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Welcome from the
General Co-Chairs

Brian Lovell

Traditionally the APRS has organised a technical meeting every year since its inception in 1990 - a
major 3-day refereed conference (DICTA) in odd numbered years and a workshop in even numbered
years. Unfortunately we weren't able to organise a workshop in 2004 despite attempts to get a meeting
going in other cities, so we decided to organise a workshop in Brisbane in early 2005. This left us
with a problem since we had already agreed to run DICTA in Brisbane in 2005 and didn't want to run
consecutive events in the same city. To solve this dilemma, we have now moved DICTA to Cairns to

give APRS members a chance to see that beautiful city as well.

After DICTA2002, a membership poll was conducted to determine whether members wanted the
workshops to meet the same reviewing standards as DICTA, so that papers would receive full
academic credit. This motion was overwhelmingly supported, so WDIC2005 is also being run as an

internationally peer reviewed conference with electronic submission, reviewing and publication.

The theme for the keynote address and the oral sessions is “Pattern Recognition and Imaging for
Medical Applications.” To give an opportunity for all members of the pattern recognition community
to participate, papers that are of general interest to the Pattern Recognition and Computer Vision

Community appear in the poster sessions.

We received a large number of submissions despite the late advertising and registrations are also
strong. As per APRS tradition, registrants at WDIC2005 are given one-year membership of the APRS
which includes notices via the mailing list and discounts on APRS and IAPR technical events. | am

looking forward to an exciting technical program and to meeting you all at the workshop.

Finally, I would like to take this opportunity to thank Anthony Maeder and the e-Health Research
Centre for their excellent support in organising this event. Furthermore, | would like to express my
gratitude to the members of the Technical Committee for their very speedy responses to our reviewing

requests.



We do hope you enjoy WDIC2005!
Brian Lovell

General Co-Chair of WDIC2005
President of the Australian Pattern Recognition Society

Director Engineering Programs, School of ITEE, UQ

Anthony Maeder

Welcome to WDIC2005, which continues a tradition in place since 1990 of APRS specialist
Workshops running in the years between the bi-annual DICTA conferences. The last such Workshop
was WDIC 2003, also held in Brisbane, and it seemed to APRS committee that with the strong support
that event received, a follow-up event was warranted. We were pleased to receive about 40
submissions for WDIC2005, of which 34 were accepted following a rigorous reviewing process. The
timing of WDIC 2005 has been moved to early in the year to avoid the "vacation effect" of
December/January, which it was felt might lead to reduced attendance for such a small scale event.
We have retained a single day format as we have found that this helped to contain costs for the event,

and was preferred by local delegates who make up the bulk of our registrations.

This year's workshop has the theme of Pattern Recognition and Imaging for Medical Applications, an
area which is of growing interest nationally in Australia as improvements in the safety, quality and
efficiency of healthcare become prominent issues. The range of topics varies from new image
processing techniques for the extraction of image information, to algorithmic methods allowing use of

images from multiple modalities for clinical purposes.

In line with the Workshop theme, our invited Keynote Speaker Dr Sebastien Ourselin from CSIRO
ICT Centre BioMedia Lab, is an accomplished research leader in this field who will share with us his
experiences of international research engagement and provide details of the diverse range of projects
being undertaken by his research team based in Sydney. APRS will continue to profile medical

Imaging and Pattern Recognition over the coming years, in anticipation of the major international



conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) which will
be held in Brisbane in October 2007.

We are grateful to CSIRO for supporting WDIC 2005 through the e-Health Research Centre unit
within its ICT Centre. We also acknowledge with gratitude the significant in-kind contributions from
The University of Queensland, Griffith University, and Queensland University of Technology, through
provision of resources and time. As always, APRS is committed to supporting events of a
collaborative nature and organisation of this workshop has been accomplished with the willing

involvement of parties from all the above institutions.

Please enjoy the workshop, and use the occasion to broaden or strengthen your contacts with others in

the APRS community.

Anthony Maeder
General Co-Chair of WDIC2005

APRS Committee Member
Research Director, e-Health Research Centre
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Medical Image Water marking: A Study on I mage Degradation

B. Planitz and A. Maeder
e-Health Research Centre, ICT CSIRO
Brisbane, QLD 4000
Birgit.Planitz@csiro.au

Abstract The result is a stego image Mathematically, the embed-
ding process can be described as a mappinyy/ x K — I
Digital watermarking has been proposed to increase [7].
medical image security, confidentiality and integrity. Med This paper considers the particular caserafdical im-
ical image watermarking is a special subcategory of im- age watermarking Watermarking has become an impor-
age watermarking in the sense that the images have speciatant issue in medical image security, confidentiality and in
requirements. Particularly, watermarked medical images tegrity [1]. Medical image watermarks are used to authenti-
should not differ perceptually from their original counter cate (trace the origin of an image) and/or investigate the in
parts, because the clinical reading of the images (e.g. for tegrity (detect whether changes have been made) of medical
diagnosis) must not be affected. This paper presents a preimages. One of the key problems with medical image water-
liminary study on the degradation of medical images when marking, is that medical images have special requirements.
embedded with different watermarks, using a variety of pop- A hard requirement is that the image may not undergo any
ular systems. Image quality is measured with a number ofdegradation that will affect the reading of images. Gener-
widely used metrics, which have been applied elsewhere inally, images are required to remain intact to achieve this,
image processing. The general conclusion that arises fromwith no visible alteration to their original form [2]. This
the results is that typical watermark embedding can causepaper presents a preliminary investigation on medical im-
numerical and perceptual errors in an image. The greater age watermarking, by applying three popular watermark-
the robustness of a watermark, the greater the errors are ing systems to medical images, and examining the level of
likely to be. Consequently medical image watermarking re- degradation that occurs. First, aspects of recent medical i
mains an open area for research, and it appears that a se-age watermarking systems are reviewed in Section 2. Sec-
lection of different watermarks for different medical ireag tion 3 then outlines three popular, general-purpose, water
types is the most appropriate solution to the generic prob- marking systems, which are used in the study on medical
lem. image degradation. The quality metrics that are used to de-
termine image degradation when applying a watermark, are
presented in Section 4. These metrics are applied to inves-
1 Introduction tigate the three aforementioned systems, and their agpropr
ateness for medical images, in Section 5. Finally, Section 6
Digital image watermarking is a particular subset of summarises the paper and discusses future work.
steganography, which is the art of hiding a covert message
in a carrier message. Examples of messages are other im2 Reaview
ages, or ASCII code such as text files, or numbers. Three

elements are required to hide a message within a digital im-  p1agical image watermarking systems can be broken into

age. These are [S]: three broad categories: robust, fragile, and semi-fragile
Carrier message: the original, unmarked image This section explains these terms and provides a brief re-

view of existing systems in each category.

Robust watermarkare designed to resist attempts to re-
move or destroy the watermark [9]. They are used primarily
Steganography key: K, which is used to encrypt the wa- for copyright protection and content tracking. Many tra-

termark and/or for randomisation in the watermarking ditional robust methods are spread-spectrum, whereby the
scheme. watermark is spread over a wide range of image frequen-

Payload message: the hidden message or watermaik;
and



cies [5]. More recent work includes the creation of image- DFT domains, but the image changes are still barely visible
adaptive watermarks, where parameters change dependingp the human eye. Another example of embedding water-
on local image characteristics [9]. marks using DCT coefficients is presented in [14]. Multi-

A number of robust medical image watermarking sys- ple watermark embedding has also been used by a number
tems have been developed. For example one system use@f researchers [3, 12, 13]. Multiple watermarking systems
a spread spectrum technique to encode copyright and pahave the advantages that different watermarks can be ap-
tient information in images [17]. Another embeds a wa- plied for different purposes (e.g. copyright, authentarat
termark in a spiral fashion around the Region Of Interest data integrity) [3]. Also, image alterations can be detecte
(ROI) of an image [19]. Any image tampering that occurs by investigating the watermarks after the image has under-
will severely degrade the image quality. The Gabor trans- gone degradation [12, 13].
form has also been applied to hide information in medical A number of recent medical image watermarking sys-
images [6]. One observation that is generally applicable to tems have been proposed in this section. These were cate-
robust systems is the greater the robustness of the watergorised into robust, fragile, and semi-fragile systemse Th
mark, the lower the image quality [7]. remainder of the paper will consider three systems of vary-

Fragile watermarksare used to determine whether an ing levels of robustness, in a preliminary study that inves-
image has been tampered with or modified [9]. The water- tigates the degradation of medical images, when embedded
mark is destroyed if the image is manipulated in the slight- With a watermark.
est manner. Fragile watermarks are often capable of locali-
sation, and are used to determine where modifications were3 \Water mar king Systems
made to an image. Traditional methods embed checksums

or pseudo-random sequences in the Least Significant Bit s section briefly describes three widely used water-
(LSB) plane [5]. More recent work has employed increas- ming systems. These systems vary in robustness, and

ingly sophisticated embedding techniques such as crypto-ye gpplied to hide information in medical images later in
graphic hash functions [9]. the paper.

Fragile invertible authentication schemes have been pro- g_Tg0lsis a popular package for image watermarking
posed for medical images, whereby a watermark can be re{16]. The system embeds one or more fragile watermarks
moved from a stego image, and the exact original imagejn the LSBs of an image. Given a low insertion rate (i.e. the
results [2, 10]. Another medical image watermarking sys- watermark is significantly smaller than the image), the wa-
tem embeds information in bit planes, which results in stego termark should be perceptually invisible in the stego image
images with very low normalised root mean square errors Although widely used, LSB techniques such as this are sen-
(NRMSE), indicating that the watermark is practically in- sijtive to factors such as quantisation noise [5], which can
visible [4]. A watermark that is embedded in the high fre- gasjly destroy the watermark.
quency regions of an image has also been proposed, which Hide4PGPis more robust than S-Tools [15]. This is due
also resulted in low NRMSEs [4]. to the fact that information is generally embedded in the

Semi-fragile watermarksombine the properties of both  fourth LSB of an image, which increases the watermark’s
robust and fragile watermarks [9]. Like robust methods, robustness against noise. However, this increase in robust
they can tolerate some degree of change to the watermarkef@less causes a decrease in image quality.
image (for example, quantisation noise from lossy compres-  JPHide hides files in JPEG images [8], whereas the
sion). Like fragile methods, they are capable of localising two aforementioned systems generally embed watermarks
regions of an image that are authentic and those that havén BMP files. This system changes the statistics of JPEG
been altered. Recent work in the area includes embeddingoefficients, so that the embedded information can easily be
a heavily quantised version of the original image in the im- retrieved when required. The system aims to provide high
age, embedding key-dependent random patterns in blockstego image quality, but maintains that low insertion rates
of the image, wavelet embedding, and embedding multiple (< 5%) should be observed. Higher rates will cause the

watermarks [9]. watermark to become visible in the stego image.
Recently, much emphasis has been placed on semi- Figure 1 illustrates image embedding by applying the
fragile medical image watermarking. Jagadital. inves- three aforementioned systems. A small text file (108 char-

tigated interleaving hidden information in the Discrete Co acters) is embedded in Figure 2(b). The difference im-
sine Transform (DCT) and the Discrete Wavelet Transform age between the original and stego image is shown in Fig-
(DWT) domains [4]. DCT and DWT domains are widely ures 1(a), (c), and (e), using S-Tools, Hide4PGP, and JPHide
studied because they relate to the JPEG and JPEG200@espectively. A significantly larger image file (40kb) isals
compression methods respectively. The NRMSEs of en-embedded in the same image, resulting in the difference im-
coding in these domains are higher than in the spatial andages shown in the right hand column of Figure 1. It can



be seen that the more information is embedded in an im-respect to a reference imade Mathematically, it is ex-
age, the more visible the difference between the original pressed as:
and stego images. Image degradation increases when us- Dk
ing Hide4PGP rather than S-Tools, and greatly increases Me = Zpkloy? (q_k> )
when using JPHide. These results will be discussed further k
in Section 5. However, they were provided here as a meansyherep andgq are the probability distributions of and I
of comparing the robustness (and related image degradatiomespectively, over all pixel intensitids Given an imagd,
caused) by the three systems discussed. and a watermarked image m, is expected to be low for
similar images (O if the images are equal) and high if the
relative information differs significantly.

The Peak Signal-To-Noise Ratio (PSNR) is another com-
monly used image quality metrieSNRis given by:

@)

B
mp = 1010910—RMS, (2)

whereB is the largest possible value of the signal and RMS
is the Root Mean Square difference between the two im-
ages. PSNR penalises the visibility of noise in an image
[18]. Thus, two images that are exactly the same will pro-
duce an infinite PSNR value.

The Mean Square Error (MSE) compares two images on
a pixel-by-pixel basis. MathematicallyISE is expressed

as.
ms = ﬁZZ(Iij _fij>2a (3
ig

where both images contailf x N pixels. This measure
gives an indication of how much degradation was intro-

. ‘eum - e duced at a pixel based level. The higher the MSE, the
greater the level of degradation.
Figure 1. Difference images for implementing An alternative metric is the Mean Absolute Error (MAE).
a 108 character text file using (a) S-Tools, (c) MAE is given by:
Hide4PGP and (e) JPHide, and implementing 1
a 40kb image using (b) S-Tools, (d) Hide4dPGP, My = —— I — Il 4
and (f) JPHide. MNXZ.:XJ.: ro )

This equation quantifies the mean of all the absolute pixel-
by-pixel differences il and .
Each of the four aforementioned metrics give an under-
4 Quality Metricsfor Testing Image stanc_iing of the actual diff_erences_)]randf, hoyveverthese
Degradation metrics do not focus on image dlfferen_ces in terms Qf the
HVS. TheWatsonmodel has been designed to provide a
measure that reflects image degradation as perceived by the
As shown in Figure 1, watermarking causes image degra-HVS [20]. The basic aim of the model is to weight the DCT
dation. This section lists a number of metrics that quantify coefficients in an image block by its corresponding sensitiv
image degradation. These metrics have been applied widelyity threshold. The threshold is a compound function of sen-
in image quality assessment, including for medical imaging sitivity, luminance masking and contrast masking [18, 20].
[11]. The metrics measure quality degradation using pixel- The objective is to minimise the perceptual error between
based comparisons, and the last one considers perceptusalvo images. Two images that are exactly the same will have

error in terms of the Human Vision System (HVS). an error of zero.

Entropy quantifies the amount of information that is  The metrics that have been presented here are used to
present in an image Relative entropyor the Kullback- measure image degradation in the following section, where
Leibler distance, normalises the entropy of an imAgeith medical images are watermarked using the tools discussed



in Section 3. The metrics are used to compare system per-
formance, and provide a general indicator of the appropri-

ateness of each tool for embedding hidden data in medical
images.

5 Reaults

This section compares the image quality of three medical
images that were embedded with a variety of watermarks.
First, the three test images are presented. This is followed
by a discussion on the watermarks that have been hidden in
the images. The quantitative image quality results of each
experiment are shown next. Finally, the appropriateness of
each watermarking system for medical image data is dis-
cussed.

Three medical images were used in the watermarking ex-
periment. The first image is from a Magnetic Resonance
Imaging (MRI) modality. The second image is from a Com-
puted Tomography (CT) modality. The third image was
captured using a specialised CXR system. Figure 2 illus-
trates all three test data sets. Note that the images vary in
size: 470 x 579 for the MRl image and 022 x 689 for the
CT and CXR images.

Four different watermarks were embedded in the med-
ical images: text files with 108 and 1080 characters each,
and JPEG images of size 4kb and 40kb. The text files were
hidden in the images to test the image quality difference be-  Figure 2. Test data: (a) MRI head, (b) CT head
tween embedding a text file, and another that is ten times and (c) CXR chest images. Images supplied
larger, in an image. The same type of experimentwas repli- by Queensland Health.
cated with the image watermarks (based on the logo shown
in Figure 3).

Table 1 presents the results of embedding the four wa-
termarks in each of the medical images. Before analysing _E H E A I—T I-l
the results, some notes must be made about the outcomes.

Firstly, JPHide was not able to produce results for the MRI

data. Secondly, the JPHide program informs the user if a Figure 3. |mage watermark: e-Health |Ogo_

watermark is too large to embed in an image (in the sense

that the watermark will cause significant visible distanso

in the image). This was the case when embedding the 40kb

logo in the CT and CXR images, and hence the results are The relative entropyoutcomes show that S-tools per-
shown in parentheses. The results are included for com-forms better than Hide4PGP for the MRI image. S-Tools
pleteness, and to compare JPHide with the other two sys-and Hide4PGP entropies are approximately the same order
tems. Note also that in many cases, both MSE and MAE of magnitude for the CT and CXR images. JPHide pro-
provide the same quantitative values. This is due to the bi-duced much higher values than other systems for the CT
nary nature of the images. Both sets of results are shownand CXR images, due to the 'heaviness’ of the embedding,
to emphasise the weakness of JPHide when embedding thehich greatly increased the amount of information in the
logo within the medical images. stego images.

Some general observations can be made about the out- An interesting anomaly occurred in tRSNRresults for
comes in Table 1. Firstly, image quality degrades as morethe S-Tools watermarked MRI image. The PSNR values
data is embedded in an image. Secondly, increased waterwere very low, although all four other metrics indicatedtha
mark robustness is related to a decrease in image qualityS-Tools embedding provided minimal image degradation.
as expected. Some specific results are now presented, bffhe reason for the result is unknown. In other results, S-
considering each quality metric separately. Tools and Hide4PGP again provided similar values for the




[ Image [ System [ Watermark [ Rel. Ent. | PSNR (dB) | MSE | MAE | Watson |
MRI S-tools text 108 char | 4.9678e-6| 9.9224 9.7747e-4| 9.7747e-4| 0.0541
text 1080 char| 6.0984e-6| 9.9224 0.0010 0.0010 0.0560
4kb logo 0.0010 9.9228 0.0169 0.0169 0.2421
40kb logo 0.0297 9.9251 0.1156 0.1156 0.4399

Hide4PGP | text 108 char | 1.4808e-5| 37.2769 0.0017 0.0017 0.2188
text 1080 char| 8.0463e-4| 32.3498 0.0167 0.0167 0.3035
4kb logo 0.0083 29.7059 0.0564 0.0564 0.4387
40kb logo 0.3899 23.0330 0.7826 0.6091 1.6202

CT S-tools text 108 char | 3.0532e-6| 42.8411 3.7492e-4| 3.7492e-4| 0.3158
text 1080 char| 2.6226e-7| 42.7358 4.0190e-4| 4.0190e-4| 0.2396
4kb logo 4.3526e-5| 36.7336 0.0065 0.0065 0.7185
40kb logo 0.0017 32.4548 0.0445 0.0445 1.5455
Hide4dPGP | text 108 char | 2.1947e-7| 43.9802 2.3574e-4| 2.3574e-4| 1.2268
text 1080 char| 7.5416e-6| 39.1583 0.0021 0.0021 1.0032
4kb logo 5.2060e-5| 36.5181 0.0073 0.0073 1.1681
40kb logo 0.0045 31.4453 0.0747 0.0747 2.1601
JPHide text 108 char | 0.3092 27.9301 0.1687 0.1687 13.1836
text 1080 char| 0.3211 27.8969 0.1713 0.1738 13.2734
4kb logo 0.7275 24.9565 0.8264 0.5877 17.9248
40kb logo (1.1291) (18.1810) (21.6782) | (3.0818) 51.4543

CXR | S-tools text 108 char | 5.2204e-7| 42.8291 | 3.9338e-4| 3.9338e-4| 0.3008
text 1080 char| 5.0935e-7| 42.7473 | 3.7634e-4| 3.7634e-4| 0.3025
4kb logo 5.8960e-5| 36.7648 | 0.0063 | 0.0063 0.5646
40kb logo 0.0022 | 32.4558 | 0.0446 | 0.0446 1.2507
Hide4PGP | text 108 char | 2.2899e-7| 44.0885 2.4426e-4| 2.4426e-4| 1.2267
text 1080 char| 7.4450e-6| 39.0936 | 0.0022 | 0.0022 1.0012
4kb logo 7.2196e-5| 36.5025 | 0.0073 | 0.0073 1.1571
40kb logo 0.0060 | 31.4491 | 0.0750 | 0.0750 1.8501
JPHide text 108 char | 0.0110 | 27.5046 | 0.2052 | 0.2052 6.0806
text 1080 char| 0.0114 | 27.5261 | 0.2032 | 0.2032 6.2000
4kb logo 0.0475 24.4695 1.0285 | 0.7060 | 9.6438
40kb logo (0.3343) | (17.2415) | (34.2228) | (4.3160) | 43.2141

Table 1. Differences between original and stego images, wit h four different watermarks.

CT and CXR images, and the poor performance of JPHideondly, more research is required before systems such as S-
was clear. Tools, which provide minimal image degradation, are used

MSE computation resulted in much lower values for S- to embed watermarks in the images. This is because even
Tools than Hide4PGP for the MRI image, due to the fact high quality stego images may have small changes in image
that S-Tools embeds much less information in an image. pixel values, which can change the interpretation of the im-
This result is reflected in the MSE values for the CT and age. Note that image interpretation is used by radiologists
CXRimages. The results of JPHide were again significantly for diagnosis and in imaging applications such as automatic
poorer than the other two systems, due to the greater imagémage segmentation.

alterations that is causes. It may be more appropriate to embed an invertible wa-
TheMAE results generally followed the same pattern as termark, such as [2], which can be removed completely to
the MSE ones. Some MAE values were lower however, attain the original image. Alternatively, if more robustse
because the errors were not squared. is required, embedding watermarks in non-ROI image sec-
The Watsonmetric showed that S-tools was the best tions, such as [19], is another possibility. For images such
overall performer visually, providing lower perceptual er as Figure 2(c) however, this may not be possible, because if
rors than Hide4PGP and JPHide. The poor performance ofcropped, the ROI takes up the whole image. Given these is-
JPHide was again evident. Embedding data using this syssues, it is appropriate to conclude that different wateksiar
tem can cause great visual disturbances, as shown in Figshould be applied to different medical image types, and
ures 1(e) and (f). therefore systematic ways to achieve this should be investi
From the discussions above, some general conclusiongjated. An example where the same watermark will produce
have been reached about medical image watermarking, usdifferent effects on two different image types is using LSB
ing these approaches. Firstly, S-Tools generally providesembedding for (1) X-ray and (2) Ultrasound images. Image
less image degradation than Hide4PGP or JPHide. Secenhancement, a common operation on the X-ray images,



will destroy patches of the watermark, where the image is [6] X. Kong and R. Feng. Watermarking medical signals for
brightened. On the other hand, denoising, which is com-
monly used to smooth Ultrasound images, will destroy the
watermark on edges where the image has been smoothed.[”]

As stated, a systematic approach will be required to select

the most appropriate watermarks for different medical im-
age types.

