues of research for future work in



section 5.

2. Active Contour Models

In this section, we review the mathematic formulation of
conventional snakes and GVF snakes. We also describe the
strengths and weakness of each method.

2.1 Snakes

In 2D, a snake is a curve
� � � � � � � � � � � � � � � �

where� � � � � � �
. The curve moves through the image domain to

minimize a specified energy function. In traditional snakes,
the energy is usually formed by internal forces and external
forces as:
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tends to elastically hold the curve together
(elasticity forces) and to keep it from bending too much
(bending forces). This energy is defined in equation (2),
where

�  
and

�   
represent the first and second derivative

respectively. We can control the snake’s tension and rigidity
by the coefficients9 and : .

� ( " + & , " $ . � �; <  9 > �  > ? @ � 0 �; <  : > �   > ? @ �
(2)

� & 3 + & , " $ .
intends to pull or push the curve towards the

edges. Typically, the external forces consist of potential
forces. This energy is defined in equation (3), where

� ( B $ D &
represents the negative gradient of a potential function. This
energy is generally the image force as defined in equa-
tion (4) where E denotes the image andF � F � � � � � �� � � � +

.
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Using variational calculus and the Euler-Lagrange dif-
ferential equation, we can solve equation (1). Then, the
solution of this force balance, as defined in equation (5),
represents the snake final position. The differences in the
ways the energy function is established will result in differ-
ent snakes.
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Although the traditional snakes have found many appli-
cations, they are intrinsically weak in three main aspects:
First, they are very sensitive to parameters. Second they
have small capture range and the convergence of the algo-
rtihm is mostly dependent of the initial position. Finally,

they have difficulties in progressing into boundary concavi-
ties.

2.2 GVF snakes

Xu et al. have proposed a new GVF snake to achieve
better object segmentation [12]. The basic idea of the GVF
snake is to extend influence range of image force to a larger
area by generating a GVF field. The GVF field is computed
from the image. In detail, a GVF field is defined as a vector
field R � R � F �

that minimizes the energy function
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where W is the edge map which is derived by using an
edge detector on the original image convoluted with a Gaus-
sian kernel, and

U
is a regularization parameter. Using vari-

ational calculus, the GVF field can be obtained by solving
the corresponding Euler-Lagrange equations.

Similar to equation (5), the force balance equation of
GVF snake can be expressed as
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where
Z

is a proportional coefficient. GVF snake’s larger
capture range and concavity tracking ability are attributed to
the diffusion operation shown in the above equation. When> N W > is small, the energy is dominated by the sum of the
squares of the partial derivatives of the vector field, resulting
a slowly varying yet large coverage field. Whereas when> N W > is large, the second term dominates the integral.

In applying the GVF snake on real data such as medi-
cal images, the capture range of the active contour did not
seem as large as we expected. This is mainly because in the
case of medical data, images often contain a lot of textures.
Unfortunately, the GVF field is very sensitive to these vari-
ations and the active contour does not converge to the ideal
solution. Another observation was that the GVF snake was
sensitive to the shape irregularities. In these cases, the GVF
force could not properly push the snake to the right contour.

To deal with these problems we have developed an im-
proved GVF snake. This new method is presented in detail
in the following section.

3 Improved GVF snake

The improvement we propose is to add new external
forces, including an adaptive balloon forceW ] $

and a dy-
namic GVF force, defined as a vector fieldR _ ` "

. Then, we
propose a new scheme to integrate these external forces in
the snake mathematic formulation.



3.1 Adaptive balloon force

In the balloon model proposed by Cohenet al., a pres-
sure force� � � � �

is added to snake force as a second external
force to push the curve outward or inward [2, 3]. In this way,
the curve is considered as a balloon that has been inflated or
deflated. Equation (8) represents the pressure force, where�� 	 � � �

is the normal unit vector to the curve at point

 � � �

.
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The balloon force is considered to increase the image
potential force capture range. This is a proper consider-
ation given that the snake can be set to start evolving in-
side the object. Unfortunately, balloon force introduces un-
predictability to the performance of the active contour and
make it more sensitive to the value of its different parame-
ters.