6 Conclusion and Future Work

This preliminary study has shown that medical image
watermarking is still an open field of research. This is pri-

marily due to the special nature of the images, which should

(8]

9]

not be perceptually altered. The study compared three wa-[10]

termarking systems, applying their techniques to hide data
in medical images. As expected, watermark robustness is
related to a decrease in image quality. Also, even stego

images from the most fragile system, S-Tools, resulted in
perceptual image degradation. Thus, future work in the 12]
area should include considering invertible techniques, or

ROI techniques if increased robustness is required, ard tha

different watermarks should be applied to different meldica
image types.
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Abstract large numbers of patients are examined [2, 19]. In addition
barriers to screening in rural and remote areas exist and in-
Proliferative diabetic retinopathy is a complication of di- clude distance required to travel, cost of screening and cul-
abetes that can eventually lead to blindness. Early identifi- tural reasons that often lead to indigenous people remain-
cation of this complication reduces the risk of blindness by ing in their communities rather than seeking health advice
initiating timely treatment. We report the utility of pattern in larger urban centres. With advances in digital imaging
analysis tools linked with a simple linear discriminant anal- and the development of computerised grading systems, au-
ysis that not only identifies new vessel growth in the retinal tomated reading and assessment of complications associ-
fundus but also localises the area of pathology. Ten fluores-ated with the retinal fundus is becoming more sought after,
cein images were analysed using seven feature descriptorgspecially in rural and remote areas.
including area, perimeter, circularity, curvature, entropy, Ophthalmologists have an 80 to 95% success rate in
wavelet second moment and the correlation dimension. Ouridentifying proliferative retinopathy. This success rate de-
results indicate that traditional features such as area or creases with eye obstruction such as cataract and for identi-
perimeter measures of neovascularisation associated withfying earlier stages of proliferation without additional med-
proliferative retinopathy were not sensitive enough to de- ical history [22]. However non-specialists perform no bet-
tect early proliferative retinopathy (SNR 0.76, 0.75 re-  ter than chance (50%). The National Health and Medical
spectively). The wavelet second moment provided the besResearch Council recommend that generally any screening
discrimination with a SNR of 1.17. Combining second mo- procedure for identifying diabetic retinopathy needs to have
ment, curvature and global correlation dimension provided a minimum sensitivity of 60% to maximise treatment out-
a 100% discrimination (SNR o). comes and costfiectiveness [21]. We concentrate on pro-
viding an automated procedure to assist in the identification
of neovascularisation that meet NHMRC requirements, es-
pecially for rural health professionals. Automated report-
ing of neovascularisation involves the segmentation of the

blood vessels from background in the digital image and pro-
In proliferative retinopathy new blood vessels are formed yjides an index of the stage of proliferation.

in the retina and emerge from the area of the optic disc and

spread towards the macula or emerge from peripheral ves- . .
sels [16]. Current prevalence of vision impairment due to 1.1 Mathematical assessment of optic fundus

1 Introduction

retinopathy may be as high as 36% in the diabetic commu- blood vessels
nity. Timely intervention for diabetic retinopathy lessens
the possibility of blindness [14, 18]. Any person with dia- Research into automated processing of retinal fundus

betes should expect to undergo ophthalmic examination atimages has mainly concentrated on the identification of
least annually. Initial screening and follow up assessment ofmicroaneurysms associated with preproliferative diabetic
the retinal fundus of diabetics is carried out by ophthalmol- retinopathy [9, 15]. Mathematical techniques such as frac-
ogists, which is both expensive and time consuming whental analysis have been used in classification tasks as they



are able to quantify complex branching patterns including y»(x) as partial derivatives of the Gaussian, viz
blood vessels [8, 17, 12]. Using an automated method that 2g(x) 2g(x)
can detect neovascularisation with a minimum sensitivity of wi(X) = § =% 2)
60% is therefore an useful advancement as it would lessen ox 9y

the burden on Ophtha|m0|0giStS during initial pOpulation Whereg(x) denotes the 2D Gaussian. By usiplgandWZ as

screening. The continuous wavelet transform (CWT) is a wavelets and the wavelet transform definition in Equation 1,
powerful and versatile tool that has been applied in many we calculated the gradient wavelet as

different image processing problems, including shape anal-

and  wa(x)

ysis [11]. T (b @) = (Tnl/1(b.a) 3
y/[f]( , a) Tv/z[f](b’ a) ( )
2 Methods Here, the wavelet transfori, for each pair , a) is ac-
tually a vector whose components are the respective coef-
2.1 Image Acquisition ficients of the wavelet transform using: andy, as the

analysing wavelets. The wavelet gradient is calculated for

Ten fluorescein angiographic retinal images (10pa24  €Very pixelin the image. _
pixel) were obtained using a Topcon camera linked with Im-  From the gradient waveforrf,,,, we obtain three com-

age 2000 software. These images were exported as TlFﬁ;:emdentary slhape features tlo crr]]aractensde the rtlatmal fundus
images for manual tracing of the retinal vessels using the2'00d vessel pattern, namely the second wavelet moment,

Object-Image imaging softwara€tp: //rsb. info.nih 2D curvature and entropy of orientation, calculated only on
gov/nih-image/) and analysed. Of the ten images five are (€ PiXels located at the boundary of the vessels.

control images (no disease present) and five are of neovas-
cularisation (the diseased state). See Figure 1 for examples2-4  Second Wavelet Moment

In order to characterise shape complexity we have
utilised the modulus of ,, i.e.,

A number of features were measured on the vessel _ _ > 5
shapes. These included the atgegoerimeterp, circular- M, Lf](b.a) = |T"’| =V (T)* + (1) )
ity (c = p?/a) and wavelet fractal inspired measurements.
These are described in the following.

2.2 Morphological Feature Extraction

providing a histogram that was calculated from the modulus
of the wavelet transfornM,,,, for a fixed scale value ef[5].
Taking the frequency count of théh bin of the histogram
2.3 Wavelet Transform Features asp;, we define the statistical moment of ordeof M,, as
a shape complexity measure, given by

The wavelet transform is a mathematical tool that has "
been used in morphological studies of both 1D and 2D mg = Zith (5)
data. Instead of the 1D contour based approach of Cesar i
& Costa [6], we utilise the 2D approach [3]. The contin- and adopted the second moment, namely= 2. The
uous wavelet transform (CWTD,, (b, 6, a)(x) of a retinal  wavelet calculates the gradient vector at a given pixel by

fundus imagef (x), with x = (x, y) is defined as: looking at a neighbourhood around the pixel.
11 : .
T,(b,0,a)(x) = C,’ - Jw* (a™r_o(x — b)) f(X) d*x 2.5 Entropy of the Orientation
1) R
whereC,, v, b, 6 anda denote the normalising constant, FromT, andM,, the respective orientation of each gra-

analysing wavelet, the displacement vector, the rotation an-di€nt vector may be easily calculated as the angle associated
gle and the dilation parameter respectively, with the aster-0 €ach vector and a histogram of gradient versus orienta-
isk denoting complex conjugation, and the partial form of tion. In order to quantify this dispersion, we have adopted
the wavelet transform being the position representation [1]. the €ntropys of the orientation distribution,
The scale and angle parametara(deé respectively) were

kept fixed for somea priori defined values: = ao and §= Zp" In pi (6)
0 = 0y. For the analysing wavelets used in this research we '

employed the first derivative of the Gaussian function [3]. where the now indicate histogram binning with respect to
Therefore, we define two analysing wavelegs,(x) and orientationd.

10



2.6 2D Curvature was performed with training and testing with the complete
dataset, and with cross-validation by testing on each of the
A measure of how the gradient vectors vary locally is ob- individual images with the classifier trained on the other
tained from the wavelet transforms that compose the gradi-hine images.
ent vectors, defined as the 2D curvature. The 2D curvature A forward feature selection process using LDA as the

is defined as: classifier was also tried to select the best features. For this
we varied the constant term of the LDA discriminant func-
FxxS2=2fcfyfxy+ [y f? i i iscrimi
k=V. Vi Ixxly xJyJxy T JyyJx ) tion to bias the discriminant towards one class and then the
TVl (ff " fyz)S/Z other class, thus obtaining a series of sensitivity and speci-

ficity values for detecting the diseased state (neovasculari-

wheref,, f,, fxx, fyy andf,, denote the first partial deriva- ~ Sation). A receiver operating curve (ROC) was fitted to the
tives of f with respect tor and toy, and the second partial ~ SPecificity and sensitivity values according to the model de-
derivatives off also with respect ta andy. These partial ~ Scribed by Metz [20], and the area under the curve (AUC),

derivatives are estimated using the 2D wavelet transform inWhich can be shown to be a monotonically increasing func-
the same spirit described above for the gradients tion of the SNR under certain not too restrictive assump-

tions [4], was used to test thdfieacy of the classifier. At
each stage the one best feature out of the remaining features
was added to the subset of features currently selected and

- . . . . this process was continued until all features were added or
We utilised the correlation dimension as a complexity no feature improved the classification

measure as previously discussed in the literature [13]. The
correlation dimension is defined by

2.7 Correlation Dimension

3 Results
Dy = lim 2310 () ®) _ N
e=0 logyge Table 1 provides the basic statistical results for each of
) o ) the features analysed on the ten images. On tliveras-
where C(e) is the correlation integral calculated with an gymption of underlying Gaussian probability distributions
analysing disc of diameter. This procedure leads t0 @ o each of the classes of each feature the second moment

graphC(e) versuse from which a log-log plot-based line  ¢omes out as the best single feature with a SNR of 1.17.
fitting is able to estimate the correlation dimension. The lin-

ear portion of the log-log slope is determined by two meth-
ods. The median correlation dimension is determined by
measuring the slope for short segments within the log-log
plot and taking the median value of all determined slopes.
The global correlation dimension is determined by taking
the wavelet transform of the log-log plot using the third
derivative of the Gaussian as mother wavelet [7] to estab-
lish the end points of the linear region, and calculating the
slope from the two end points.

Figure 1. Fluorescein angiographic retinal
images of a control patient (left) and with

2.8 Statistical Analysis neovascularisation (right)

Basic statistical information, including mean and stan-
dard deviation, was calculated on the individual classes Figure 1 shows a fluorescein angiographic retinal im-
(control and neovascularisation) for each of the measuredage of a control and a neovascular retinal fundus. Figure 2
features. Assuming a Gaussian distribution for the underly- shows for the same images used in Figure 1 the wavelet
ing probability distribution for each feature measured over gradient modulus used in the calculation of the second mo-
each class, we arrived at SNR values, which give an indica-ment and curvature as 2D output that allows localisation of
tion of the predictive power, for each individual feature. pathology.

To analyse the data for predictive power of the com-  Using LDA as a classifier, trained and tested on the full
bined features for classification, linear discriminant anal- feature data set, perfect classification was achieved. This
ysis (LDA) was performed on the matrix representing the result should be treated with scepticism as the discriminant
data of the images. Features were normalised so that eacfunction involved the cancellation of the area, perimeter and
feature has zero mean and unit standard deviation. LDAcircularity terms with each other, then multiplying that re-
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Table 1. Statistical properties of the individual classes for the measured features.

Control Neovascularisation Discriminative
Feature Meag- SD Meant+ SD Power (SNR)
Area 85000+ 16000 10000@: 23000 0.76
Perimeter 33208 6200 39000t 8900 0.75
Circularity  (130+24)x10° (151+35)x10° 0.73
2nd moment 4073 19 4100+ 25 1.17
Entropy 557+ 0.01 558+ 0.02 0.54
Curvature 29 +42 2950+5.2 1.02
CD! median 163+ 0.08 162+ 0.09 0.05
CD global 156+ 0.04 158+ 0.06 0.54

1 CD = correlation dimension.

circularity, has improved the classification.

4 Discussion

Diabetes and its associated complications, including pro-
liferative diabetic retinopathy, has been identified as a sig-
nificant growing global public health problem. Direct
screening programmes such as those based on visits to the
ophthalmologist for retinal fundus assessment currently fail
to screen between 15 and 62% of patients each year [10].
A large proportion of these people develop potentially sight
threatening eye disease, which even at an advanced stage
may not cause any symptoms, yet treatment with a laser can
prevent visual loss in up to 98% of people if detected early
enough [18]. An important step towards reducing the num-

Figure 2. Colour coded image of wavelet gra- bers of individuals seriouslyféected by diabetic retinopa-
dient modulus (|eft) and curvature (nght) of thy is to SImpIIfy the procedure used to |dent|fy the condi-
the control (top) and neovascular (bottom) tion and ensure that early eye examinations become routine

for all people with diabetes.
Traditional features such as area, perimeter and fractal
dimension are not sensitive enough to discriminate between
sult by five orders of magnitude above the remaining terms.the control retinal fundi and retinal fundi displaying neo-
This is the result of training on too few data. vascularisation. Our feature analysis suggests that either
Running the forward selection on the feature data setthe second wavelet moment alone or in combination with
with LDA as the classifier identified three features, namely the curvature and global correlation dimension add to the
circularity, second moment and global correlation dimen- accuracy of the classification.
sion, as all that is needed for perfect classification where  This present study is limited in two ways. First, manu-
the classification is both trained and tested on the full dataally obtained vessel segmentations were used for analysis.
set. Ideally the whole process should be automated and stud-
We also examined the utility of a cross-validation on the ies are currently been undertaken to develop an automated
LDA where the classifier is trained with nine images and means of segmenting the blood vessels [7]. Second, the
tested on the one not included in training. This is repeatednumber of images used in this study are few, hence a ques-
for leaving each image in turn out of the training. The re- tion remains whether the images used truly incorporate the
sults of the cross-validation on the manual dataset (using allamount of variation present in a large population of retinal
features) indicated that all neovascularisation images wereimages. For this reason we only used LDA for classifica-
correctly classified but two of the control images were not. tion. Itis planned to repeat the study, with automated vessel
Interestingly perfect classification is obtained by excluding segmentation, on a larger corpus of retinal images, and with
the ‘area’ and ‘perimeter’ features. The removal of these more powerful classification algorithms.
features, which are highly correlated to each other and to Acknowledgements: HJ was funded for this project by
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Abstract use of Magnetic Resonance (MR) imaging to obtain high
contrast images of the cartilage, which has lead to several
We are working on generating an accurate Statistical imaging sequences that are useful for imaging the knee [4].
Map of the Knee bones and Cartilages for use as ‘a-priori’ The potential of MR images as a non-invasive diagnostic
knowledge in segmentation algorithms. The approach wetool for OA has been demonstrated for severe OA [6]. There
are presenting to automatically generate 3D Statistical are currently two approaches to monitoring OA progression,
Shape Models is based on the Point Distribution Model op- cartilage volume and cartilage thickness. The use of Carti-
timisation framework of Davies et al [8]. Our scheme uses lage Volume has been shown to correlate with radiographic
a conformal parameterization with an Eigenspace objective OA grades and may be more tolerant to knee positioning
function which is then optimized using a Genetic Algorithm. than thickness measurements [19]. However it is suspected
The current technique is illustrated by generating an Opti- that OA causes regional changes in cartilage structure with
mized 3D Statistical Shape Model of the Patella bone and some regions thinning and others thickening. For this rea-
Non-Optimized Model of the Tibia bone in the knee. son localized measures of cartilage thickness may provide a
better picture of OA progression [18].
In healthy patients the articular cartilage is on average
1. Introduction 2 mm thick with changes over short time scales (6 - 12
months) usually in the sub-millimeter region [18]. Due
The impact to the community of health problems asso- {0 this accurately detecting changes is difficult considering
ciated with the knee is increasing relatively to most other the resolution and accuracy of MRI and segmentation algo-
conditions, so that by 2016 it is expected rise from the 10th fithms. That being said it has been demonstrated that both
to the 8th largest major disease and injury Group [1]. Os- registration [17] of the cartilages and the generation of ‘cor-
teoarthritis (OA) is the major contributor to this with 14.6 respondence’ points by modeling the underlying bone [18]
per cent of Australians suffering from this condition [2]. €an be used to detect small changes in thickness.
OA develops when the articular cartilage starts to break The use of shape analysis techniques on the knee may
down from trauma, aging or failure of joint repair and main- provide more illumination on the cause and progression of
tenance mechanisms [11]. It has even been speculated th&PA by illustrating the specific influence of the biomechan-
some forms of OA are the result of a particular type of ics. The primary problem with this approach is that OA is a
skeletal remolding in response to mechanical stress [14].degenerative disease, thus the automatic generation of cor-
The degeneration leads to the articular cartilage becom-rect correspondence for the cartilages may become difficult.
ing thin; rough and eventually wearing away, so that bone The use of the femur, tibia and patella bones as a referen-
rubs against bone, thus causing inflammation and chronictial could help in generating correct correspondence in the
pain. As is often the case in medicine the early detection cartilages.
and treatment of OA can significantly improve patient out-  The focus of this work is on creating an automated seg-
comes. mentation system for the major components of the knee
In recent years there has been significant interest in the(bones and cartilages). The primary purpose of the system
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is the ‘accurate’ and ‘robust’ segmentation of the cartilages or deformable models [13]. The major drawback to this
of the knee from MR images. The segmentations can thenapproach is that the the correctness of the correspondence
be used to aid in the detection, diagnosis and treatment ofis purely determined by the ‘registration’ or ‘deformable’
OA. Towards this end we are working on a statistical map of model algorithm used.

the knee based around 3D Statistical Shape Models. These The parameterized approach solves the ‘Correspondence’
are CUrrentIy generated from a database of normal patientq)romem by mappn’]g the surface of the objects toa Spherica|

obtained from 3D SPGR MR scans. The purpose of this sta-syrface. The correspondence is obtained by aligning the
tistical map is to provide statistical constraints on the seg- parameter space [5]. The major drawback of this approach

mentation algorithms, as well as to provide a basis for anal-js that generally they are restricted to ‘genus 0’ objects and

ysis of the knee. This paper presents the current methodthe correctness of the correspondence is purely determined
Ology used to generate 3D Statistical Models of two of the by the mapp|ng and a”gnment of the parameterization.

bones in the knee (Tibia and Patella). The explicit creation of 3D Medial Representation of the
) ) object of interest would be an elegant way of solving the
2. Subjects and Imaging problem [16] [20]. However only certain anatomical shapes
are suited to Medial Representation as it is usually diffi-
This work is based around a Knee Database provided bycult to generate a consistent skeleton representation across
Boston Hospital and consists of 24 normal adults who were al| the training sets. This is a major problem and makes it
scanned using 1.5 and 3T G.E. MR scanners with a fat supdifficult to create a good representation which has ‘correct’
pressed 3D SPGR MR sequence. The sequence parameteggrrespondence across the training dataset.
were TE =5 or 7 msec, TR = 60 msec and a flip angle  payies etal [8] [9] work is similar to the parameterization
of 40°. The FOV was 128120 and the acquisition matrix ok however it treats the ‘correspondence’ of the land-
was 512512 and 256:256. These were reconstructed 10 4015 a5 an optimisation problem. So for a training set of
images with dimension of 0.23x0.23 or 0.46x0.46 and slice g, taces the aim is to find the optimal placement of the land-
thickness of 1.5mm. These images were then interactively o ks that minimizes the description length of the whole

segmented by experts. set. This approach has been shown to perform better than
approaches like SPHARM [16] and there is no theoretical
3. 3D SSM reason to suspect that Medial Representations or Registra-

tion approaches should outperform it. The primary problem
The Statistical Shape Model (SSM) proposed by with the current approach of Davies is that it is restrictive to
Cootes [7] can be used to capture and represent the vari‘genus 0’ surfaces. However, for the components of interest
ation in shape of a set of training examples. So from a setin the knee they are or can be treated as genus 0 objects.

of training data the typical shape and its most significant  The primary interest is in using a generic semi-
modes of variation are determined. This shape informationzutomated SSM implementation that could be applied
can then be used for the segmentation of new image datagcross a wide variety of objects in the knee, some of which
restricting the result to legal shape instances of the object tocan have a high variability. This is especially true for the
be segmented. This adds an inherent robustness that is negyrtilages of the knee. Medial Representations are not re-
essary for automated segmentation algorithms. Of course to|ly suitable for the objects of interest and although AT-
avoid problems in the resulting segmentation process the sef AS pased approaches are applicable we instead chose
of deformations allowed by the model should reflect whatiis {5 yse an approach similar to Davies Point Distribution
trying to be segmented. This is primarily determined by en- pmodel optimisation framework. This was implemented
suring there is a sufficiently large training set to cover the gjightly differently using a conformal parameterization with
‘real’ variability seen in the object and the accuracy of the an Eigenspace objective function that is optimized using
‘correspondence’ on the land marking. a Genetic Algorithm. The approach and reasoning behind

~ The primary problem in generating 3D SSMs is obtain- these choices will be examined in the following sections.
ing correct ‘correspondence’ of the landmarks across the

training set. There are several different approaches that

have been previously used. The most popular approacheg, Statistical Shape Modelling of the Knee
are based around ATLASes [15], Parameterizations, Medial

Representations, and recently optimisation approaches.

ATLAS based approaches involves the creation ofan AT-  The SSM framework of Cootes [7] extends trivially to
LAS with a corresponding mesh which is then fitted to the 3D. The SSM is built from a set of N training shapgs
other datasets. There have been two main approaches tofiti = 1,...,N). Each shape; has M points sampled on
ting the ATLAS to training datasets, registration [15] [10] its surface §; € R3). Then using Principal Component
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Analysis (PCA) each shape can be written as Sﬂﬂ[ Preprocesing and }%“““"‘Zfﬁ”“‘““g

Images | Surface Extraction RMS Normalization

Surface Set Surfaces
Par zati Set Par izati

si=5+Pb=5+Y P} (1)
k

Figure 1. Overview of Stage 1

wheres is the mean shape aiti= p* contains the k eigen-
vectors of the covariance matrix. The corresponding eigen-
values () describe the amount of variation expressed by
each eigenvector. The shape paramdietsb” are used to
control the modes of variation.

However to obtain a valid SSM it is necessary that

e The coordinates are in a common frame of reference.

e All points on each surface must correspond in an
anatomically meaningful way.

The first requirement can be achieved in a preprocessing
stage. The second is ensured by using an implementation
of the Point Distribution Model optimisation framework of

Davies et al [8]. Figure 2. A Patella Surface and its Parameter-
The implementation of the Point Distribution Model op- ization

timisation framework that is used can be broken down into

3 stages.

e Pre-processing: Surface Extraction and Parameteriza- ¢ Canonical space to compare and manipulate the train-
tion. ing objects.

e Generation of Initial SSM: created using uniform land e Bijective mapping.

marking of parameter space. The parameterization method used in this work is a confor-

e Optimize SSM: Using a genetic algorithm we optimize mal parameterization algorithm of Haker [3]. It does intro-
the objective function of SSMs that are generated from duce some angular distortion towards the poles, however
perturbing the uniform land marking via parameters it is stable and converges relatively quickly for even the
defined in the genome. extremely large meshes generated by the marching cubes

algorithm (for high resolution scans of the femur upwards
4.1. Pre-processing: Surface Extraction and Pa- of 500K vertices). A second pass optimisation scheme can
rameterization be used to improve the properties of the parameterization
(especially area preservation). However for the parameter-
The Femoral and Tibia bone are truncated in MRI scansization of the bones it was not found to be essential. The
of the knee. So to treat these as equivalent shapes, the shafifimary advantage of ensuring a reasonable level of area
length is truncated so that it is proportional to the width of preservation is that it implies that ‘uniform’ sampling of
the head. The surfaces of all the bones (Tibia, Femur andthe parameter space corresponds to uniform sampling of the
Patella) are then extracted using Marching Cubes. As thesurface.
MR images are anisotropic a linear transform is used on
the surfaces to generate an isotropic surface which reduce4.2. Initial SSM Generation
the effect of differences in knee alignment. Ideally a better
surface interpolation algorithm should be used to generate Given a training surface and its parameterization a re-
a more anatomically correct surface. The surfaces are thetrmeshed surface can be created by re-sampling (land mark-
centroid matched and rescaled so that Root Mean Squaréng) parameter space and then inverse mapping the vertices
distance of the vertices is 100. The rescaling minimizes the(land marks) onto the training surface (see Figure 4). For
influences of the size of the shape biasing the optimisationthis work a quasi uniform sampling of the sphere was gen-
process. erated using a level 5 or 6 decomposition of an octahedron
A Parameterization of a surface is simply a mapping (1026 or 4098 vertices) whose vertices are then projected
from the surface to a suitable domain. For this work the onto the unit sphere. Each vertex can be inverse mapped
mapping is from a ‘genus 0’ surfaces to a unit sphere which back onto the surface using barycentric coordinates. A Spa-
provides us with a tial Hashing algorithm is used to make the inverse map-
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ping efficient and almost independent of the size of the sur-

face [12].
Create n Spherical Inverse Map Set of n Re—Parameterized
Manifold Meshes Landmarks (Vertices)| Surfaces

Set of n Surfaces

Set Parameterizations|

Figure 3. Overview of Stage 2

Figure 4. Patella: left to right Marching Cubes
Surface, uniform sampling of Parameter
Space, and Re-meshed Surface (level 5, 1026
vertices)

Figure 6. Case 20: The surfaces generated
This procedure is used on each surface in the training set.  from the quasi uniform sampling of parameter
This set of shapes is then used to generate an initial SSM as space (level 6, 4098 vertices)
outline in section 4. At this stage there is no expectation
that the shapes have correct correspondences.

wherea = e~ %, a € R is the width of the Cauchy ker-
nel and A is the amplitude. A genetic algorithm is used
to optimize the amplitude of the kernel while the width of
the kernel is kept fixed. This allows the implementation
of a hierarchical optimisation scheme, which for each level
applies finer (localized) perturbations to improve the corre-
spondence of the land marking. This is achieved by gener-

Figure 5. Case 20: left to rightLand Marks from ating more densely spaced kernels at each level of optimi-
inverse mapping quasi uniform sampling of sation with a reduced width that is fixed based on the level.
parameter space. Visualized over Marching The kernels are placed on the sphere using an octahedron
Cubes Surface (level 6, 4098 vertices) decomposition with each level of the decomposition corre-

sponding to a level in the optimisation. The width is fixed
per level tax = 2!°v¢!=2_ The perturbed land marks are then
used to generate a new model, which is evaluated using an
4.3. optimisation of SSM objective function F; in this case we used= > log(A+e)
where) is the eigenvalue of the mode.
The initial quasi uniform sampling is optimized using a
genetic algorithm. This is done by perturbing the vertices in
parameter space for each shape and then evaluating the SSM
generated. The perturbation is performed using Cauchy ker-
nels that are placed on the unit sphere. A symmetric theta sotasuwice [ yow o Procrastes Al Evalute Objective
transform is then used to perturb the vertices (see equation &P“ﬁ‘[ Using Kernel H New Sorsce Rep H oot )_Ft
2).

Amplitudel Width

1 (1+ a?)cos(f) — 2a Fi '
A) = A igure 7. Overview of Stage 3
f(6;0,4) 1+ A4 [9+ acos( 14 a? —2acos (6)

)

18



5. Results and Discussion

femur 150K to 500K. So although the parameterizations and
an initial model can be generated for use in the optimisation

Initial models for the two bones (Tibia and Patella) were Scheme the Patella was the only bone optimized.
generated using 8 training sets that were chosen based on
the similarity in the ‘size’ of the femur and tibia shafts in

form land marking of 4098 vertices. Although the parame-

the MRI. These models were generated using a quasi uni-
ter spaces are aligned, there is no true correspondence. The

result of this problem is especially evident in the tibia (see
Figure 8). The eigenvalues of the initial statistical shape
model can be seen in Table 5 and the primary mode is shown
in Figure 8.

SO0
0000s

Figure 8. Mode 0: —+/30 , —0, mean, o, /30

Figure 9. Mode 0: —+/30 , —0, 0, V30

The Patella was trained using 12 arbitrary training
sets from the database and a quasi uniform land marking
consisting of 1026 vertices was used. For the Patella the
optimisation scheme improved the local correspondence
of the land marks compared to the initial model. The
optimisation process improved the compactness of the
models compared to uniform land marking of parameter
space by about 10 per cent.

Mode | Patella (Initial) | Patella (Optimized)
1 83862.9 81986.6
Mode | Patella (Initial) | Tibia (Initial) 2 26238.2 25595
3 19816.6 15443.3
1 468858 540341
4 17836.8 11452.7
2 138412 188464
5 11281.3 11092.2
3 86952 137906 6 9759.72 9592.65
4 55534 76362 : -
5 47659 52988 Table 2. Eigen-values of primary modes of
6 33933 37121 variation for the Patella

Table 1. Eigen-values of primary modes of
variation for initial model of Patella and Tibia

6. Conclusion

The primary limitation of our optimisation scheme is the
high computational cost of the genetic algorithm based op-  The statistical shape models generated using this optimi-
timisation scheme. The main computational cost in this sation scheme are a reasonable basis for segmentation al-
scheme is the inverse mapping. The use of a spatial hashgorithms. Currently it is necessary to optimize the initial
ing algorithm has improved the speed of the inversion by at model, as the correspondence from parameter space is not
least an order of magnitude and it is also less dependent orsufficient. The current optimisation scheme is only com-
the size of the surface mesh. The current limitation is sim- putationally efficient for surface meshes with around 100K
ply the memory required to store and process sets of veryvertices. A quality re-meshing algorithm is under develop-
large meshes. Although reading the meshes into and outment to reduce the large dense surfaces to a more compu-
of memory is a possible approach, the preferred solution istationally feasible size which can also be accommodated in
to perform quality re-meshing on the dense surfaces to re-memory. This will be essential when a more complete gen-
duce the mesh size while preserving shape information. Aeration of the shape statistics of the knee is performed, as
quality re-meshing algorithm is still under development.  this will require the training of many more datasets. It is

In the knee database, the dense surfaces that are geneexpected that 50 or more training datasets need to be used
ated have between 25k to 500k vertices. The Patella haveo adequately encompass the variability in 3D model gener-
between 25k to 70k vertices, the tibia has 60K to 250K and ation.
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Abstract

The interpretation of dynamic contrast-enhanced breast
MR images is predicated on the assumption of minimal
voxel movement during the time course of the image ac-
quisition. Misalignment of the dynamic image sequence as
a result of movement during image acquisition can lead to
potentially misleading diagnostic conclusions. In this pa-
per a new methodology is presented for assessing the de-
gree of in-plane (intra-slice) movement in a dynamic image
sequence. The method is demonstrated on data from six sub-
jects. The conclusion is that the method makes it possible
to quantitatively qualify the accuracy of computed enhance-
ment curves and more importantly to identify unacceptably
poor registration.

1. Introduction

Magnetic resonance (MR) imaging of the breast, before
and after the administration of an extracellular gadolinium-
containing contrast agent, can be used to detect and char-
acterise breast diseases [1]. In particular the pattern of en-
hancement, i.e. the change in signal intensity over time, is
an important criterion for the differentiation of malignant
from benign lesions. MR examinations of the breast, and
in particular dynamic contrast enhanced imaging, may re-
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quire the subject to remain in the scanner for 30 minutes or
more [1]. Misalignment of the dynamic image sequence as
a result of movement during image acquisition can lead to
errors in estimated enhancement curves and to potentially
misleading diagnostic conclusions.

This paper presents a new methodology for assessing the
degree of in-plane (intra-slice) registration (alignment) in a
dynamic image sequence. The method is based on the au-
tomatic segmentation of the breast-air boundary (BAB) in
each slice for each breast volume acquired over time, and
the measurement of the mean absolute deviation between
each postcontrast boundary and its corresponding precon-
trast boundary. Registration evaluation results are reported
for six subjects who received a routine breast MRI exami-
nation.

2. Materials and methods
2.1. Image database

Image data from six subjects was used for this study.
The data originates from routine breast MRI examinations
performed by Queensland X-Ray, Greenslopes Private Hos-
pital, Greenslopes, Queensland, Australia in the last five
years. MRI examinations, of a single breast, were per-
formed on a 1.5 T Signa EchoSpeed (GE Medical Systems,
Milwaukee, USA) using an open breast coil which permit-



ted the subject to lie prone. A 3D dynamic scan using an
SPGR sequence of TE = 1.5 ms, TR = 5.4 ms, 10 degree flip
angle, and acquisition matrix size 256 x 256 interpolated to
512x 512 (ZIP512) was typically used. Gadopentate dimeg-
lumine, 0.2 mmol/kg, was administered manually at a rate
of about 3 ml/s. The number of sagittal slices per volume
acquired for each subject depended on the size of the breast
and ranges from 22 to 48. The number of volumes per scan
for each subject, including one precontrast volume, ranges
from 6 to 11. Slice thicknesses, with 50% overlap (ZIP2),
range from 2.2 to 5 mm. The resulting slice images are of
size 512 x 512 pixels with an 8-bit per pixel intensity scale.
Subjects with breast implants were deliberately excluded
from this study. This was necessary to ensure that the results
obtained using the proposed registration evaluation method
could be cross-checked using an interactive method based
on normalised cross-correlation (described in Section 2.4).
This method requires that the region of pixels correspond-
ing to the breast in a given slice image contains several het-
erogeneous areas. Unfortunately, for subjects with breast
implants, this region of pixels is typically dominated by the
implant which is relatively texturally homogeneous.

2.2. Breast/air boundary segmentation method

The breast/air boundary segmentation method (BABSM)
we have devised is based on a fast marching method (FMM)
[2]. The FMM is a numerical technique for tracking the
evolution of a moving boundary and has several advantages
over more traditional deformable (also called active) con-
tour methods (DCMs) including:

1. the ability to model arbitrarily complex shapes;

2. the implicit ability to accommodate topological
changes such as the splitting and merging of contours;
and

3. not becoming trapped in a local energy minimum.

The BABSM consists of two stages: a coarse segmentation
of a mean volume (MV), followed by a refined segmenta-
tion of each raw volume within the time series (precontrast
volume, first postcontrast volume, etc.). The MV consists
of a set of mean slices (MSs). The i-th MS is the pixel-wise
mean of the ¢-th slice in all of the volumes. The MV thus
has a higher signal-to-noise ratio than any single volume
alone. The coarse segmentation stage proceeds as follows
(see Figure 1):

1. the Canny edge detector [3] and elementary mathemat-
ical morphology [4] operations are used to obtain a
rough estimate of the BAB in the middle MS;

2. this boundary is dilated to form a search space in which
to apply the FMM;
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3. within this search space, the magnitude of the direc-
tional gradient orthogonal to the boundary is computed
(derived from the pixel-wise dot product of the gradi-
ent of the Euclidean distance transform (EDT) [4] of
the pixels on and to the right of the boundary, and the
gradient of the pixels in the middle MS); and

4. the FMM is applied.

The resulting contour is used to seed the segmentation of
the preceding MS and the succeeding MS. These segmenta-
tions in turn seed segmentations backwards to the first MS
and forwards to the last MS respectively. The refined seg-
mentation stage uses the boundaries determined during the
coarse segmentation to define search spaces for segmenting
the individual slices of each raw volume. The segmentation
is again based on a directional gradient and the FMM.

2.3. New registration evaluation method

The method devised to evaluate the degree of registration
(alignment) of a postcontrast slice with its corresponding
precontrast slice is as follows:

1. The EDT of the complement of the BAB image for the
precontrast slice is computed. This effectively assigns
to each pixel its shortest distance to a BAB pixel (see
Figure 2).

2. The BAB image for the postcontrast image is super-
imposed on the distance map computed in 1, and the
mean of the coincident distance values is computed to
yield the mean absolution deviation (MAD) from the
precontrast BAB.

The coincident distance values on the postcontrast slice
BAB can be projected onto a vertical line as shown in Fig-
ure 3. The idea can be extended to all of the postcon-
trast slices corresponding to the precontrast slice so that
each horizontal projection is a maximum distance projec-
tion; i.e. along any horizontal line of projection, only the
maximum of the set of distances on the BABs is projected.
If this is done for all spatial slices, then it is possible to
generate a two-dimensional deviation map consistent with a
coronal projection of the breast (see Figure 6 in Section 3).

2.4. Validation based on normalised -cross
correlation

For the purpose of independently cross-checking the re-
sults obtained using the proposed registration evaluation
method, an interactive method was devised based on nor-
malised two-dimensional cross-correlation [5, 6, 7]. The
method was implemented in MATLAB (The MathWorks,
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Figure 1. Initial segmentation steps. (a) Mid-
dle MS for Subject 1 (displayed as a photo-
graphic negative). (b) Result after the appli-
cation of the Canny edge detector. (c) Re-
sult after morphological filtering. (d) Dilated
boundary: search space for the FMM. (e) EDT
of the pixels on and to the right of the bound-
ary. (f) The directional gradient (displayed as
a photographic negative) computed from the
gradient of (a) and the gradient of (¢).
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Figure 2. The distance map used to compute
the MAD for each postcontrast slice. (a) Pre-
contrast BAB image. (b) EDT of the comple-
ment of the image in (a).

Figure 3. For a given postcontrast slice, the
coincident distance values on the BAB can be
projected onto a single line.



Figure 4. Left: User-selected ROI (60 x 50 pix-
els) in a precontrast slice. Right: The search
window (dotted line) in which the best match
is soughtin each corresponding postcontrast
slice.

Inc., Natick, MA, USA). For a given postcontrast slice, the
method evaluates the degree of registration with the corre-
sponding precontrast slice as follows:

1. the precontrast slice image is displayed in a window;

2. the user is prompted to select a rectangular window
(the template) within the breast that contains texture
and/or structure;

3. the normalised cross-correlation is computed between
the template and each window of corresponding size
within a search window defined by extending the bor-
der of the template by forty pixels left, right, top, and
bottom (see Figure 4);

4. the relative coordinates (Ax, Ay) of the template po-
sition that achieves the highest positive correlation co-
efficient is recorded;

5. the corresponding displacement

d=/(Az)* + (Ay)®

is computed;
6. steps 2 to 5 are repeated two more times; and

7. the mean, d, of the three displacements is computed.

In this study, templates of mean size 60 x 50 pixels were
used. In addition, if the maximum positive correlation for
any given template was less than 0.6 then the user was
prompted to select another template (one with better defined
texture and/or structure).

The quantity d, like the MAD, is an estimate of the aver-
age in-slice movement manifest in a postcontrast slice.
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Figure 5. Example segmentation: first and
seventh postcontrast volumes for Subject 1.

3. Results

Figure 5 shows an example of the segmentation pro-
duced by the BABSM (Subject 1, first and seventh post-
contrast volumes). Figure 6 is the deviation map, produced
using the new registration evaluation method described in
Section 2.3, for the entire dynamic sequence for Subject
1. The plot shows a coronal view of the breast with each
vertical strip corresponding to an individual slice in space.
The colour at any given position signifies the maximum
MAD at that point (over all volumes). Figure 7 shows the
mean MAD for the middle three slices for each postcon-
trast volume for all six subjects. The observed deviation of
less than two pixels (in-plane) was independently validated
using the normalised cross-correlation method described in
Section 2.4. This result supports the premise that the new
registration evaluation method accurately measures in-plane
movement. Figure 8 shows the distribution of the mean
MAD (averaged over time) for all slices for all six subjects
(slice numbering is relative to the middle slice). Our results
indicate that within the main body of the breast, registration
errors are typically on the order of only a couple of pixels
(in-plane). This confirms the suitability of the MR examina-
tion protocol used to acquire these data. Larger deviations
evident on the periphery, at the breast margins, are the result
of segmentation variability because of noise and ill-defined
gradient information in the image data.



Figure 6. Deviation map for Subject 1.
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Figure 7. Deviation averaged over the middle
three slices.
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Figure 8. Deviation averaged over time.

4. Summary and conclusion

In the routine clinical setting it is usually assumed that
the degree of misalignment between successive breast im-
age volumes in a dynamic contrast-enhanced image se-
quence is negligible and that computed enhancement curves
are accurate. We have proposed a new registration evalua-
tion method that makes it possible to quantitatively qualify
this accuracy and more importantly to identify unaccept-
ably poor registration (necessitating either a repeat scan or
the need to employ some form of automated registration).
The method is based on the automatic segmentation of the
breast-air boundary in each slice for each breast volume ac-
quired over time, and the measurement of the mean absolute
deviation between each postcontrast boundary and its cor-
responding precontrast boundary. We applied the method
to data from six subjects who received a routine breast MRI
examination. The results were independently validated us-
ing an interactive procedure based on normalised cross-
correlation. The results indicate that, for this set of data,
in-plane movement is negligible. This confirms the suit-
ability of the MR examination protocol used to acquire the
data.

The efficacy of the proposed method needs to be evalu-
ated on a larger database. This will be the subject of further
research.
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Extracting the pectoral muscle in screening mammograms using a graph
pyramid
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Abstract To a first approximation, the pectoral muscle appears as
a bright triangular patch in the upper left or upper right cor-

A graph based method is introduced to segment the pec-ner (depending on right or left breast) of the image. This
toral muscles in screening mammograms. An adaptive motivated initial algorithms based on the Hough transform
pyramid is used to segment the mammogram into a num-{2] [4]. The pectoral muscle is usually not exactly triangu-
ber of components. Components forming the pectoral mus-ar and more accurate segmentation was achieved by using
cle are identified based on position, intensity, and shape.Gabor wavelets to segment the pectoral muscle without as-
The boundary of the union of these components forms ansuming straight boundaries [5]. Aside from incorporating
initial boundary that is refined via an adaptive deformable general shape and location assumptions of pectoral muscle,
contour model. The method is tested on 83 medio-lateralthese methods rely only on local image information.
oblique mammograms from the Mini-MIAS database. Seg-
mentation results are evaluated in terms of the proportion of  In this paper, graph theory methods are used in an ef-
correctly assigned pixels. Performance compares well with fort to incorporate global image information in segmenta-
existing methods based on Hough transform and on Gabortion. Graph pyramids were introduced by Tanimato and
wavelets. Pavlidis in 1975 [6] and have been applied widely in im-
age processing. A graph pyramid is a stack of successively
reduced graphs. At each level in the stack, the graph is a
reduction of the graph at the previous level. A vertex of a
graph at one level is connected to a number of vertices at
the previous level. The vertex in the higher level is called

Breast cancer screening programs based on mammograthe parent of the vertices in the previous level and the set
phy are used in many countries to facilitate early detection of vertices to which the parent is connected in the previ-
of breast cancer. Normally mammograms are evaluated vi-ous level (the children) is called the receptive field of the
sually by radiologists for signs of cancer. Since the mid vertex. The collection of graphs forms a multi-resolution
1980’s, many computer algorithms have been proposed fordescription of the image, but unlike multi-resolution rep-
automating various aspects of detecting the presence of canresentations via wavelets or filter banks, the connectivity
cer in mammograms and commercial products now existbetween layers provides a vehicle for tracking information
that implement some of these programs. While detectionfrom disparate regions of the image. The connectivity be-
rates for automatic systems are quite high, the false postween layers may be based directly on image intensities or
itive detection rates are also high. Accordingly, work con- derived image properties, thus providing a flexible tool for
tinues on improving all aspects of computer-aided detectionassociating information content.