To overcome the unpredictability problem introduced by
the balloon force, this force is applied in an adaptive way.
The main idea is to give the balloon force bigger weight
compared to the GVF force at the early stage of the evo-
lution, and to give the balloon force smaller weight at the
later stage. In this way, the speed of the convergence is in-
creased, and the snake can be correctly pushed toward the
surface even if it starts far away with less chance of being
over-pushed.

3.2 Dynamic GVF force

A dynamic GVF force is introduced to provide a unique
evolution-stop mechanism as well as all the characteristics
owned by the original GVF force.The evolution-stop mech-
anism is needed to prevent the snake from breaking through
the correct contour and locking to other feature points. The
breakage can happen in areas where two objects or organs
are very close each other. The introduction of the dynamic
GVF force is inspired by a property of the GVF field. That
is, when the GVF field passes a contour, its direction will
change. Figure 1 shows an ellipse and its corresponding
gradient vector flow.

It can be easily observed that the field vector changes di-
rection at the ellipse boundary. Therefore, a consistency de-
gree is incorporated into the new dynamic GVF force. The
force varies according to the consistency. If the evolution of
the snake will cause the change of GVF force direction, it is
said inconsistency has occured and the snake is not allowed
to evolve to the new position.

3.3 New scheme

With these two novel inclusions, the proposed force bal-
ance equation can be expressed as:

� 
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is defined in equation (10) as a dynamic gradient

vector flow force. Let) + be a point on the current snake
and ) - its possible next position in the evolution process.. 0

defines the consistency angle and is proportional to the
angle between the GVF vectors at) + and ) - . 1 0

represents
the cut-off angle: based in our experiments,1 0 � 2 & 4

is a
good threshold.
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The new dynamic gradient vector flow force will be the
same as conventional GVF if the snake point moves towards
the contour. But when the snake point tries to cross over an
edge, the dynamic gradient vector flow force will stop the
point from moving. The threshold1 0

will decide when this
evolution-stop mechanism will be triggered.

4 Experiments

Brain Tumor Segmentation Database. In validating the
performance of the proposed method, we used the SPL
and NSG Brain Tumor Segmentation Database [6, 9].
The database consists of magnetic resonance images
of several anonymous brain tumor patients, as well as
segmentations of the brain and tumor from these scans (MR
T1-weighted image in the sagittal plane, 256 x 256 x 124,
0.9375 x 0.9375 x 1.5 J J L ). Manual segmentations
obtained by neurosurgeons and automated segmentations
obtained by the method of [6] and [9]. In figure 3, we
present the manual segmentation of aglioma on the MRI
of the patientM in the database, the sliceN O is presented.

Validation criteria. Our validation criteria of tumor seg-
mentation is based on both subjective and quantitative anal-
ysis. For subjective aspect, the contours drawn by ex-
perts (figure 3) and by automatic segmentation were com-
pared (figure 4). For quantitative analysis, three validating
parameters are defined. In defining the parameters, the ac-
curacy of the snake results is checked against the manual
segmentations done by four experts.

To evaluate the results, we propose to use three values
which we will denote by

. P
, Q S T and Q T T .. P

is defined as the ratio between the area considered as
tumor by both the snake and at least three experts and the
area considered as tumor either by the snake or at least three
experts. It is expressed as

. P � V XY $ \ ^ V _ ` G b c V > e , where f �
is the area confined by snake;f g \ � h

is the area considered
as tumor by at least three of the four experts andf j is the



Figure 1. An ellipse and its corresponding GVF forces.

area overlapped between� �
and � � � � �

. We can note that� �
is a normalized value (

� � 	 � � � � �
).

� � � is defined as the area considered as tumor by
snake, but as non-tumor by at least 3 experts (False Posi-
tive Number).

� � � is defined as the area considered as non-tumor by
snake, but as tumor by at least 3 experts (False Negative
Number).