(CAD) for mammaography.

Accurate segmentation of the pectoral muscle is among This paper is arranged as follows. In section 2, adap-
the many tasks that is needed to improve CAD for mam- tive pyramids (AP) are described in detail. In section 3,
mography. The pectoral muscle is one of the few anatomicala method for extracting the pectoral muscle, including an
features that appears clearly and reliably in medio-lateraladaptive deformable contour model to refine the pectoral
oblique (MLO) view mammograms. The pectoral muscle is muscle boundary, is presented and in section 4 the perfor-
an important landmark both for providing contextual infor- mance of the method on a standard set of mammograms is
mation regarding anatomies and for image registration. reported.

1 Introduction
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2 Adaptive pyramid whereui;, ftmn anduy; are the mean intensities of the re-
ceptive fields ob;;, vy, andvpy,y,.
Many methods have been proposed in constructing a Whenever a non-surviving pixel (i, j) is connected to a
graph pyramid from an original image. A. Montanvert, P. surviving pixel (m, n),S,,,, is updated byS,,,, = Sy, U
Meer and A. Rosenfeld introduced a general framework for S;;. Thus the new adjacency relationships are formed.

building a pyramid graph [3]. In this framework, the- 1 In the adaptive pyramid, a root extraction process is also
level graphG; 11 = (Vi41, Ei11) is derived from the level introduced to detect the components of the original image
graphG; = (V;, E;) by the following steps: during the construction of the pyramid. A non-surviving

1. The selection of verticeg;.; from V;. The selected pixel (i, j) is called a root if and only if

vertices fromV; are named the surviving vertices while
the unselected vertices are named non-surviving ver-
tices.

|/’L1j - /’Lm’n| > R(SiZe(i,j))7

where functionR is defined by

2. The connection of each non-surviving vertices to the ) ) o
surviving vertices. This step defines a receptive field ..y _ { min_contrast o ifz >min_size
and parent relationships between the corresponding min_contrast e*(MN-SIZ&-2)  gtherwise
two levels of graph pyramid.

o ) ] . The value ofa was chosen so thak(1) = 64 as was

3. A definition of the adjacency relationships between el- 4one by Jolion [1]. The two parameters miontrast and

ements inl;,; in order to define;, ;. min_size will be discussed in section 3.1.

Many algorithms following these steps have been pro- If a non-surviving pixelv;; is identified as a root, it will
posed. One of these is the adaptive pyramid introduced byPe retained to be a survivor and will appear in the high-
Jolion [1]. In this adaptive pyramid, a support set is first €st level graph. The root extraction process prevents some
defined for each pixel. The support s&t of pixel (i, j is ~ components of the original image from disappearing dur-
the set of all the neighbors of (i, j)5;; is initialised as the ~ ing the construction of the graph pyramid and promises that
3 x 3 neighborhood centered on (i, j). Based on these sup_each component of the original image has a representative
port sets, an interest operator is introduced to determine surPixel in the highest level graph.
vivor selection (step 1). This interest operator is not fixed. ~ The highest level graph is reached when no survivor can
Any image characteristics, global or local, can be incorpo- be selected. All the remaining pixels are roots. Each pixel in
rated into the interest operator. For example, Jolion used thethis level graph represents a component of the original im-
variance of the intensity values within receptive fields as the age. From the receptive fields of these representative pixels,
interest operator [1]. we can trace all the pixels within the corresponding compo-

Three variables are involved in selecting surviving ver- nents.
tices; two binary state variablgs;, ¢;;, and the outcome
of the interest ope_ratov,ij. The selection. process works in 3 Pectoral Muscle Extraction
two steps. In the first step, the state varighleis set as

o { 1 if vy; = min{v, : (m,n) € S;;} 3.1 Implementing Adaptive Pyramid
Pii =3 0 otherwise.
In the second step, the state variableis set and some of The adaptive pyramid segments the mammograms into
thep;; is updated by many components. The two parameters, lomtrast and
min_size, involved in the root extraction process, affect the
! if prn =0V (m,n) €55 number of the resulted components. A larger roimtrast
Gij = { 0 otherwise. allows more pixels to be merged together and thus produces

fewer components. Conversely, a smaller roamntrast pre-

vents pixels from merging together and thus produces more

A pixel (i, j) is retained for the next level if;; = 1. components. For segmenting the pectoral muscle, values
To make the connection between the non-surviving pix- min_contrast = 5 and misize = 100 were used. These val-

els and the surviving pixels (step 2), a contrast operator isues were determined empirically.

used. A non-surviving pixel (i, j) will be connected to its With these values for mieontrast and mirsize, the

Pij = 1 if Vij = min{v’mﬂ : (ma Tl) € Sija dmn = 1}

surviving neighbor (m, n), if and only if non-breast region typically appears as 1 to 3 components
B . ) _ and the breast region, being more complex, appears as many
|1ij = Hmn| = (k,rf)“e%l.j{mij = il P =1}, small components (Figure 1).

28



d b component and the root of the seed component is less than
half the length of the diagonal of the ROI. In the third step,
shape information is used to further edit the collection of
components assigned to the pectoral muscle. Components
are excluded if (1) the geometric centre of the component
is more than 30 pixels from the boundary of the seed com-
ponent, (2) the ratio of the dimensions of the smallest box
containing the component is less than 5, (3) the slope of ei-
ther the left or right boundary of the component is negative
¢ d for left breasts or positive for right breasts.
Experimental results show that these three steps identify

‘ most of the pectoral muscle components correctly. How-

’ ever, it is difficult to find exactly all the pectoral muscle

components. Thus the boundary extracted from the iden-
tified components is often not precise. An adaptive de-
formable contour model was developed to refine the ex-
tracted pectoral muscle boundary.
Let V = wvy,vs,...,uy be the current pectoral mus-
e f cle boundary with the ordered points = (x;,y;),i =
1,2,..., N. The adaptive deformable contour model works
by moving the boundary through the spatial domain of the
image to minimise a measure of energy based on the fol-
lowing formulas.

Ei = aEin,i + ﬂEer,iv

whereq, 3 are two weights controlling the internal and ex-
ternal energie€’;,, ; and E., ;. The internal and external

Figure 1. Some components of image mdb00 energies are given by

after the segmentation. (a) is the original im-

!/ 1"
age, (b) is the non-breast component. (d) is Bini = a1V'(vi) + a2V"(vi)
a component of the pectoral muscle, (f) is an Eewi = —[L(vi) /m?X(Im),
artifact, (c) and (e) are two components of the
breast whereV’(v;) andV"” (v;) are the first and second derivatives
of the contoun/ atv,, I is the image, and
. oI
3.2 Adaptive Deformable Contour Model I, = e

After segmentation, the next task is to register the com- The weights:; anda, are used to control the relative contri-
ponents belonging to the pectoral muscle. To register thesedutions ofV’(v;) andV”(v;) and were fixed for this study
components means to find their corresponding representadta; = 1 andas = 2.
tive pixels in the highest graph. Three steps are used to do The internal energy serves to reduce the curvature of the
this job. First the component containing the upper left pixel contour. This is important since the pectoral muscle has a
(or right depending on left or right breast) is selected as general smooth straight shape. The external energy drives
a seed for the pectoral muscle. In the second step, compothe contour toward strong edges in the image. This is im-
nents with intensities similar to the seed component and sat{ortant since the pectoral muscle is generally appears much
isfying a set of size and position criteria are included as partbrighter in the image than other tissue.
of the pectoral muscle. These criteria are (1) the intensity At every pointv;, the energies are computed on an asym-
of the component is within 80 units (on a scale of 0 - 255) metric neighbourhoody;, of sizel x 9 (Figure 2). More
of the intensity of the seed component, (2) the root of the precisely,
component lies above the diagonal line of the region of in-
terest (ROI) (the ROl is the smallest rectangle that includes % = [(#i = 3,%:), ..., (; + 5,;)] (right breast)
the entire breast), (3) the distance between the root of the Q; = [(z; —5,¥:),-.., (x; + 3,v;)] (left breast).
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’ | | | Vi | ‘ I e. ‘ ‘ | In this study the number of iteration was fixed at 30 al-
! though experiments showed that a stable contour was gen-
erally reached in only a few iterations.

Figure 2. An example of the domain  Q of v;, In
this case, the chest wall is left hand side po-
sitioned. The wv; is modified to ¢; if the min E;
is reached in e;.

a

Asymmetric neighbourhoods are used since the initial pec-
toral muscle boundary usually appears closer to the chest
wall than the true boundary.

Unlike other deformable contour models, the weights for c d
internal and external energy,ands, are adjusted automat- /
ically as follows.

a = |$i—$i_1|+|$i+1—$i|—2*d
B
d = (z1—2xn)/N.

exp((rr;zax|l$| - Iréin |I.])/meang, |I.|)

When the poinb; is not close to the true pectoral muscle
boundary,5 will become big, and thu&,,, ; will take more
weight in E;. When the boundary is not smooth enough,

will raise, and thusz;,, ; will take more weight. Figure 3. Results obtained for the image
The elements of?; will be denoted by, j = 1,2,..,9, mdb040. (a) Original image (b) Hand-drawn
and the internal and external energies at these points will be Pectoral muscle edge (c) and (d) Pectoral
denoted by~? . andE’_, respectively. Thus muscle edge detected by AP method and
) ’ adaptive deformable contour model, respec-
Eanz a1 V/ (6]') + GQVN(ej) tiVG'y.
By = (el /max(Ly),

where V'(e;) and V" (e;) are the derivatives along the
curve obtained by replacing by e;.
To allow comparison between the different energy terms,

4 Experiment and Results

it is necessary to rescale them to the rajige]. 4.1 Database
B = Bl —EEIL‘,_? 83 medio-lateral obliqgue (MLO) mammograms, were
i Epax — Egl;,‘;’ chosen from the Mammographic Image Analysis Society
‘ o L pmin (Mini-MIAS) collection. The same images were used as
Eém S —— T T in the study by Ferrari, et al. [5]. All images are MLO
’ B — Eeai views with 2004m sampling interval and 8-bit gray-level

where the superscripts min and max denote the minimumauantisation and024 x 1024 pixels in size. To reduce the
and maximum of the respective quantities over the domainProcessing time, the images were down sampled to the size

;. Thus the contour is driven to minimise of 256 x 256 pixels.

E; = aBini + BBes.. 4.2 Evaluation Protocol
The energy of the contour is minimised iteratively. Each ) )
iteration consists of minimising; for i = 1,..., N con- The same protocol for evaluation as the one used in [5]
secutively. At a given step, the point will be replaced to is employed in this paper to evaluate the results and to make
the pointe;, if a comparison with other methods. The extraction results of
! » R pectoral muscle boundaries of 83 images were compared
E! = min Ef, k=1,2,..,9. with the boundaries manually identified by two radiologists
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Figure 4. Results obtained for the image Figure 5. Results obtained for the image

mdb110. (a) Original image (b) Hand-drawn mdb033. (a) Original image (b) Hand-drawn
pectoral muscle edge (c) and (d) Pectoral pectoral muscle edge (c) and (d) Pectoral
muscle edge detected by AP method and muscle edge detected by AP method and
adaptive deformable contour model, respec- adaptive deformable contour model, respec-
tively. tively.

as reported in [5]. The pixel coordinates for the radi- FP and FN percentages were less théh There are 18
ologists drawn boundaries were kindly supplied by R. M. images with both FP and FN percentages betw&érand
Rangayyan. Since the manually identified boundaries were10%; and the FP or FN percentages are greater théhfor
obtained from the original full-size images0R4 x 1024 15 images. All the results are presented in Table 1. Table
pixels), while the results of this paper were extracted from 1 also includes the results obtained by Hough and Gabor
the down-sampled images of si2&6 x 256, the detection methods [5] on the same 83 mammograms.

results were transferred back to the original size by inter-  Three examples (mdb110, mdb040 and mdb033) are
polation. The evaluation was performed by measuring the shown in Figure 3, Figure 4 and Figure 5. The pectoral
percentages of false-positive (FP) and false-negative piX-muscles in mdb110 and mdb040 are complex because there
els (FN). The false-positive pixels are the pixels outside gre many lines in the region that can be confused with the
the manually drawn pectoral muscle boundary but inside trye pectoral muscle boundary. In both cases, our method
the boundary marked by our results; similarly, the false- works well. The pectoral muscle in mdb033 is complex and
negative pixels are the pixels bounded by the manually the appearance is somewhat unusual. The method did not
drawn boundaries but outside our extraction results. Theperform particu|ar|y well on this examp|e with percentages
percentages of false-positive pixels and false-negative pix-of FP and FN at 6% and13%, respectively.

els are calculated by normalising the number of FP and FN ¢ processing time to perform the whole process is

pixels by the total amount of pectoral muscle pixels. The to- apoyt 5 seconds, using a 2.8 GHz computer with 1 GB of
tal number of pectoral muscle pixels was obtained by count-pAM memory.

ing the pixels between the manually drawn boundary and
the edge of the image. _
5 Conclusion
4.3 Results
The proposed method (AP) performs about equally well
The mean percentages of FP and FN pixels of 83 imagesas the method based on Gabor wavelets, both of which per-
are 3.23% and 5.73%, respectively. For 50 images, both form significantly better than the Hough transform method.
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Methods | FP(%) | FN(%) | < 5% | 5% — 10% | > 10%
Hough | 1.98 | 25.19 | 10 8 65
Gabor | 058 | 5.77 45 22 16

AP 323 | 573 50 18 15

Table 1. Comparison of pectoral muscle de-
tection results with Hough and Gabor [5].
The values of FP(%) and FN(%) are the aver-
age percentages of FN and FP pixels of 83 im-
ages. < 5% means the number of images with
both the percentages of FN and FP smaller
than 5%, 5% — 10% is the number of images
with both the percentages of FP and FN be-
tween 5% and 10%, > 10% means the number
of images with the percentages of FP or FN
bigger than 10%

The Hough transform models the pectoral muscle bound-
ary as a single straight line. Both the Gabor wavelet method
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Vector-Field-Based Defor mable M odels for Radiation Dosimetry
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Abstract

Accurate age-specific models of pediatric patients for ra-
diation dosimetry purposes are not presently available. In a
world-first effort to build such models, we are currently de-
veloping a scheme that combines deformable models with
a priori anatomical knowledge and minimal human super-
vision. However, the outcome of applying a deformable
model is often significantly dependent on its initialization.
This is an obstacle to accurate and robust automatic or
near-automatic segmentation. In this paper, we propose a
novel approach to reducing this sensitivity to initialization
by deriving a vector field from topographic and Euclidean
distance transforms. It is aimed to extend the influence of
target gradients over the entire image in a consistent fash-
ion, while enabling the model to ignore irrelevant gradi-
ents. Initiated by one or more seeds, the vector field is
computed using an efficient numerical method, and has so
far been integrated into a parametric (snake) model and a
geodesic active contour level set model. Preliminary exper-
iments targeting different organs have shown that this is a
highly promising approach. We believe that this approach
will satisfy the need for a high degree of automation in using
deformable models for our dosimetry work.

1 Introduction

Radiation exposure from diagnostic procedures in-
creases the risk of cancer development later in life, par-
ticularly when large radiation doses are involved. This is
especially relevant for pediatric patients. Accurate estima-
tion of the amount of radiation energy deposited in various
tissues within the body resulting from a radiological pro-
cedure constitutes an essential scientific basis for the deter-
mination of the optimal dose. Numerical simulation via a
Monte Carlo radiation transport code has proven to be ef-
fective for this purpose. However, the simulation requires
a computational model as a “virtual phantom” that repre-
sents the typical patient. Unfortunately, no accurate models
for children currently exist. Scaled-down adult models are
not sufficiently accurate as they do not take into account the
proportional differences between adults and children. In a
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world-first effort to build precise pediatric models, we aim
to establish a large and dynamically growing database of
CT and MR images of pediatric patients, and to construct
the models on this basis. This model building requires that
the data be first segmented into different tissues, however
it is not feasible to delineate each organ via manual meth-
ods. We are currently developing a scheme that combines
the deformable model approach with a priori anatomical
knowledge and minimal human supervision. However, the
outcome of applying a deformable model is often signif-
icantly dependent on its initialization, mainly because the
model generally has a tendency to converge upon encoun-
tering the first set of significant gradients on its path of evo-
lution. This is an obstacle to accurate and robust automatic
or near-automatic segmentation. In this paper, we present
the first stage of our radiation dosimetry work. This is a
novel approach aimed at reducing the models’ dependence
on initialization and parameters in order to achieve a higher
degree of automation.

2 Related Work

The earliest deformable model [3] had very limited cap-
ture ranges. Early attempts to improve this include a balloon
model which applies either a constant or a gradient-adaptive
force in the direction of the contour or surface normal. The
geodesic active contour (GAC) model [1] introduced later
incorporates propagation and advection terms. Although
these measures help relax initialization requirements, they
do not completely remove the need for the initialization to
meet certain conditions [13]. Another widely applied ap-
proach is to modify the external force. The gradient vector
flow (GVF) method [16, 13] is perhaps the most prominent
example, which uses a spatial diffusion of the gradient of
an edge map to supply an external force. This technique
enables gradient forces to extend from the boundary of the
object, and has an improved ability to deal with concavities
over using distances from edgels [2, 16]. A major draw-
back of this approach, however, is that it cannot discrimi-
nate between target and irrelevant edges. A third approach
is hybrid segmentation. Various other techniques (e.g. mul-
tiresolution processing and ad hoc search methods), have
also been used in attempts to relax the initialization require-



ments. Although deformable models’ sensitivity to initial-
ization has attracted significant research interest and effort,
a robust generic approach has not yet been available.

3 Influence Zones Based on Topographic Dis-

tance

We examine a metric based image partition approach [8]
for the purposes stated above. Given K+1 sets of con-
nected voxels {S; : i € I} as the partition seeds, where
I={0,1,2,..., K}, and a measure d(x,y) that defines the
distance in a domain D between pointsx € D andy € D,
a Skeleton by Influence Zones (SKIZ, alternatively known
as a generalized Voronoi Diagram) can be generated based
on the corresponding distance metric. Defining the distance
fromxtoY C Dasd(x,Y) = ;an d'(x,y), the influence

S

zone of S;, for example, is

Zi ={x € D:Vj e I\{i}[d(x,S;) < d(x, )]}

The distance measure used for SKIZ needs to be linked to
the image intensity in order for it to be applicable to image
segmentation. One such measure is the topographic dis-
tance on a gradient image. In fact, it has been established
that SKIZ with respect to the geodesic topographic distance
is equivalent to the watershed of the image [8, 11], and this
has been used in the metric-based definition of the water-
shed transform [8, 14]. This is the basis of partial differen-
tial equation (PDE) models of the watershed [7, 12], which
have been exploited to incorporate smoothness into the wa-
tershed segmentation [12]. The geodesic topographic dis-
tance (GTD) from a point x to the ith seed, given a C? real
function f on a continuous domain D as the relief image,
is 7;(X) = inf J IV f(s)|ds, where T'(x,y) is
ve{D(X.Y):YeS)} 5

the set of all paths from x to y. Suppose S; is entirely on
a local minimum of f. Let §;(x) = f(s?) + 7:(x), where
i€ 1,s € S;. Based on the GTDs, D, can be partitioned
into overlapping sub-sets

{Q; ={xeD.:VjeI\{i} [6;(x) <6;(X)]},i € I}.

1)
It can be proven that 9€2; N 0€2; coincides with the most
significant gradient on a geodesic path (with respect to
the topographic distance) between the two corresponding
seeds [12, 8]. This is illustrated in Figure 1, where a 1D im-
age is used for simplification. Note that the strength and the
continuity of the gradients are both necessary in nD with
n > 1.

A sometimes overlooked condition for the above to hold,
in general, is that the seeds are at local minima of f, and
that these are the only local minima in the image. If this
condition is not satisfied (e.g. in a case such as the middle
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image in Figure 1), homotopy modification or swamping [9,
8] may need to be performed. so as to obtain an image like
that illustrated at the bottom of Figure 1.

We exploit the relationship outlined above for the pur-
pose of supplying an external force to a deformable model.
We selectively expose the boundary gradients of the object
of segmentation as the strongest continuous edge between
the seeds, and combine the outcome with the Fast March-
ing Method [15], as discussed in the following sections.

m

Figure 1. Topographic SKIZ partitions an image
along the largest gradients between the seeds. Top: A
gradient magnitude image as the relief image, object
marker O (open circle) and background marker B1
and B2 (red filled circles). Bottom: Modified homo-
topy given the seeds; in terms of the distance traveled
along axis T (topographic distance), the filled trian-
gles are closer to the marker B1, whereas the open
triangles are nearer to the marker O. SKIZ positions
are marked by the vertical dash lines.

4 Globally Consistent Vector Field

Dual Marking Scenario First, we discuss the scenario
that segmentation seeds (connected components) are pro-
vided to identify both the target and the background. We
also call these identification markers. They consist of one
placed interior to the boundary of the target organ, and one
or more external to the target. More than one background
marker is usually not necessary but can however result in
more robustness where the image is complex. This will
be demonstrated later. Without loss of generality, suppose
that Sy is placed within the target of segmentation, and
{S; : j € {1,2,...,K}} are placed outside in the back-
ground. We compute a maximum difference image M in
which

M) = max{do() — ()}

)

This operation can be implemented very efficiently, as
shown in 5.2. In order for it to be applicable to parametric
and Statistical deformable models, we inversely threshold
M to obtain a binary image By(x) = { L M(x)<0 .
0, otherwise
By (x) itself is unlikely to be an optimal segmentation of the
target, due to degradation or deficiencies in the boundary



gradients that are often present, and a lack of model con-
straints (e.g. smoothness, shape constraints) to overcome
these deficiencies. It is possible to use By for the initial-
ization of the model. This is analogous to the hybrid seg-
mentation approach reviewed in Section 2. Special care,
however, must be taken if it is possible that the target en-
closes significant internal gradients, due either to noise or
to sub-entities with varying intensities®. It is sufficient, and
more robust, to use a globally consistent flow field that can
be integrated into a deformable model, without necessar-
ily using the above initialization strategy. A further advan-
tage of doing so is that some isolated gradients, while not
playing a role in defining By, can be additionally taken into
account. For this, we first compute a distance map Dg on
image By, i.e. Dy = E(By), where E is a Euclidean dis-
tance transform. This information may be used similarly to
a method proposed in [2], where a distance map to edgels is
used. A complimentary set of computation follows, namely,
B1(X) = By(x), D1 = E(B1). These will be used to com-
pute the vector field. In order to overcome potential prob-
lems near deep concavities[16], a pressure force or prop-
agation term that incorporates the sign of M, sgn[M (X)],
can be used. This makes the force or propagation automat-
ically adaptive to inflation or deflation requirements, in ac-
cordance with whether the part of the model is inside or
outside of the segmentation object. This is a significant ad-
vantage of our approach.

Single Marking Alternative Under some circumstances
it may be more desirable to use a single seed, especially in
applications that use fully automatic initialization. If all in-
ternal gradients present within the target are known to be
isolated (e.g. those due to imaging noise or artifacts), or
are significantly weaker compared with those at the object
boundary, the difference between the GTDs on either side
of the boundary should be large enough for a segregating
threshold to be easily found. In such a case, a binary im-
1, do(x) <m
0, otherwise
where 7 is an application-dependent constant. Dy, B; and
D; can be calculated similarly to the methods presented
above. However, this method cannot be used where the gra-
dient composition interior to the target cannot be estimated
a priori.

age By can be obtained by By(x) =

)

Integration with Deformable Models For a parametric
model, we obtain the following vector field

—mpVD, |VD'|=0,[VD|#0
F= ~VE, 0<|VD|<h , (3
—mDrVD', |VD/| >h

1This can be either due to the inherent anatomy of the entity of interest
(e.g. an aortic aneurysm that surrounds a contrast enhanced blood flow
channel) or because of various pathologies (e.g. calcifications) or artifacts
(e.g. stent grafts).
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where E = —|V(G, * I)|?, h, mp are constant parame-
ters. Smaller |V.D’| values are present near the ridge (or
skeleton) of the object. The above conditional is designed
to improve the performance on high-curvature convex parts,
or very thin components of the object. F' has the potential
to replace the gradient image with ”cleaned up” vectors that
are globally consistent, in contrast to the short range and in-
consistent information in the gradient image. A flow field
such as Eq. 3 can be readily integrated into a parametric or
a geometric deformable model, as demonstrated in existing
works with the GVF model [16, 13]. For example, F' can
help drive the deformation of a parametric model v with a
surface parameterization s as follows:

R
Ost

W BT RO NGONK), (@
where N is the surface normal, 3 is one of the model param-
eters. As F may be perpendicular to N in some situations,
notably inside concavities[16], a pressure force YN(x) or
~v{sgn[M (x)]}N(x) is used to deal with these situations.
The latter form represents a distinct advantage of this ap-
proach as it is adaptive, in that it is automatically either
inflating or deflating according to whether the node of the
model is inside or outside of the segmentation object.
Regarding a level set model [15], previous examples ex-
ist of integrating a vector field into such a model [5, 13, 15].
Ina preliminary scheme, we simply define P = VD+V D',
Incorporating the curvature-dependent motion and propaga-

tion terms, the level set evolution is governed by

ou

i

Vu
[Vl

o/ WV I)|Vuldiv 3 bV I]) [Vl 4+'P-Vu,

(®)
where h is a sigmoid function such that » : R* — (0, 1],
h(0) =1, h(r) — 0asr — oo, and o/, 3’ and ~' are the
scaling parameters.
Note that the initialization is performed by combining
D and D'. The term (y'P - Vu) in Eq. 5 provides rein-
forcement towards the boundary calculated from the mark-
ers and balance against the mean curvature deformation
% = W(|IVI(2)|)|Vuldivrgs. Similar to the parametric
model, constant propagation is sometimes necessary. As
noted above, an advantage of our approach is that the sec-
ond term on the right hand side may be replaced by

B'sgn(M)h(|VI|)|Vul.

We believe that this will make it automatically adaptive to
the need for either inward or outward propagation. This
will remove a practical restriction in the application of the
GAC level set model, which is that in practice the model
needs to be completely interior or exterior to the true object
boundary[13].
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5.1 Selecting the desired range of the gradient
magnitude

Implementation and Computation

In order for the target boundary to correspond to the
gradients that will be located by the balance of the GTDs
between the markers, the appropriate band of the gradient
magnitude needs to be selectively enhanced. This is a cru-
cial step in using the proposed approach, unless a signifi-
cant number of markers are used (in nD with n > 1) and
the placement of the markers can be carefully controlled,
as otherwise inappropriate selection may result in incorrect
gradients being identified and a consequent segmentation
failure. The gradient map is transformed as follows:

H,, IVI| < Li
w=1q H,— P H, - L), Li<|VI<H ,
s |VI| > H;

(6)
where the range between L; and H; designates the desired
gradient magnitude band (we have always chosen L; = 0),
H,, is a positive number large enough to ensure a near zero
GTD on any topographically flat path between two points
in the image, and L., is a small positive number.

5.2 Accurate and Efficient Computation of GTDs

A key component of the proposed method is the com-
putation of the GTDs. Recent advances in applied math-
ematics have allowed the GTDs to be computed more ac-
curately and efficiently. The GTD function 7(z), as a spe-
cial case of the weighted distance transform, satisfies the
Eikonal PDE [6] V7| = ¢, where ¢ is the speed.

For the speed function, one can use

1
=— 7
AVI|+ €’ %

where ) and e are mapping parameters, and € =~ +0. In
practice, we have used the function w in Eq. 6 as an approxi-
mation. Thus, the GTDs can be computed using the efficient
Fast Marching Method (FMM) [6, 10] developed by Sethian
and his associates(e.g. [15]). Compared with alternatives
such as those based on chamfer metrics or graph search,
FMM both leads to isotropic distance propagation [6], and
results in an accuracy that is not limited by the discretiza-
tion of the image [15]. In fact, FMM yields a solution that is
close to the ideal [6]. The maximum difference map (Eq. 2)
is efficiently implemented via multiple-front Fast Marching
propagation. Only one round of propagation is necessary.
For GAC level sets, D and D’ are combined to initialize the
model in our experiments. In addition, an infinite impul-
sional response filter that approximates a convolution with
the derivative of a Gaussian kernel is used for efficient com-
putation of gradient maps.

q
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6 Experiments

Experiments have been conducted using synthetic data,
CT and MR data. We present some quantitative evaluations
as well as well as preliminary quantitative validations.

6.1 Quantitative Evaluations

Experiments with the Parametric Model Two single-
voxel markers were employed, one placed randomly in the
liver to identify it as the target, the other outside to designate
the background. When the background marker was appro-
priately placed (explained below), the model was able to
find and segment the target despite the abundant irrelevant
gradients between the initial model and the target (Fig. 2),
due to the globally consistent vector field providing guid-
ance in place of image gradients. Our tests have revealed
no restriction on the placement of the target marker, other
than that it must be interior to the boundary profile of the
target structure. On the other hand, these tests also indicate
that a background marker will make a useful contribution
only if it is not completely encircled by an equally strong
or stronger edge than the target’s boundary (such as the ver-
tebra). Based on tests conducted so far, examples of where
useful” background markers can be placed for the segmen-
tation of the liver in the image are indicated by the white
dots in the lower image of Fig. 2. One possibility to en-
sure the appropriate placement of a background marker is
via intensity and neighborhood tests.

Experiments with the Geometric Deformable M odel
The integrated 3D GAC level set model has been tested in
the segmentation of the lung (on 10 3D images), the brain
tumour (on 10 cases) and the knee (6 cases). Within each
group of experiments, the same set of parameters have al-
ways been applied to all the images used in the group. Sat-
isfactory results have been achieved in each case upon vi-
sual inspection. Single-voxel markers were used in the dual-
marking approach, one being placed randomly in the target
and the other outside. Some examples are shown in (Fig. 3).

6.2 Quantitative Studies

Accuracy We used MR images for the quantitative vali-
dation of our algorithm. The data used are from the SPL
and NSG Brain Tumor Segmentation Database [4], which
contains 10 T1-weighted SPGR MR images of the brain?
together with “ground truth” data. We studied the segmen-
tation of the brain together with the tumours. This is a chal-
lenging task as some of the tumours have strong gradients

2The dimensions of the 10 images are 256 x 256 x 124, with a voxel
resolution of 0.9375 x 0.9375 x 1.5 mm?3



Figure 2. Experiments with a parametric deformable
model on a CT image. Upper Left: the image, the
initial model (large white circle) and the two mark-
ers (black dots) that are use to respectively iden-
tify the target and non-target background. Upper
Right: the globally consistent vector field (white ar-
rows) and the resultant segmentation (black contour).
Lower: Examples showing where a potential back-
ground marker should be placed in order for it to
make a useful contribution to the segmentation of the
Liver. That is, it can be put in any one of the places
indicated by the white dots.

at their boundaries. Manual segmentation by four indepen-
dent human experts was available on a randomly selected
2D slice in each of the ten cases in the SPL and NSG Brain
Segmentation Database [4]. For this battery of tests, the
’single making” method was used. Typically two mark-
ers® each comprising of a single voxel were placed with the
brain to identify it as the target. No background markers
were used. A o value of 1 was used for the smoothing,
H; = 5.0, and n = 1500. We refer to the voxels in the
”ground truth” segmentation (the expert’s segmentation) as
the True Target. We separately consider the False Target
(the number of voxels segmented by our method but not
by the expert) and the Missed Target (the number of voxels
segmented by the expert but not by our method). In Figure
4, the mean errors (the main bars) and the corresponding

3In order to overcome the additional challenge of segmenting the nor-
mal tissues and the tumours together, however, an additional marker was
used in cases where the pathology gives rise to a strong edge, in order to
indicate that the pathology was in fact part of the target to be segmented.
A further exception is case 9, for which a total of 15 markers were placed
inside and around the tumour in order to overcome the strong gradients
present in and around the tumour. In this case the tumour and the normal
tissues are very difficult to be segmented together using the same param-
eters applied to the other cases. In all the cases except this one, our trials
have indicated that the outcome was insensitive to the placement of the
markers. In fact, we failed to observe any effect of the different place-
ments of the markers on the results.

37

Figure 3. Experiments using a GAC level set model.
We used MR brain images and CT lung images. Left
column: slice views, with the segmentation superim-
posed as the transparent overlay. Right column: 3D
views of the segmentation result.

standard deviations (the error bars) resulting from the com-
parisons are presented, where the left-hand-side bar corre-
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Figure 4. The means (main bars) and standard de-
viations (error bars) of the differences to the experts’
segmentations of the brain on 10 cases.

Robustness Since the maximum difference operation
(Eq. 2) that we use means that a single “useful” back-
ground marker is sufficient to achieve the desired outcome,
we expected the likelihood of success to increase quickly
with the number of markers used, even if no tests are per-
formed regarding their placements. To verify this, we used
the first 3D image from the SPL and NSG Brain Tumor
Segmentation Database, with the target still being a tumor.
In Figure 5, we show the failure rates against the number
background seeds. These seeds were accepted by a back-
ground mask after being randomly generated. The apparent
anomaly when 3, 4 and 5 seeds were used can be explained
by the fact that between different trials markers were gener-
ated independently.
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Figure 5. Failure Rate (Y Axis) Vs the Number of
Background Seeds Used (X AXxis).

7 Conclusions

We have presented the first stage work of a world-first at-
tempt at establishing accurate pediatric computational mod-
els for radiation dosimetry. This is a novel approach to re-
ducing the sensitivity to initialization for deformable mod-
els using marker-induced vector fields. In this approach,
geodesic topographic distances in the gradient image are
computed in order to locate the most prominent gradients
either between two groups of identifying markers, or sur-
rounding the target marker. This information is integrated
into a parametric or geometric deformable model to guide
its evolution. Our work takes advantage of theoretical anal-
yses of the watershed transform, yet it is outside of the wa-
tershed framework and preserves fully the advantages of
deformable models. An accurate and efficient numerical
method has been used in the implementation.

Our preliminary experiments have demonstrated that, us-
ing this approach, the requirement for (or sensitivity to) the
initial input is minimal for both the parametric and the ge-
ometric models when a relatively high degree of accuracy
needs to be achieved. The main limitation currently is a rel-
ative sensitivity to one of the mapping parameters, H; in
Eq. 6. Despite this, we believe that this approach will sat-
isfy the need for a high degree of automation in using de-
formable models for our dosimetry work, particularly when
the seeds can be placed automatically based on anatomical
knowledge.
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Abstract

The usefulness of Fourier analyses as a tool for
determining key parameters of cancellous bone structure
is investigated. The autocorrelation function is used to
determine measures of preferred orientation of trabeculae
and anisotropy. Peaks in the power spectrum are used to
determine average trabecular strut spacing.  Good
agreement and high correlations were observed when
these frequency domain measurements were compared to
currently used histomorphometric parameters. The most
attractive feature of frequency analyses is the elimination
of segmentation and the resulting bias inherent in current
methodologies. The potential for obtaining structural
information from frequency analyses is demonstrated and
merits further exploration.

1. Introduction

Bone mineral density (BMD) is a major component in
determining the mechanical properties of cancellous bone
[1]. However, there is a substantial amount of overlap in
BMD measurements for individuals with and without
fractures at cancellous bone sites [2]. Given this overlap,
other factors in addition to BMD must contribute to the
overall mechanical properties of cancellous bone. It is
generally accepted that these "other factors" have to do
with bone architecture, or how the bone mass is
distributed.

In order to quantify bone architecture, a number of
parameters have grown out of traditional two-dimensional
(2D) histomorphometric methods, and more recently been
applied to three-dimensional (3D) micro-computed
tomography (UCT) images. These parameters typically
include measures of bone surface area, trabecular
thickness  (Tb.Th), trabecular separation (Tb.Sp),
trabecular number and degree of anisotropy (DA) [3].

A study by Ulrich et al. using 3D structural analysis of
MCT scans and micro-finite element analyses, found that

Nicola L. Fazzalari® Karen J. Reynolds®
®Institute of Medical and Veterinary Science
University of Adelaide, Dept of Pathology
Adelaide, SA, Australia

the prediction of elastic constants (Young's modulus and
shear modulus) of various cancellous bone specimens was
improved when one or more of these structural parameters
was included with bone density [4]. In the best case,
regression 1* values were increased from 53% (bone
density alone) to 92% with the inclusion of Tb.Sp and DA.

Although structural parameters have shown some
promise towards improving the prediction of bone
properties, these methods involve segmentation of images,
turning each voxel into “bone” or “marrow” values,
effectively reducing the amount of information in the
images and biasing subsequent quantitative analyses.
Alternatively, simple frequency analyses may be a
potentially useful tool for looking at image features,
eliminating the need for segmentation.

The purpose of this pilot study is to assess whether
parameters obtained in the frequency domain are related to
the key structural parameters of spacing and anisotropy.
Two different frequency analyses using fast Fourier
transforms (FFT) of uCT datasets are investigated. First,
the autocorrelation function is computed from the FFT and
used to determine preferred orientation and a measure of
anisotropy. Second, key frequency components from the
FFT are used to obtain a measure of trabecular strut
spacing. Both analyses are compared, where possible, to
parameters obtained from conventional histomorphometric
analyses.

2. Methods

All image data was obtained using a high resolution
desktop micro-computed tomography machine (SkyScan,
Aartselaar, Belgium) with a resolution of 15.63 microns.
Datasets were analysed using the bundled CTAnalysis
(CTAn) software (version 1.03) as recommended by the
manufacturer.

Software routines for all frequency analyses were
implemented in Matlab software (MathWorks Inc., Natick,
MA), utilizing built in FFT functions on unaltered image
data. All image processing was done using a standard
desktop PC (P4, 3 GHz processor).



2.1 Anisotropy & orientation

Measures of anisotropy and preferred orientation of
trabeculae were obtained through applying the
autocorrelation function (ACF). The ACF describes the
correlation of an image with itself when displaced in all
directions; values remain high along directions parallel to
preferred orientation, but decay rapidly where features are
short. The ACF is well defined in object space, however,
computation in much simplified in the frequency domain.
ACF is wusually applied in the context of image
enhancement, but has more recently been used as a
quantitative tool in the field of geophysics for the fabric
analysis of rock grains on 2D images [5].

Although applicable to 2D and 3D image sets, as a first
step the ACF was applied to 2D images of spine
specimens (pixel area: 512x512). Two spine sections were
chosen which exhibited either no clear preferred trabecular
orientation (Figure 2a) or an obvious preferred trabecular
orientation (Figure 3a). The second specimen image was
also rotated anti-clockwise by 45 degrees to test the ACF
calculated parameters with a known rotation (Figure 4a).

Once the ACF was computed, a binary image was
created with data points valued greater than 35% of the
total range to yield a representative “elliptical” shape for
the ACF. From these data points, a measure of anisotropy
was determined by computing the ratio of minimum
eigenvalue to maximum eigenvalue (Vmin/Vmax), where
a value of 1 represents complete isotropy and 0 complete
anisotropy. Preferred orientation was also computed from
the eigenvector corresponding to the maximum eigenvalue
and was compared with calculations of “total orientation”
obtained from the CTAn software. For a 2D image, CTAn
computes the “total orientation” parameter using a
weighting scheme on orientations from each “individual”
trabecula in the image after segmentation.

2.2 Trabecular strut spacing

For the initial tests using FFTs to determine trabecular
strut spacing, a set of ten open-celled aluminium foam
specimens (ERG Aerospace, Oakland, CA) was scanned
and analysed. These foams are a reasonable model of
cancellous bone and are generally isotropic in structure
(see Figure 1). As shown in Table 1, the foams were
specified to have a one of three average pore sizes (10, 20,
or 40 pores per inch) and within each pore size category, a
range of apparent densities, given as a percentage of the
total volume, was also specified.

Table 1. Aluminium foam sample descriptions

Specimen  Pores per inch Apparent densities (%)
1-3 10 2.46,7.30, 11.08
4-7 20 3.97,6.93,10.73, 11.19
8-10 40 4.06, 6.92,11.90

Figure 1. a) Cancellous bone specimen,
b) Open-celled metal foam sample

MicroCT scans of each foam specimen were taken.
Volumes equivalent to 400x400x400 voxels were
extracted from the centre of each data set and 3D FFTs
and corresponding power spectra were computed. The
major frequency components were identified from the
peak power values. As a first estimate of major trabecular
strut spacings, the first 30 peak frequencies were selected,
converted to equivalent period in terms of pixels and then
averaged and compared with the sum of Tb.Sp and Tb.Th
parameters determined from CTAn. The sum of Tb.Sp
and Tb.Th was used as an estimate of the mean peak-to-
peak distances in the data similar to what one would
expect to be measured by Fourier analyses. As the foams
are also expected to be fairly isotropic, directionality of the
frequencies was not included in the analyses.

3. Results

3.1 Anisotropy & orientation

The 2D spine images and their associated ACF shapes
are displayed in figures 2-4. In order to more easily
evaluate the shape of the ACF visually, the values are
plotted as contours and an enlargement focused on the
central quarter of the ACF is shown. The values greater
than 35% of the total range that are used in the eigenvalue
calculations fall within the regions enclosed by the fourth
contour.
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Figure 2. a) Spine specimen with no clear
preferred orientation of trabeculae,
b) ACF contour plot of central region
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Figure 3. a) Spine specimen with primarily
horizontal orientation of trabeculae,
b) ACF contour plot of central region

Figure 4. a) Spine specimen from 3a,

manually rotated by 45°, b) ACF contour plot
of central region

The calculated eigenvalue ratio (Vmin/Vmax), the
preferred orientation (direction of Vmax), and the “total
orientation” values from CTAn are given in Table 2. In
the first spine specimen, the Vmin/Vmax value near 1
indicates high isotropy as predicted from visual inspection.
Although a preferred direction is computed for this
specimen, orientation varies significantly with small
changes in contour levels since the shape is near circular;
unsurprisingly, the value is quite different from the CTAn
orientation. In contrast to this, the second spine specimen
Vmin/Vmax value indicates more anisotropy. The
preferred trabecular orientation computed from the
maximum eigenvalue lies close to the horizontal axis (0°)
as one might expect from visual inspection. The CTAn
calculated “total orientation” angle is further from the
horizontal, but still in that general direction; however this
parameter combines the orientations from the individual
trabeculae segments which can vary greatly with threshold
selection, particularly in the smaller segments.

The manually rotated image yields a similar
Vmin/Vmax value to the original, and a preferred
orientation only 0.37° from the predicted value of 47.49°.
Slight differences are expected as the specimen areas are
not exactly identical; the larger 1024x1024 original image
was rotated and the central 512x512 area was extracted to
avoid artefacts due to the shape of the region. The CTAn
orientation was 2.52° from the predicted value of 35.37°.

Table 2. Anisotropy & preferred orientations

. . Preferred CTAn “total
Specimen Vmin/Vmax . . . C
orientation  orientation
Spine 1 0.94 -28.10° 34.24°
Spine 2 0.38 2.49° -9.63°
Spine 2 0.43 47.86° 37.89°
rotated 45°

3.2 Trabecular strut spacing

The plot of the average period from the 30 Fourier
components with the highest magnitude versus the sum of
Tb.Sp and Tb.Th from CTAn for the 10 aluminium foam
specimens is shown in Figure 5. Simple linear regression
analysis indicates a significant relationship with r* =0.92,
p<0.001. Other frequency ranges were also considered
using the first 5 up to 50 peak Fourier components; linear
regressions from means of >15 peaks resulted in r*> 0.9.
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Figure 5. Average peak-to-peak distances
from FFT calculations vs. CTAn parameters

4. Discussion

The objective of this study was to assess the ability of
parameters obtained in the frequency domain to quantify
key aspects of cancellous bone structure. The potential
usefulness of the ACF as a tool for quantifying anisotropy
and preferred orientation of trabeculae has been
demonstrated. Although the ACF was only applied to 2D
images in this study, it should be fully applicable to 3D
datasets and will be applied in future studies.