Results. To investigate the performance of our segmenta-
tion method and compare it with original GVF snake, we
have designed four experiments using four different sets of
parameters. For each experiment, both original GVF snake
and our improved GVF snake have the same values of� ,

� and
�

, we alse the initial position for the curve. Fig-
ure 2 shows the original image and the initial snake position
drawn in white curve.

Figure 2. The original MRI slice � � of patient � and
the initial snake position drawned in white.

Table 1 summarizes the parameters set for the four
experiments, we choose

�  � # $
for our method. Table 2

parameters � � �

Test 1 0.05 0.1 0.3
Test 2 0.05 0.1 0.5
Test 3 0.05 0.1 0.1
Test 4 0.1 0.2 0.3

Table 1. Parameters set for the four experiments.

and 3 presents the values of
� �

, � � � and � � � of both
the original GVF snake and our improved GVF snake.

Analysis. Based on the figures and tables, two main points
can be drawn as to the performance comparison. One
point is that in terms of subjective criteria the original GVF
snake’s capture range is far from enough to locate the tumor
and it easily became stuck on unwanted features and failed
on most of the cases, whereas the proposed approach suc-
ceed in locating theglioma in most cases. The other point
is that, according to quantitative analysis, our approach re-
sulted more preferable results than the original GVF snake
in most cases. One point we want to note is that in some
particular cases the original GVF snake presented some bet-
ter validating values, however, by analysis all the validating
values for each case we can state that our method is still
more preferable.

Based on figure 4, we can see that the original GVF can
not correctly locate theglioma and is stuck at the top part
of the tumor. For quantitative analysis, by observing the� �

values of the original GVF snake and our approach, we
can see that the original GVF snake gives favorable value
of

� # & � $ (
comparing to

� # ( ( & � of our approach. This does
mean that in this case the area located by the original GVF
snake is more likely asglioma than the area located by our
approach. However, if we check the� � � and � � � val-
ues, we can see that our method presented much less false



Original GVF Test 1 Test 2 Test 3 Test 4� �
0.7931 0.8127 0.1388 0.2055

� � � 129 235 0 37
� � � 307 278 1278 1179

Table 2. Values of the three criteria using the original
GVF snake.

Improved GVF Test 1 Test 2 Test 3 Test 4� �
0.8455 0.7783 0.6274 0.7871

� � � 259 407 2 389
� � � 67 55 553 46

Table 3. Values of the three criteria using the im-
proved GVF snake.

negative number. This is ideal from the viewpoint of a neu-
rosurgeon.

5 Conclusion

In this paper, we have presented a new method using
Gradient Vector Flow and Balloons. We introduced an
adaptive balloon force to increase GVF snake’s capture
range and speed up evolution. Then we proposed a dynamic
GVF force to provide an efficient evolution-stop mecha-
nism.

Based on experiments on segmenting a tumor in real
brain MRI data, it has shown that the proposed method is
robust to the variation in initial position and efficient in pre-
venting the snake from breaking through correct contour
and locking to other feature points.

A current limitation of the method is that GVF is com-
puted independently slice by slice (2D version). As a con-
sequence, we do not take into account the interslice spatial
continuity of the gradient, or the possible anisotropy of the
voxels. Such error of segmentation might be reduced by
putting spatial constraints to the reconstructed structure.
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Figure 3. Manual segmentation by four different experts of a glioma on the MRI.

Figure 4. Automatic Segmentation of the glioma, using two different techniques with four sets of parameters; Top:
orignal GVF snake; Bottom: our improved GVF snake.


	Numbx: 
	C: 
	L: 
	R: 

	P1: 
	Numb: 
	Numbx: 
	C: 9
	L: 
	R: 



	P2: 
	Numb: 
	Numbx: 
	C: 10
	L: 
	R: 



	P3: 
	Numb: 
	Numbx: 
	C: 11
	L: 
	R: 



	P4: 
	Numb: 
	Numbx: 
	C: 12
	L: 
	R: 



	P5: 
	Numb: 
	Numbx: 
	C: 13
	L: 
	R: 



	P6: 
	Numb: 
	Numbx: 
	C: 14
	L: 
	R: 