It has been observed that there is a preferential
resorption of horizontal trabecular struts in vertebral
bodies with increasing age [6]. A previous study applying
spatial autocorrelation specifically in horizontal and
vertical directions to 2D magnetic resonance images of the
calcaneus indicated measurable differences between a



normal and an osteoporotic individual [7]. A preferential
loss in struts should be detectable with ACF analyses and
application of this method with representative 3D bone
specimen datasets should be explored. Analyses could be
focused on the structural parameters in the preferred
direction or alternately, in the least preferred direction, as
this indicates the “weakest” direction in terms of structure.
It should also be noted that the ACF is a global method
and any local anisotropy is averaged out. It may be useful
to explore applying ACFs to smaller subsets throughout
the volume for identifying these local differences.

A contour level of 35% of the total range was selected
as there was general stability in the orientation and
anisotropy values around this level for the anisotropic
spine specimen. In future applications, anisotropy and
orientation may be computed over a range of contour
levels to select the most appropriate cut-off level. A
physical or virtual 3D model with variable degrees of
anisotropy would also be useful in the further development
of the ACF as a quantitative tool.

The potential of using major Fourier components to
determine a measure of strut spacing in 3D has also been
demonstrated.  Using the isotropic aluminium foam
specimens, a significant relationship was found with the
mean of the first 30 peak frequency periods and the
equivalent measure from standard histomorphometric
quantitation (Tb.Sp+Tb.Th). Further testing is required to
see if this relationship will hold for highly anisotropic
materials, or whether only peak frequencies along
preferred/principal directions are key. Some limited
application of power-spectral analysis has previously been
done with 2D FFTs on plain radiographs to summarize
orientations and sizes in the trabecular pattern [8].
However, to our knowledge, FFT analysis has not been
used on 3D datasets to extract structural information as
described in the present study.

In currently used techniques for structural analysis,
segmentation is required for the 3D reconstruction of
cancellous bone specimens upon which the subsequent
structural parameter calculations are based. Proper image
segmentation is not a trivial step in the quantification
process and remains the topic of much research and
development. Analyses in the frequency domain are
particularly attractive because no segmentation is needed,
eliminating any bias associated with identification of the
bone and marrow boundaries.

In contrast to the many complex algorithms used in
analyses based on 3D reconstructions [3], the Fourier tools
evaluated are simple and straightforward to implement.
Matlab was utilized in this study for its availability and
convenience, with built in image file handling, FFT and
inverse FFT routines. = However, Matlab’s memory
handling limited the size of 3D matrices and consequently,
the portion of the dataset that could be easily analysed. As
standard desktop computing power continues to increase,
many FFT algorithms are readily available for use in

building custom routines to take advantage of the full
datasets.

In conclusion, the usefulness of Fourier analyses as a
tool for quantifying key structural parameters in
cancellous bone has been demonstrated. The ACF was
used to determine measures of preferred orientation of
trabeculae and anisotropy. Major frequency components
from the FFT were used as a measure of strut spacing in
open-celled aluminium foams yielding a high correlation
with  conventional  histomorphometric =~ parameters.
Continued work in this area is merited to further
investigate whether additional structural information may
be teased out of the frequency domain. Validation is
needed to see if any of these parameters will ultimately
improve upon the prediction of cancellous bone stiffness
and strength. It is hoped that these types of analyses will
eventually lead to the development of more sensitive
measures of bone fragility to improve the assessment of
fracture risk.
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Abstract

Medical images in digital form must be stored in
a secure way to preserve stringent image quality
standards and prevent unauthorised disclosure of
patient data. This paper proposes a multiple water-
marking method to serve these purposes. A multiple
watermark consists of an annotation part and a frag-
ile part. Encrypted patient data can be embedded in
an annotation watermark, and tampering can be de-
tected using a fragile watermark. The embedded pa-
tient data not only save storage space, it also offers
privacy and security. We also evaluate the images
visual quality after watermark embedding and the
effectiveness of |ocating tampered regions.

1. Introduction

As we move into the digital era, patient records in
hospital environments can be stored in electronic media.
This is made possible with more mature and reliable
technologies in information and communication tech-
nology (ICT). Confidentiality, integrity, and authenticity
are the mandatory security requirements of medical in-
formation. Medical images in digital form must be
stored in a secured environment to preserve patient pri-
vacy. It is aso important to prevent unintentional distor-
tion and malicious modifications on the image's percep-
tual quality. To achieve these objectives, digital water-
marking technigues can be employed.

Although medical imaging is a matured field, the ap-
plication of watermarking technologies in medical im-
ages is rather new. Furthermore, hybrid systems that
combine fragile and robust watermarks had been ex-
plored by a relatively small group of researchers for
medical images. To date, little research works have been
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published on such hybrid systems for medical images,
and there is room for improvement. The main reason
behind such scenario could be due to the stringent qual-
ity requirements of medical images. For example, the
Health Insurance Portability and Accountability Act
1996 (HIPAA) in the United States sets out healthcare
data security guidelines [1]. Typically, watermarks em-
bedded in medical images must not cause any visua
artefacts that may affect the interpretation by medical
doctors. Also, patient information embedded must be
detected and recovered in an accurate manner.

Multiple watermarks that consist of an annotation
part and a fragile part can be used to serve multiple pur-
poses. For example, the annotation part can store patient
information in a secure and private way, and the fragile
part can detect tampering. Furthermore, the embedding
information helps to reduce storage space of digital con-
tents [2]. For instance, the annotation watermark elimi-
nates the need to store plain text of patient information
on addition files.

This paper proposes a multiple digital image water-
marking method which is suitable for privacy control
and tamper detection in medical images. The annotation
watermark can be detected in a blind manner, i.e. the
origina un-watermark image is not required to detect
the annotated watermark. In addition, the fragile water-
mark can detect general image manipulations such as
image compression, noise insertion, and copy attack [3].

Storage space reduction provided by the robust wa-
termark is measured in bits. The effectiveness of locating
tampered regions using the fragile watermark is investi-
gated. Images quality after watermark embedding is
measured in  weighted peak-signal-to-noise-ratio
(WPSNR). The proposed watermarking scheme would
be suitable for usein a hospital environment.



2. Multiple watermarking approach

Robust digital image watermarks are suitable for
copyright protection because they remain intact with the
protected content under various manipulative attacks.
The annotation watermark can take the robust form in
order to preserve data integrity. Annotation information
can be patient name, hospital name, date and time of
imaging process, and image dimension. On the other
hand, the fragile watermarks are good for tamper detec-
tion.

Wakatani [4] proposed a watermarking method that
avoids embedding watermark in the region of interest
(ROI). Although it preserves the image quality in that
region, the major drawback is the ease of introducing
copy attack on the non-watermarked regions. In contrast
to that method, we propose to embed a fragile watermark
that covers the entire central region of an image. This
way, tampering in small regions can be located easily.

Giakuomaki et al. [5] proposed a wavelet-based wa-
termarking scheme to embed multiple watermarks in
medical images. Although the scheme offers medical
confidentiality and record integrity, the visual quality of
watermarked images can be improved to achieve higher
PSNR values.

Another approach is to create a virtual border by in-
serting extra line of pixels around image bordersin order
to embed watermarks within it [6]. This approach in-
creases file size and storage space. Such approach isin
contrast to space saving objective of watermarking. In
addition, the absent of a fragile watermark makes it vul-
nerable to tampering.

We propose a multiple watermark system as shown
in Figure 1 below. The annotation watermark and the
fragile watermark are embedded separately into different
regions of theimage.

Original image Watermarked image

Ammotation
embedding

Fragile
embedding

Figure 1. Multiple watermark embedding.

2.1 Annotation watermark for privacy control

To provide data security and patient privacy, patient
information can be encrypted and embedded into an an-

44

notation watermark. In addition, the identity of the
medical practitioner involved in the imaging process can
be digitally signed using a digital signature which is
then embedded into the annotation watermark for au-
thentication.

The annotation watermark is embedded into the bor-
der pixels of the image using a robust embedding
method proposed in [7]. A watermark message is ar-
ranged in a frame pattern as illustrated in Figure 2.
Then, it is embedded using a linear additive method into
the three high pass bands of discrete wavelet transform
(DWT) of the original image borders. Thisis carried out
a the first level of the DWT sub-bands. An inverse
DWT is performed on the marked coefficients to obtain
the marked image border. This is depicted in Figure 3.
Although the illustrations use fixed size borders for a
sguare image, the proposed method can be easily adapted
to rectangular images of any sizes.

Hortizontal band

Vertical band

P e oma
Figure 2. Annotation watermark arranged
in frame pattern.

=i e

Driginal Annotation
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100 20
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200 200
280 250

50 100 1350 200 250 50100 150200 250

WPSNR=60 161202
Figure 3. Image borders used in annota-
tion watermark embedding.



2.2 Fragile watermark for tamper detection

The integrity of the medical image can be authenti-
cated using a fragile watermark. Tampering on the im-
age can be detected by examining the tiled fragile wa-
termark patterns.

The fragile watermark is embedded into the central
region of the original image using the least significant
bit (LSB) method. Note that we took the image borders
for annotation watermark embedding. A binary water-
mark pattern is tiled to cover the whole image, and its
binary pixd values are used to overwrite the correspond-
ing LSBs of the cover image pixéds. Figure 4 gives an
example of the process using X ray image of the chest.

Cover object Fragile watermarked

50
100

150
200 ¢

50 100 150 200 50 100 150 200

Figure 4. Fragile watermark embedded into
central region of an X ray chest image.

After the annotation watermark and fragile water-
mark are embedded, the two parts are combined to form
a complete multiple-watermarked image. See Figure 5.

Nultiple watennarked

Figure 5. Multiple-watermarked image.

2.3 Watermark detection

For watermark detection, the annotation watermark
and the fragile watermark are detected separately, smi-
lar to their embedding steps. The detection of annotation
watermark takes a few steps similar to its embedding
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process. Firstly, the border of the watermarked image is
decomposed into its DWT sub-bands. Then, the correla-
tion value is calculated using the three high pass band
coefficients. Finally, the calculated value is compared
with a dynamically computed threshold value to deter-
mine successful watermark detection [7]. The fragile
watermark is detected using a simple LSB detection
method. The LSBs of each pixd in the watermarked
image is read to form the tiled binary watermark pattern.
Figure 6 shows the correctly tiled fragile watermark de-
tected in the central region of the image, and the annota-
tion watermark patterns around the image borders.

Detected Frazile Pattern
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Figure 6. Fraglle and annotation watermark
patterns detected without attacks.

3. Analysis of experimental results

Three types of medical images that represent soft tis-
sues and hard tissues characteristics were used in the
experiment, i.e. X ray image of the chest, MR image of
the skull, and CT image of the brain. See Figure 7.

3.1 Visual quality of water marked images

The visual quality of watermarked image is measured
in weighted PSNR (WPSNR) because it is generally
more accurate than PSNR [8]. A test on X ray chest im-
age provided very good imperceptibility of 60.78dB, well
above the 50dB benchmark. The annotation part and
fragile part were detected correctly.

CT brain image gives WPSNR of 60.80dB, and the
MR of the skull gives WPSNR 60.70dB. Figure 7 pro-
vides a visual quality comparison between the original
and the watermarked images.
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Figure 7. The test image and its multiple watermarked image with its respective WPSNR: from
top to bottom are X ray image of the chest, MR image of the skull, and CT image of the brain.
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3.2 Tamper detection using the fragile water-
mar k

Some of the general image manipulations were per-
formed as attacks to evaluate the effectiveness of the
fragile watermark. These attacks are easy to perform
using off-the-shelf image processing software, and they
pose a significant threat to the integrity of medical im-
ages. The effects of these attacks are hard to be identi-
fied by human eyes. Fortunately, it can be detected us-
ing the fragile watermark. The attacks are tabulated in
Table 1.

Table 1. General attacks on fragile watermark

No. Attack Descriptions
1 Noise inser- Gaussian noise with zero mean
tion and variance 0.0002.
2 JPEG com- Quality factor 90%.
pression
3 Copy attack Copy a region and paste it on an-
other region with similar texture.

Gaussian noise with zero mean and variance 0.0002
was inserted into the watermarked image to evaluate
the effectiveness of the fragile watermark in tamper
detection. Figure 8 illustrates the test results.

Detected Watermatk

Otiginal Tmage

Attacked Watermarked Imaze

Figure 8. Left: Original CT brain image;
Middle: Gaussian noise with zero mean
and variance 0.0002 inserted into the wa-
termarked image; Right: Fragile water-
mark tile pattern destroyed by the Gaus-
sian noise.

A test on JPEG compression with quality factor
90% on the CT brain image is shown in Figure 9. The
JPEG compressed watermarked image looks very simi-
lar to the original image. However, the fragile water-
mark tile pattern is destroyed by the JPEG compres-
sion. This alerts us that the image is not authentic.
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Attacked Watermarked Image

Figure 9. Left: Original CT brain image;
Middle: JPEG compression on the wa-
termarked image with quality factor 90%;
Right: Fragile watermark tile pattern de-
stroyed by the JPEG compression attack.

Figure 10 shows an example of copy attack detected
by the fragile watermark. Although it is hard for hu-
man eyes to identify the tampered regions, the proposed
method makes it possible to do so by highlighting the
distorted tiled patterns.

Aftacked WM image
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Figure 10. Top: Copy attack on a water-
marked image. Bottom: Two tampered
regions are detected by the fragile wa-
termark (the circled regions).



4. Conclusions and future work

The multiple-watermarking method presented has
shown to be suitable for use in medical images. The
annotation watermark can be used to embed patient
information in a private and secure manner, while the
fragile watermark offers tamper detection. The visual
quality of watermarked image is very good. The effec-
tiveness of the fragile part in tamper detection has been
proven under some general image manipulation at-
tacks. The annotation watermark is meant to store con-
text information in a private manner without increasing
storage space requirement. Neverthelessit is possible to
destroy it on purpose using malicious attack tech-
niques. To overcome such weakness, the annotation
watermark should be embedded in textured regions of
the image instead of in the image borders. In addition,
a hash-block-chaining watermarking approach [9] can
be adopted in the fragile watermarking part to improve
its security. These issues will be investigated in our
ongoing work.
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Abstract

Direct volume rendering (DVR) provides medical users
with insight into datasets by creating a 3-D representation
from a set of 2-D image slices (such as CT or MRI). This
visualisation technique has been used to aid various medi-
cal diagnostic and therapy planning tasks. Volume render-
ing has recently become faster and more affordable with
the advent of 3-D texture-mapping on commodity graphics
hardware. Current implementations of the DVR algorithm
on such hardware allow users to classify sample points
(known as ““voxels™) using 2-D transfer functions (func-
tions based on sample intensity and sample intensity gradi-
ent magnitude). However, such 2-D transfer functions in-
herently ignore spatial information. We present a novel
modification to 3-D texture-based volume rendering allow-
ing users to classify fuzzy-segmented, overlapping regions
with independent 2-D transfer functions. This modification
improves direct volume rendering by allowing for more
sophisticated classification using spatial information.

INTRODUCTION

Broadly speaking, visualisation is an iterative process in
which the user undertakes the tasks of exploration, analysis
and presentation [1]. Human pattern recognition processes,
relying on visual sensory input from such visualisations,
provide a means of understanding complex anatomical and
physiological situations. Direct volume rendering is a visu-
alisation technique that is useful in a variety of medical
situations including virtual endoscopy [2], 3-D ultrasound
[3], and surgical planning [4, 5]. Consequently we seek
ways to improve the visualisation of medical datasets using
direct volume rendering.

Volume rendering begins by sampling a continuous object
of interest (such as a human appendage) and forming a
discrete spatial model. The medical domain has various
imaging modalities capable of performing such sampling
including X-ray computed tomography (CT) and magnetic
resonance imaging (MRI). Each discrete sample in the 3-D
model is referred to as a “voxel” (volume element). Classi-
cal medical diagnosis and therapy planning is undertaken
by viewing individual 2-D slices of the sampled data. Vol-
ume rendering allows for further insight by converting the
data model into interactive 2-D photorealistic renditions.
These renditions are formed by modelling each voxel as a
semi-transparent light emitting particle, and observing the
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virtual light projected onto an image viewing plane (refer
to Figure 1) [6]. Before projecting each voxel contribution,
a user specified classification function is applied to en-
hance different structures of interest. This function (com-
monly referred to as a “transfer function™) assigns colour
and opacity to each voxel, dependent of various attributes
(for example a 2-D transfer function uses sample intensity
and sample intensity gradient magnitude).

Traditionally, one of the major hurdles associated with vol-
ume rendering was the high computational expense of the
rendering algorithms [7]. The introduction of 3-D texture-
mapping capabilities to commodity graphics hardware has
allowed for a faster and more affordable implementation.
The current implementation uploads a dataset to the graph-
ics processing unit (GPU) which in turn performs the mil-
lions of trilinear-interpolations in a highly parallel nature.
This method allows for the interactive exploration of visu-
alisation parameters including rotation, translation, zoom,
and classification.

The GPU implementation of direct volume rendering cur-
rently only allows for the application of global classifica-
tion functions — users cannot emphasise important spatial
features using these global functions. We present a novel
approach allowing the user to specify spatially independent
2-D transfer functions. Prior to visualisation the user fuzzy-
segments a number of regions, each of which is subse-
quently assigned an independent classification function.
This method allows users to spatially classify and visualise
a volume dataset.
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Figure 1. A voxel can be modelled as a light emitting
particle and projected onto an image plane.

(a) Parallel Projection (b) Perspective Projection.



RELATED WORK

Traditional transfer functions are applied on the global
level, ignoring the spatial domain for sake of ease. Re-
cently “dual-domain” interaction was introduced whereby
the user probes the spatial domain to aid with the construc-
tion of a global 2-D transfer function [8]. However, this
approach still applies the transfer function in a global fash-
ion to all voxels. A different approach tags each voxel with
an identifier pointing to one of n transfer functions associ-
ated with different regions [6]. Unfortunately this approach
only caters for hard-segmented, non-overlapping regions
and is best suited to pre-classification implementation.

We present a modification to 3-D texture-based volume
rendering overcoming the disadvantages discussed above.
Our proposed approach allows for spatial 2-D classification
using hard- and/or fuzzy-segmented, overlapping regions.

3-D TEXTURE-BASED VOLUME RENDERING

3-D texture-based volume rendering is primarily executed
on the graphics hardware. The data is uploaded to hardware
memory as a set of 2-D slice images via an API (applica-
tion programmers interface) such as OpenGL or Direct3D.
Through the API, a user program outputs view-aligned
polygons which act as an equidistant, rectilinear grid capa-
ble of tri-linearly interpolating the uploaded data at any
viewing angle. The sampling rate determines the distance
between the grid intersection points of this “proxy-
geometry” (see Figure 2). The interpolated view-aligned
image slices (of which elements are referred to as “frag-
ments”) are finally composited into a single 2-D rendition
using the operation defined in Equation (1) [6]. For a typi-

cal dataset of 256° voxels the rendering algorithm must
perform millions of tri-linear interpolations. By taking ad-
vantage of the parallel architecture of modern GPUs, it is
possible to execute the rendering algorithm at real-time
framerates (=25 fps).

n-1 i-1
Cpnat = 2 C; X Hl—aj
i=0 j=0
=co+C(l-ay)+c,l-a)l-a,)+..
= C, OVer C, OVer c, OVer...over ¢, _,
where :
a, is the opacity of sample i
C, is the RGB colour of sample i
C,a, = ¢, is the pre - multiplied colour and opacity of sample i
Cina 1S the final colour composed from all samples

@

@ (b)
Figure 2. A set of parallel view-aligned polygons act
as proxy-geometry with (a) low sampling rate, and (b)
higher sampling rate.
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MULTIDIMENSIONAL CLASSIFICATION
Classification transfer functions allow data to be made visi-
ble and hence play a pivotal role in volume rendering. Ba-
sically a transfer function acts as a filter to colour important
information and suppress the visibility of unwanted noise.
Transfer function specification has emerged as an impor-
tant research topic [8, 9].

Multidimensional transfer functions (in particular 2-D
functions) have become a popular choice for volume classi-
fication. Medical datasets typically contain information
pertaining to complex interactions between boundaries of
different materials. A 1-D transfer function is unable to
isolate a voxel belonging to multiple boundaries [8]. A 2-D
transfer function on the other hand, specifies the colour and
opacity of voxels based on sample intensity and sample
intensity gradient magnitude, allowing for the isolation of
more than one boundary. A global 2-D transfer function
can be considered as a lookup table (LUT) which returns
an RGB colour (C) and opacity () for the given lookup
values f and f' as defined in Equation (2) below.

v voxelsvy, :{c,a}=T(f, )

where :

vy Is voxel at location (Xx;, Y;,2,)
c is the returned RGB colour

a is the returned opacity

T denotes the "transfer function”
f is the data intensity of voxel v;,

)

f 'is the gradient magnitude of f defined as
o ¥ (o,Y (o.)
f'=|vf|= (—f]Jr—f 4| =—f
ox oy oy

There are two types of classification: (a) pre-interpolation
classification (also referred to as “pre-classification™) in
which the voxel is assigned colour and opacity before the
interpolation operation, and (b) post-interpolation classifi-
cation (also referred to as “post-classification”) in which
the voxel is assigned colour and opacity after the interpola-
tion operation. 3-D texture-based volume rendering can be
implemented with both pre- and post-classification, how-
ever it has been shown that post-classification produces
superior results [6].

Implementing post-classification volume rendering using
3-D textures and graphics hardware requires the use of a
fragment shader program (which can be considered as a
kernel function applied to all interpolated voxels). These
“per-fragment” operations are performed by the GPU as the
final step of the hardware pipeline. The data is uploaded to
the hardware as a 3-D texture. A 3-D texture is a set of
image slices with each pixel consisting of four channels
(RGBA = Red, Green, Blue, Alpha). While labelled
RGBA, these channels are not restricted to colour informa-




tion alone. In our case, the dataset is uploaded to the graph-
ics hardware using the Alpha channel for sample intensity
(f) and the Red channel for sample intensity gradient

magnitude ( f '). Along with this, a 2-D texture is created

to serve as the actual transfer function lookup table. The x-
axis corresponds to sample intensity and the y-axis to sam-
ple intensity gradient magnitude (refer to Figure 3).
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Figure 3. (@) A 2-D transfer function (excluding the
underlaid histogram) is uploaded to the GPU as a
LUT texture. (b) An example rendition of the engine
dataset using the transfer function in (a).

During the per-fragment operation phase of the graphics
pipeline, the fragment shader interpolates the data and gra-
dient information. This interpolated information is in turn
used as lookup values for the transfer function (uploaded as
a 2-D texture). The returned value from the lookup table is
set as the fragment RGBA colour. The fragments are then
composited together along viewing rays using Equation
(1), as previously discussed. Listing 1 shows the fragment
shader program for such an operation.

//Texture samplers
uniform sampler3D sampler_data;
uniform sampler2D sampler_tf;

//Texture coordinates from vertex shader
varying vec3 data_coord;

Yt et
//Function: main

//Description: Fragment operation for 2-D

// classification function

J A e T

void mainQ)

//Use coord to interpolate data & gradient
vec4 data = texture3D(sampler_data, vec3(data_coord));

//Setup data & gradient as TF lookup values
//Data = Alpha channel

//Gradient = Red channel

vec2 tf_coords = vec2(data.a, data.r);

//Look up 2-D transfer function LUT
vec4 tf_data = texture2D(sampler_tf, tf _coords);

//Set fragment colour and opacity from lookup value
gl_FragColor = tf_data;

Listing 1. The fragment shader program for a 2-D
transfer function (OpenGL Shading Language).
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SPATIAL CLASSIFICATION

From the discussion so far, it can be seen how to imple-
ment volume rendering with 2-D post-classification using
accelerated graphics hardware. However, this implementa-
tion does not allow for the classification of voxels at spe-
cific spatial locations. Such a capability is desirable for
more sophisticated visualisation.

At first glance a simple solution might be to extend our 2-D
transfer function to include (X, y, z) components, creating a
5-D classification function. While this may provide the
desired functionality, this solution can not currently be im-
plemented on graphics hardware. For a typical dataset of
256° voxels and 8-bit lookup values, a 5-D transfer function
LUT would require 256° x8 ~8.796x10"bits~81,262 GB Of
memory. This far exceeds the 256 MB of memory on cur-
rent graphics cards. Fortunately such an approach is not
required because much of a 5-D transfer function LUT
would contain redundant spatial information. Our solution
proposes to group (X, y, z) entires in a 5-D lookup table
into regions. A 5-D transfer function allows the user to
specify an independent 2-D transfer function for each pos-
sible (X, y, z) coordinate. Using our region-based ap-
proach, users are only required to assign an independent 2-
D transfer function to each segmented region. The memory
requirement for such a system is 2562 xnx8 bits, where n
is the number of regions. This grouping not only signifi-

cantly reduces the memory requirements of the algorithm,
but it is also more intuitive to the user.

X y z | [Ivi|| RGBA Value
0 0 0 2-D TF for (0,0,0)
0 0 0
1 0 0
2-D TF for (1,0,0)
1 0 0 1
@
Region I |IVI]] | RGBA Value
0 .
2-D TF for Region O
0
1 )
2-D TF for Region 1
1 1
(b)

Figure 4. (a) A 5-D transfer function has a unique 2-D
LUT for each (x,y,z) coordinate which is superfluous
(b) A region-based TF has a unique 2-D LUT for each
region, which significantly reduces the memory
requirements while not severly effecting functionality.



METHOD

The proposed approach was realized on accelerated graph-
ics hardware using a number of additional textures. An
additional four channel (RGBA) 3-D texture was used to
support up to four 8-bit greyscale region masks (one per
channel). These region masks allow users to create fuzzy
regions (white indicates that the associated voxel does not
belong to the region, black indicates that the voxel does
belong to the region, and the grey continuum in between
indicates varying degrees of membership). Figure 6 and
Figure 7 show some example masks. Each region must also
add an extra 2-D texture to store the independent 2-D trans-
fer function. Additional proxy-geometry must also be out-
put to interpolate the new 3-D region texture. Our approach
proposes the novel idea of interweaving slices of both data
and regions together. Figure 5 depicts a comparison of our
proposed approach and the typical approach.

A fragment shader for the proposed algorithm uses the dis-
cussed texture structure to facilitate the spatial classifica-
tion. Both the data/gradient and region 3-D textures are
interpolated by the shader program. Following this, each
region-based transfer function is sampled using the interpo-
lated data/gradient value. This determines the colour and
opacity for the current fragment for each region. Next, the
colour and opacities for each region are weighted by the
associated region mask and combined into a final colour
for the current fragment. This operation is detailed for
opacities in Equation (3) (colour components are treated in
an identical fashion). Finally, the view-aligned, region-
weighted slice images are composited in the normal man-
ner described by Equation (1).

n-1

Aot :Z(a’iai)xljj(l_ wjaj)

i=0
= (Woao )+ (Wlal )(1 — W&y ) + (Wzaz Xl - W Xl — Wo, ) +..
3)
where:
@, is the region mask weight from the region texture
«; is the opacity value from the transfer function LUT

RESULTS AND DISCUSSION

For validation purposes the proposed algorithm was im-
plemented on an ATl Radeon 9800 Pro GPU and Intel Pen-
tium 4 2.8GHz, 1GB RAM PC using OpenGL. This proof-
of-concept implementation was tested using two common
volume rendering datasets with simple box and spherical
regions. Figure 6 and Figure 7 depict renditions using the
traditional and proposed algorithms with two regions.

Visual inspection confirms that classification has only been
performed for the desired region(s). The major strength of
the proposed algorithm is the ability to attach independent
2-D transfer functions to different regions of interest. These
regions can be fuzzy-segmented catering for uncertainty
involved with segmentation. Furthermore, regions may
overlap allowing for complex classification of volume data.
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There is however, a trade-off between performance and
functionality, as reflected in Table 1. The proposed algo-
rithm is executed three times slower than the traditional
algorithm. Unfortunately this is expected due to the addi-
tional texture interpolations required for supporting spatial
classification.

—
Data Global 2-D TF
v
A7

@)

TF Region 1

TF Region 2

TF Region 3

TF Region 4

(b)

Figure 5. (a) The typical texture layout for 3-D texture
based volume rendering uses one 2-D transfer func-
tion for the data image slices (b) Our proposed ap-
proach interweaves the data and region 3-D textures,
assigning a unique 2-D transfer function to each
channel of the region texture.

Dataset ‘Algorithm Volume Size ‘ Isrgaege gtreamer-
Engine |Traditional |256x256x128 |256x256 25 fps
Engine | Spatial 256x256x128 | 256x256 8 fps
Foot Traditional |256x256x256 |256x256 9 fps
Foot Spatial 256Xx256x256 | 256x256 3 fps

Table 1. A comparison of the framerates between the
traditional and proposed algorithm reveals that the tra-
ditional is approximately 3 times faster. (Framerates
were measured using a sampling rate of 1.5.)




@ (b)

(d)

Figure 6. Results using the engine dataset *.

(a) Region 1: hard-segmented box region

(b) Region 2: fuzzy-segmented spherical region

(c) Rendition without spatial classification

(d) Rendition with spatial classification (using region 1 & 2)

@ (b)

o

(d)

(©
Figure 7. Results using the foot dataset *.
(a) Region 1: hard-segmented box region
(b) Region 2: fuzzy-segmented spherical region
(c) Rendition without spatial classification
(d) Rendition with spatial classification (using region 1 & 2)

! Available from http://www.volvis.org/
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CONCLUSIONS AND FUTURE WORK

We have presented a novel modification to 3-D texture-
based volume rendering capable of performing spatial clas-
sification. Fuzzy-segmented, potentially overlapping re-
gions can be assigned independent 2-D transfer functions.
This approach allows for more sophisticated visualisation
and can achieve interactive framerates. However, real-time
framerates can not be achieved as in traditional GPU im-
plementations due to the increased overheads.

Future work will endeavour to apply the proposed algo-
rithm to clinical data and demonstrate the improved capa-
bilities in diagnosis and therapy planning. To facilitate this
step, more complex segmentation algorithms (such as re-
gion growing or fuzzy C-means) must be integrated into
the framework.
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Abstract

Wk propose a new voxel similarity measure which uses
local image structure as well as intensity information. The
derivatives of linear scale space are used to provide struc-
tural information in the form of a feature vector for each
voxel. Each scale spacederivativeisassigned to itsown in-
formation channel. Weillustrate the behavior of the similar-
ity measure for a simulated signal and 2D medical brainim-
agesto demonstrateits potential for non-rigid, inter-subject
registration of 3D brain MR images as a proof of concept.

1. Introduction

Registration is a process of aligning objects within im-
ages. It is particularly useful for medical image analysis
because it provides a method of placing patient anatomy in
the same coordinate frame. This allows, for example, in-
formation from different imaging modalities (MR, CT), or
the same imaging modality at different timepoints (serial or
longitudinal), to be combined. Voxel intensity based sim-
ilarity measures have been demonstrated to perform well
for the automatic rigid-body registration of medical im-
ages [6] [2] [7]. However, rigid-body motion is only ap-
plicable to anatomy that is constrained by bone, whereas
most organs of interest are comprised of soft tissue that un-
dergoes non-rigid motion. Voxel intensity based similar-
ity measures have limitations for non-rigid registration be-
cause non-corresponding anatomy can have the same inten-
sity. This can result in false maxima of the similarity mea-
sure. One way of addressing this limitation is to use addi-
tional geometrical information of the local image structure.
Here we propose using the spatial derivatives of the Gaus-
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sian scale space to provide such information. Essentially
this results in a feature vector instead of a scalar (intensity)
for each voxel. We require a similarity measure that is able
to match images with a non-linear relationship between in-
tensities, e.g. images of different modalities. We explore
the use of multi-dimensional mutual information as a match
criteria.

1.1 Related work

Shen et al. [5] designed a similarity measure that de-
termines image similarity based on a attribute vector for
each voxel at grey matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) interfaces. The attribute vector is
derived from the voxel’s edge type and geometric moment
invariants calculated from voxel intensities in a spherical
neighborhood. This similarity measure is specifically de-
signed for intra-modal, inter-subject MR brain image regis-
tration and requires a GM, WM and CSF segmentation.

In contrast, we aim for a general purpose registration
algorithm that can be applied to inter-modality data direct
from the scanner without a pre-processing step. We start
by establishing a set of desirable properties of the simi-
larity measure and use these to devise a mutual informa-
tion measure that utilises more structural image informa-
tion than simple intensities. In this way we retain the de-
sirable inter-modality property of mutual information. We
use the derivatives of the Gaussian scale space expansion
of the image to provide this local information. To assess
the performance of the measure we present some simula-
tions and results of inter-subject intra-modality registration
experiments.



2. Theory

We start with a standard intensity based similarity mea-
sure, mutual information [1] [9], that is known to perform
well for rigid-body registration.

2.1. Similarity measures for rigid-body registration

Mutual information measures are derived from the joint
intensity distribution P(a, b) which is closely related to the
joint histogram. P(a, b) represents the probability that cor-
responding voxel intensities are: « in image A and b in im-
age B. Mutual information is defined as:

MI(A,B)=H(A)+ H(B)— H(A,B) )
Where
H(A) = 7/ P(a)log P(a)da )
A
H(A,B) = —/ P(a,b)log P(a,b)dadb (3)
ANBxANB

Similarly, normalised mutual information (NMI), was
shown by Studholme [3] to be less dependent on the amount
of image overlap, NMI is defined as:

NMI(A,B) = (4)

2.2. Similarity measures for non-rigid registration

Basically a similarity measure should return a value
that is a smooth decreasing function of misregistration. A
quadratic function is thought desirable to facilitate gradi-
ent based optimisation. If we use operator L to extract
the additional geometrical information from the image then
L should be invariant to rigid-body transformations, that
is to say that for image A and rigid transformation T:
Lo(ToA)=To(LoA).

2.3. Scale space derivatives

In analogy to the Taylor series expansion of a continuous
function, a 3D image I(x) can be expanded in terms of its
scale space derivatives:

ai-l—j-i—k
fo = fijk = W(Go(x) * 1(x)) ®)
Where G, is the Gaussian defined as:
_ 1 P 2
Go(x) = 53— exp(—[x[?/20%) ©)
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So the image can be expanded as this:

oo XX

Zz.fi,j,k

i=0 j=0 k=0

(")

The scale space derivatives are mutually independent and
can be used as a set of image features that contain informa-
tion about image structure.

2.4. Multi-channel information theoretic similarity
measures

We have a set of derivative features {f,} for each im-
age which we propose to use to construct a feature space.
We apply a multi-dimensional similarity measure to this
space. We assigning each derivative from the image pair
fn(A), fn(B) to an information channel as illustrated in
Figure 1.

A B
fl(A) e fl(B)
f{A) |<—| 1B)
[ J [ ]
[ ] [ ]
(A [+ 1B
Figure 1. Corresponding features

(fi(A4), fi(B)) are assigned to the same
information channel.

Equations 1 and 4 are simply 2D forms of an N-
dimensional (ND) information measures. For two pairs of
features the joint event is 4D, i.e. 4D joint histogram and
we need two information channels. The mutual information
measures are as follows:

MI(AlaAQ;BlaBZ)

H(Ay1,A2)+ H(By1, Bs) —
H<A17A2;BlvBQ) (8)

H(Ay, As) + H(B1, Bs)
H<A17 A27 Bla B2)

NMI(Al,AQ;Bl,BQ): (9)

Ay, Ay and By, Bs refer to derivatives determined from
the target and source images respectively.



3. Methods

3.1 Implementation of Gaussian scale-space

In our experiments we consider only the luminance, first
and second order derivative terms of the scale space expan-
sion. The luminance image Iy(x) is generated by convolv-
ing the image I(x) with a Gaussian kernel G(x): Ip(x)
G(x) » I(x) where G(x) = 5= exp(—|x|?/20?). The
gradient magnitude image I; (x) = |V (ly)| and the Lapla-
cian image I>(x) = VZ(Ip). In the experimental work
we refer to these as luminance, gradient magnitude of lu-
minance and Laplacian of luminance. The intensity of the
Laplacian of luminance image was normalised by subtract-
ing the minimum so that its minimum is zero. To avoid trun-
cation during convolution, the image was reflected about
each boundary by half the kernel width. Gaussian convolu-
tion and differentiation (central derivative and forward and
backward derivatives at the boundary voxels) were imple-
mented in matlab (Mathworks Inc, MA, USA) for 1D sig-
nals and 2D images and in C++ using vtk (Kitware, NY,
USA) classes for 3D images. In all instances, the kernel ra-
dius was chosen to be three times larger than the standard
deviation to avoid truncation effects.

3.2 Implementation of multi-dimensional mutual

information

A major difficulty obstacle of this approach is that the
dimensionality of the joint histogram array depends on the
number of derivative terms n. The array size grows as a
power of n. This can lead to a sparsely populated array,
also the memory required and access time grow as a power
of n. Reducing the number of bins can help, but this only
results in a linear reduction of size.

Image interpolation is generally the most computation-
ally intensive part of voxel-based algorithms and grows lin-
early with n. A possible way of reducing the overhead could
be to down-sample images. For 3D images, down-sampling
by a factor of 2 reduces the number of voxels that need to be
interpolated by a factor 23 = 8. In summary, this approach
seems viable for small » with down-sampling.

All similarity measures were also implemented in both
matlab (1D signals and 2D images) and also in C++ for
3D images. For the non-rigid registration of 3D images a
segmentation propagation algorithm based on the method
described in [8] and the 4D similarity measures were im-
plemented in C++ and vtk by adding to and redesigning a
number of classes of the Guy’s computional image science
groups’ registration toolbox [10].
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4. Validation experiments and results

Our validation strategy is based on assessing the registra-
tion function, i.e. similarity as a function of misregistration.
We desire a smooth function that increases with decreasing
misregistration. We compare the new measures with stan-
dard ones on progressively more complex data.

Our validation strategy is based on a set of three progres-
sively more difficult registration experiments. In the first a
pair of 1D signal simulations with no noise are used. The
second uses a pair of 2D MR brain images of the same per-
son. This image pair were acquired in registration, but they
differ mainly because of noise. The third uses non-rigid
registration for the inter-subject registration of a pair of 3D
brain MR images of different people.

4.1 Geometrical scaling of synthetic signal

A test signal was constructed by low-pass filtering a sig-
nal consisting of two rectangular pulses. We chose to model
the imaging system using a unit width Gaussian low pass
filter. The luminance, gradient magnitude of luminance and
and Laplacian of luminance signals were generated from
the test signal using a Gaussian filter of standard deviation
o = 6 samples. Figures 2 and 3 illustrate the test signal and
scale space derivatives.
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Figure 2. Test signal (A) and derived sig-
nals used for registration simulation exper-
iments.Gaussian filtered Luminance signal
(G*A) (o = 4) and gradient magnitude of lu-
minance |VG x Al (o = 4).

To assess the behavior of similarity measures as a func-
tion of misregistration (registration function) a copy of the
test signal was geometrically scaled relative to the original
signal. The similarity of these two signals was measured
as a function of the scale factor (s;,1 < s, < 3), where
s. = 1 represents perfect registration.
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Figure 3. Test signal (A), Gaussian filtered Lu-
minance signal (G*A)(c = 4) and Laplacian of
luminance V2G * A (o = 4).

Figure 4 shows the resulting graph for four similarity
measures: standard normalised mutual information, stan-
dard normalised mutual information applied to luminance
signal, 4D normalised mutual information using luminance,
4D normalised mutual information using luminance.

For the standard form, there was a false maximum at
sz ~ 1.6 and the function is ill-conditioned for s, > 1.6.
Gaussian smoothing helps condition the registration func-
tion, but it flattens around s, = 1.9. For the 4D measures,
both were well-conditioned and relatively easy to optimise.

4.2 Translational misregistration of a brain sub-
image

This experiment was designed to simulate non-rigid reg-
istration of clinical brain image data. We can evaluate the
behavior of our proposed similarity measure by taking two
2D images of the same anatomy and misregistering a small
sub-image of one relative to the other. The data was ac-
quired by scanning a volunteer’s brain with a special T1W
3D gradient echo MR sequence with two interleaved read-
out lines. This data was reconstructed into two 3D spatial
images separated by an interval of TR (a few milli-seconds).
Essentially the difference between the two images is noise,
but there is also a small difference in motion artefacts due
to fast flowing blood. These images can be considered as
a registration gold-standard, and the graphs of the registra-
tion function tell us how the similarity measure behaves as
a function of misregistration for images with a noise differ-
ence. We took an axial slice through the lateral ventricles
and extracted a 32 x 32 pixel sub-image as illustrated in
Figure 5. Then we misregistered the sub-image relative to
the other image by applying a x-translation ¢,,, where t,
increases from left to right direction in Figure 5. ¢, = 0
voxels represents perfect registration. Figure 6 shows the
results of the experiment. The standard NMI flattens out
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Figure 4. Similarity plots of standard and 4D
Normalised mutual information (NMI) for the
1D test signal as a function of geometric scale
change (s;,1 < s, < 3). Standard form:
NMI(A,B). Standard with Gaussian blurring
(c = 6): NMI(G*A,G*B). 4D NMI with Gaus-
sian and gradient magnitude of luminance
input channels (¢ = 6): NMI (G * A, |V(G
A)|; G * B,|V(G = B)|). 4D NMI with Gaussian
and Laplacian of luminance input channels
(0 =6): NMI (G x A,V2G % A; G * B,V?G x B).



Figure 5. Illustration of the 32 x 32 pixel sub-
image of the brain used for registration ex-
periments.

for |¢t;] > 4 voxels making it difficult to optimise. Gaus-
sian smoothing widens the capture range to |¢,| = 6 vox-
els while the 4D measures have the widest capture range
of |t,| = 7 voxels. This behavior could be important for
multi-resolution optimisation, thought useful for recovering
large deformation.

4.3 Segmentation propagation from atlas to clini-
cal image

It is possible to use non-rigid registration to propagate
segmentations from one subject image space into another.
We apply the method described in [8], based on registering
the Montreal Neurological Institute (MNI) brain atlas [4] to
the subject image, and then use the non-rigid transforma-
tion to propagate the segmentation of the lateral ventricles
into the subject space. Figure 7 shows the results of the seg-
mentation propagation with the new 4D similarity measure
and the standard one. There are relatively small differences,
however, the blue contour appears smoother and closer to
the ventricular boundary.

5. Discussion and Conclusions

We have established a set of desirable properties of sim-
ilarity measures for non-rigid image registration of inter-
modality data. We have used these to design a novel sim-
ilarity measure based on the derivative of Gaussian scale
space. We demonstrated that this has a wider capture range
than standard forms for large deformations using a synthet-
ically misregistered signal. We have also shown that this
is present when translating a sub-image for 2D brain slices.
For non-rigid inter-subject 3D brain image registration of
there is similar performance to the standard measure.
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Figure 6. Plots of the similarity as a func-
tion of translational misregistration for a pair
of 2D MR Brain images. Standard NMI (no
blurring); standard NMI(G, * A,G, * B);
NMI(G,x A, VG, x A|; Gy x B,|VG, * B|) and
NMI(GyxA,V*G,*A; GoxB,V2G,+B) Images
are misregistered in the range —15 < t, < 15
voxels. The Gaussian width is o = 2 voxels.

Figure 7. Comparison of the non-rigid inter-
subject registration of 3D MR brain images
with the new 4D and the standard 2D similarity
measures. The boundary of the lateral ven-
tricle have been propagated into the space
of the subject image using non-rigid regis-
tration. The unregistered ventricular bound-
ary is shown in purple, the propagation with
the standard 2D NMI is shown in green and
4D propagation with NMI(G * A, |VG x A|; G %
B,|VG x BJ) is in blue.
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Abstract

In order to understand the development of stem-cells into
specialized mature cellsit is necessary to study the growth
of céellsin culture. For this purpose it is very useful to have
an efficient computerized cell tracking system. In this paper
a prototype system for tracking neural stem cellsin a se-
guence of images is described. The system is automatic as
far as possible but in order to get as complete and correct
tracking results as possible the user can interactively verify
and correct the crucial starting segmentation of the first
frame and inspect the final result and correct errors if nec-
essary. All cells are classified into inactive, active, dividing
and clustered cells. Different algorithms are used to deal
with the different cell categories. A special backtracking
step is used to automatically correct for some common er-
rorsthat appear in theinitial forward tracking process.

Keywords
Tracking, stem cells, time lapse image sequences.

1. INTRODUCTION

The birth of new neurons from neuronal stem cells, a proc-
ess called neurogenesis, has been seen in adult brains from
both animals and humans [1]. However, little is known
about the basic regulatory mechanisms of neurogenesis. In
order to understand this regeneration of brain cells, cultured
cells are studied. In this way, some properties of neuronal
stem cells as they develop over time can be discovered. For
this purpose efficient methods for tracking cells in cultures
are needed.

There are a number of applications that need and use object
tracking over time. We have built on methods described
from some other fields, e.g. [2, 6, 7, 8], however, to get
good results severa specia adaptations and heuristics are
necessary. Estimating the motion of objects from a se-
guence of images consists of two major steps: (i) segmenta-
tion, i.e., separating the objects of interest from the back-
ground and from one another, and (ii) tracking, i.e., using
the measurements results from segmentation to estimate the
object state, which typically comprises the position and
velocity [2] of the object. This paper will focus on the
tracking step. We will just give a brief introductory descrip-
tion of the segmentation step. It should, however, be
pointed out that the segmentation is quite difficult for this
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application since the cells are unstained, as the stain would
be harmful to the living cells and the contrast is thus quite
low. Also the cell images are acquired with auto-focus
which sometimes yields a poorly focused image.

Generally, the set of contiguous regions, which isthe output
of the segmentation algorithm, can be used for tracking.
The "features" of the cells, for example, orientation, area
and shape can be used to identify the different cells. How-
ever, these features are not stable [2]. Especially, the irregu-
larly and widely varying shapes of the cells, both within an
image and across a series of images, make it impossible to
use masking or direct matching techniques to distinguish
the cells. In our system the position of the centroids of each
region in subsegquent frames are considered in an initia
automatic processing step and regions that can be matched
are linked. Subsequent analysis steps try to link remaining
unmatched regions using special heuristics. Finally the
automatic tracking result can be visually checked and cor-
rected if necessary.

2. IMAGE PROCESSING

2.1 Image acquisition

Images were captured from a computer controlled micro-
scope attached to a cell culture system with carefully con-
trolled environment for the cells. The time interval between
images was about 15 minutes, yielding total sequences of
on the average 70 frames, each illustrating the behavior of
the cells under influence of a catalyzing chemical sub-
stance. The cells were unstained, and the image acquisition
was completely automatic with auto-focus applied for each
image frame.

2.2 Automatic segmentation

To segment the images into individual cells, we first smooth
the image with asmall (3x3) Gaussian filter to reduce noise.
We then perform a fuzzy threshold as follows. All pixels
with intensity below a lower threshold t, are set to 0 and all
pixels above a higher threshold t, are set to 1. Between t
and t, image intensities are linearly rescaled to the range
[0,1]. The thresholds we have chosen are for t, - u + 0.30

i.e just above the background level. (i is the mean value

and O isthe standard deviation of the background intensity.
Similarly we have chosent,- 1 + 40 . That is high enough



to guarantee that pixels brighter than that are really well
inside the cells. Through the use of a fuzzy approach, the
method becomes less sensitive to the exact values of these
threshold levels, than what would have been the case if a
standard crisp threshold had been used.

On the fuzzy threshold image, we apply a fuzzy gray
weighted distance transform [3] to incorporate both the
shape (roundness) and the intensity of the cells. This gives
us agood "landscape” to segment using the watershed algo-
rithm [4]. We use the extended h-maxima transform [5] to
find suitable seed points for the watershed algorithm, where
h is fixed. We require the seeds to have intensity above a
threshold h in the fuzzy distance transformed image to use
them for the watershed transform. In that way small and
faint objects are automatically removed. After ssgmentation
of each of the frames in the sequence of stem cell images, a
series of labeled images can be obtained through applica
tion of the standard connected component labeling algo-
rithm.

3. TRACKING ALGORITHM

3.1 Set up for the automatic tracking

Since the cell tracking is based on propagation of cell iden-
tities from the first frame throughout the entire sequence it
is important to have a correct starting frame. The first im-
age frame is shown in origina gray level and segmented
versions as illustrated in figure 1laand 1b, If under or over
segmentation has happened it is usually obvious to human
vision. The user is therefore given an opportunity of inter-
actively correcting the segmentation as illustrated in figure
1c. The whole set of cells present in the sample will thus be
tracked. At this time the operator also tells the system
which cells are part of clusters.
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Figure 1: Interactive initialization of the tracking on the
first frame of the sequence.

a) Gray level image of 1st frame
b) Segmented image of 1st frame
c) Interactively corrected segmentation

3.2 The tracking algorithm for inactive cells
Most cells will only move short distances between two con-
tiguous images [6]. Those cells are called inactive cdlls.
For those cells a simple tracking algorithm leads to good
results. This algorithm is based on the overlap between the
labeled regions in the current frame and the previous one.
For every cell, the algorithm first detects whether thereisan
overlapping region between two frames or not. If such a
region is found, the algorithm records the cells ID as the
same as the one in the previous image. A tracking image is
formed from the relabeled regions in the current image us-
ing information from the previous image. This tracking im-
age is then regarded as a new previous image. This propa
gates through the sequence. A table called cells ID which
records all the assigned labels is used to guarantee that each
number is used only one time in each frame.

Since the image acquisition, including focusing and seg-
mentation is fully automatic some images will have very
poor focus and the segmentation will fail resulting in seri-
ous under segmentation. This is detected through a simple
test. If the number of detected cells in the current image is
less than 0.15 times the number of total cells in the whole
sequence, the image is skipped and the process moves to
the next image. If more than three consecutive frames in a
sequence have to be skipped in this way we have a serious
problem and the processing is interrupted and the operator
notified.

When all the overlapping regions have been matched the
lists of cell ID numbers in cells ID of these two successive
tracking images are compared. There may then be some
regions in the previous frame that seems to have disap-
peared and some newly appearing regions that need to be
handled. New appearing and disappearing cells ID are



saved in two 2-D matrixes, called newappear and disap-
pear respectively.

Biologically cells do not disappear from one frame to an-
other except when moving through the image border. Dis-
appearing cells are thus likely to be caused by under-
segmentation. In order to avoid that some cells are lost in
the tracking, all disappearing cells' regions are copied from
the previous frame into the tracking image except for the
positions at the border of the image. When later on it is
found that part of a disappearing cell's region coincides
with another cell in a new tracking image, the region ID of
the former is replaced by that of the latter.

3.3 How to detect and handle new cells

When moving through the sequence new cells may appear.
There are three distinct reasons for this that has to be rec-
ognized and dealt with in different ways:

1. There has been areal biologica cell division, cre-
ating two cells from a parent cell.

2. A cell has moved into the scene through one of the
image borders

3. A cdl has been split through over-segmentation

3.3.1 Detecting cell division and finding the daugh-
ter and parent cells

80 100

Figure 2: A scene of two contiguous gray level images
with a cell division

(a) Before division
(b) After division

It is a very important aspect of stem cell tracking to detect
cell division and to save the information about the division.
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For that purpose it is useful to note some biological facts
that influence the cell appearance in the images. Before a
cell division, the cell keeps almost stationary for several
successive frames. Then it becomes very round just before
the frame where the cell begins to divide because the sur-
face tension of the cell membrane reaches maximum, as
shown in Figure 2 (a). After the division, the two daughter
cells are very symmetrical around the perpendicular bisec-
tor of the line linking the two centroids, as shown in Figure
2 (b). The area of the parent cell is almost equal to the sum
of the two daughters areas. One daughter cell keeps its par-
ent cell's original position while the other one is pushed
away some distance.

We try to use these features in an analysis of each new cell
region that appear during the tracking to see if it can be a
cell division. First of al, we use the cell position to detect
whether the new jy, cell in the 2-D matrix newappear in 3.2
comes from the border or not. If not, we consider whether
the new one comes from a division. All distances between
the jy, cell and the others are computed (we define distance
as the length of the line linking the two cells' centroids). If
the distance to the iy, cell is less than Dsgg, the iy, cell be-
comes a candidate in C;, as the other cell in the pair after
division.

To verify if the candidate truly represents a division, a
number of conditions that are heuristic parametric versions
of the observations in the previous paragraph are applied.
We accept that the new j, and iy, cell in G isadivision pair
in the ky, tracking image if the following conditions are sat-
isfied. For each candidate i in C;:

C1. Distance
abs (D; ; - 0.5(max( L

@

i max ’ijax ) + max( I‘imin, ijin ))) <1

D, ,: Distance between celli and |
L e » L - Major and Minor Axis Length of i
C2. Area %)

abs (Sy_;; = (S, + Sy N /S, <03
& abs(S,; =S, ;)/max( S,;,S, ;) <0.04
C3. Bounding Box ©)]

abs(BoundingBox(i) « x_ width — BoundingBox(j) ¢ x_ width) <1
& abs(BoundingBox(i)* y_ width — BoundingBox(j)* y_ width) <1

CA4. Convex Area 4
abs(ConvexArea (i) — ConvexArea (j)) < 2

C5. Equiv Diameter 5)
abs(EquivDiame ter (i) — EquivDiame ter (j)) < 0.5

C6. Solidity (6)

abs (Solidity (i) - Solidity (j)) < 0.09



3.3.2 Save the information on cell division

As every cell has its unique cell 1D, we must save the in-
formation about the division so that we can know the be-
havior and regeneration of stem cells in the whole se-
quence. For this purpose we create a data table with fields:
cell route and frame number, e.g.: Table (2): cell route:
[11 17], division frame: [15]

The example means that a division happens in the 15"
frame which produces a new cell 17 whose parent cell is
cell 11 in the 14" frame. This is the second division in this
sequence, thus saved in Table (2).

3.4 The tracking algorithm for active cells

If the new appearing jy, cell neither is coming from the bor-
der nor is meeting the conditions of a division cell, then we
check whether it is an active cell which could not be de-
tected by overlap. Active cells are defined as cells that
move rapidly, more than Dy, pixels per frame. Biologi-
cally they are of specia interest. All the disappearing cells
in the current frame registered in the 2-D disappear matrix
Cq(i) described in 3.2 become candidates in order to match
the active cell. To reach the best matching, features are
computed for each candidate. The following formula is
used to find the best candidate [7]:

Cin = argmi nf (Cys)) = argmi HAD,; cyiy + B caiy + WP, cay} @)
Cd(i) Cd(i)

In formula (7), D;j cqg) is the distance between the iy, candi-
date and the new appearing ji, cell. A, cq is the difference
in area between the iy, candidate and the new appearing j.
Pi.cqqy s the difference in perimeter between the iy, candi-
date and the new appearing ji.. The o, B and y are weights.
Finding the minimum f(Cqy;) means finding the cell in the
disappear matrix that best matches this new appearing jin
cell. Among the three factors, the distance is the most im-
portant. The other two weights depend on the segmentation
algorithm. We have used 0=0.6, f=0.2, y=0.2. The region
label for the ji, new cell 1D is changed to the best matching
candidate's ID.

3.5 Estimation of cell speed parameters

There are two important parameters in the tracking algo-
rithm relating to cell speed: Ds.q and Dgqn. These parame-
ters are based on a model of the cells behavior in terms of
Brownian motion [8]. In a homogeneous 2-D system, the
probability distribution C that a cell with a diffusion coeffi-
cient D suffers adisplacement I in atime period 7 is:

r2

1
C(r,7,D) = exp(- €)
( ) (47DT) P( 4Dr)
R
Here, p—_L . Inour experiment7 , the sampling time
3mR,

is 15 minutes. #, the viscosity coefficient for 10% fetal bo-
vine serum, is (2~5)x10° Ng/m?, Ris 8.3144 Jmol™, and
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L is 6.0221x10%. According to formula (8), we can fit a
curve to the sampling points which stand for the cells mo-
tion between two contiguous frames, as shown in Figure 3.
From Figure 3, we can see that the distance moved by the
majority cells is no more than 10 pixels. We thus use this
value for Dgg. And the distance moved for active cells is
no more than 18 pixels which is our value for Dyg.

35—

30 —

—=- sample points

25— —— fitting curve

20 —

o

T T T I
0 5 10 15

Moved distance in pixels
Figure 3: Fitting a Brownian motion model to the cell
motion data

3.6 Backtracking

After performing the cell tracking in a forward matter as
described so far, some errors may have appeared that can
be detected and corrected through some backtracking
through the sequence.

3.6.1
frames
When some cells disappear due to under-segmentation and
some move alot because they are being active, the previous
algorithms may not work properly. The most apparent mis-
take is that two cells exchange their ID in two successive
tracking frames. A specia processing step will detect and
correct this error:

Exchanging cell ID in two successive tracking

Build a subset of al the cellsin the ky, +1, tracking image
that are more than Dy, pixels apart by scanning all cells
between two contiguous tracking images after the processin
3.4. Study the orientation of the distance vector between
cell pairsin this subset to see if any two has similar magni-
tude and opposite directions. Those are likely to have been
exchanged by mistake and this can be corrected by swap-
ping the ID numbers. The following figure illustrates this
for region numbers 5 and 10.

mm] -—-kth tracking image
1 -—-Kth+1 tracking image

s

Figure 4: Model of exchanging cell pair




3.6.2 Feedback about the static cells

Some cells will not appear to move at al between several
successive frames in the sequence. Such cells are caled
static cells. The reason may be either biological or a proc-
essing artifact.

There are some cells that are static because of the replace-
ment described in 3.2. The reasons are over-segmentation
or some cells moving in from the border then out again after
several frames. We set up a 2-D matrix called static v
which is formed by frame number and cells-ID. It records
the ID numbers of al cells that keep static positions be-
tween two successive frames. For each frame after the third
one in the sequence we compute for each cell Cq4 in
static_v, the number called t static of successive frames
that the cell stays static.

If 3<=t_static<=4, we find the first frame where this cell
became static. Then we check whether there are some new
cells Cey  appearing in this frame (including the cells mov-
ing in from the border but not including the cells from divi-
sion). If the distance | Crey - C4 | < Dyas, the region of the
static cell is updated to zero while the region of the new cell
is updated to the ID of this static one in al frames where
this static cell exists. After this, the corresponding valuesin
static v are set to zero. If no new cell appeared in the first
frame, the static cell is kept for another few frames.

If t_static >=5, and there are some static cells that were not
marked as belonging to clusters in the initial process de-
scribed in section 3.1, these static cells are deleted for all
these frames. After that, the corresponding values in
static v are set zero. These static cells are regarded as com-
ing from over-segmentation.

4, RESULTS AND CONCLUSION

Figure 5 and 6 illustrate two successful applications of the
described procedure: creating a complete trace of a set of
neural stem cells over 71 frames. As shown in figure 5, we
can observe that cell 13 divides into two cells after some
time, indicated by the two red stars and the black stars
which represent the two traces after cell 13 divides. We also
notice that cell 16 moves out through the right hand border
of the image but then returns some frames later.

Figure 6 shows a dlightly different representation of the
results of another experiment. Here the traces marked with
a triangle are daughter cells after split. These traces do not
include cells that remain clustered. The plot shows some
errors due to under-segmentation causing unrealistically
large distances between points, such as, 1to 2 and 2 to 3.

The described system was a pilot study intended to demon-
strate how an effective tool for automatic cell image track-
ing could be designed, including a possibility for the user to
interactively supply crucia information and correct errors.
This objective has been fulfilled. One of the merits of the
system is that it tracks all cells present in the cell culture,
not just a few selected ones.
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The system still has some limitations. The judgment about
when to split cells could be made more accurate through the
use of more advanced shape analysis. There is aso a possi-
bility of using feed-back from the tracking stage to the seg-
mentation stage, i.e. to look more carefully for cellsin re-
gions where the tracking al gorithm suggests there should be
acell but theinitial segmentation did not find one.
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Figure 6: Trace of cells in another sequence of 71
frames

The system including its user interface has been imple-
mented in Matlab 6.5 which has been convenient for the
experimental development. A new stand-alone implementa-
tion is currently being developed to increase the processing
speed and decrease memory requirements when very large
data sets need to be processed. The new version will also
include some of the improvements this prototype has shown
possible and desirable
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Visualisation of the pattern of contrast enhancement in dynamic breast MRI
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Abstract

A new pixel-mapping method for visualising contrast up-
take in dynamic MR images of the breast is presented. The
method reduces the sequence of images of a single spa-
tial slice over time to a single colour-coded image. This
is achieved by fitting a linear-slope model pixel-wise to the
slice time series and using the fitted parameters to define
HSV colour space coordinates. The model parameters are
related to the shape of the signal intensity-time curve at
each pixel. The effect is that pixels with rapid and signif-
icant initial postcontrast enhancement appear brighter and
more saturated, whilst the nature and degree of interme-
diate and late postcontrast enhancement is reflected in the
colour hue. Preliminary results are reported for six sub-
Jjects with suspicious MRI findings subsequently confirmed
by pathology. The results suggest that the method shows
promise as a replacement for, or adjunct to, the review of
the raw time series data and/or associated difference im-
ages in the clinical setting.

1. Introduction

Magnetic resonance (MR) imaging of the breast, before
and after the administration of an extracellular gadolinium-
containing contrast agent, can be used to detect and char-
acterise breast diseases [1]. In particular the pattern of en-
hancement, i.e. the change in signal intensity over time, is
an important criterion for the differentiation of malignant
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from benign lesions. The patterns for most cancers show an
early steep rise within five minutes of contrast-agent injec-
tion, followed by a plateau, and then washout, whilst those
for benign lesions either do not enhance, or exhibit slowed
continued enhancement with delayed washout [2]. A va-
riety of methods for analysing the change in signal inten-
sity over time have been reported in the literature includ-
ing subjective (qualitative) classification of the shape of the
signal intensity-time curve, measurement of simple quanti-
tative parameters associated with the time-curve (e.g. per-
centage increase in signal intensity 90 s after administration
of the contrast agent and the percentage increase achieved
at the maximum signal intensity), pharmacokinetic mod-
elling (parameters derived from compartmental models of
dynamic contrast enhancement), and neural networks [1].
In the routine clinical setting, however, the most commonly
adopted method is the qualitative approach [3]. Typically
the clinician: (i) reviews images of the raw time series for
each spatial slice, or of subtraction images (postcontrast mi-
nus precontrast), and identifies areas of suspicious enhance-
ment; (ii) uses software produced by the MRI equipment
manufacturer to select regions of interest (ROIs) and to plot
their signal intensity-time curves; (iii) makes a visual as-
sessment of the morphology and architecture of the suspi-
cious lesions (as they appear in higher resolution anatomical
images rather than the dynamic images); and (iv) combines
this information together with patient history to classify the
suspicious lesions.

There are essentially two approaches to the analysis and
presentation of dynamic breast MRI data: ROI analysis



(region-based) and pixel-mapping (pixel-based) [1]. ROI
analysis methods permit the user to select regions of inter-
est and to plot the associated enhancement curves. Pixel-
mapping methods, on the other hand, display quantitative
enhancement information as a colourmap co-registered with
an anatomical image. The enhancement curves generated
by ROI methods have good signal-to-noise ratio but lack
spatial resolution, are prone to partial volume errors, and are
sensitive to ROI selection and placement (e.g. the method
does not inherently take account of the heterogeneity of tu-
mour enhancement) [1]. Pixel-mapping methods have the
advantage of not requiring the user to select an ROI thus
reducing the possibility that a diagnostically significant le-
sion is overlooked, and of introducing partial volume errors
because of ROI misplacement. However, the disadvantage
is that pixel-mapping methods are more sensitive to noise,
and in particular to patient movement during the dynamic
examination.

There are two basic approaches to pixel-mapping: (i)
colour coding simple quantitative parameters associated
with the enhancement curve for each pixel (e.g. FUNC-
TOOL by GE Medical Systems, Milwaukee, USA); and (ii)
fitting a model to each pixel time series and colour coding
the fitted parameters ([4], [5], [6]). A variation on the latter
approach is the three-time-point (3TP) method of [7]. The
3TP method generates a colourmap from the intensity val-
ues measured at three judiciously chosen time points: the
precontrast time plus two postcontrast times. The inten-
sity difference between the first two time points is coded
by colour intensity and the change between the second and
third is coded by colour hue (red, green, and blue). The se-
lection of the three time points is determined using an algo-
rithm based on the fitting of a pharmacokinetic model (Tofts
model) to the data with two free parameters K and v;; the
remaining parameter values are prescribed by the MR imag-
ing parameters and the contrast agent dose [8]. The algo-
rithm generates several two-axis () on one axis and v; on
the other) colour calibration maps; one for each pair of post-
contrast time points. The map that best divides the K — 11
plane determines the optimal pair of postcontrast times.

This paper presents a new pixel-mapping method for vi-
sualising significant contrast uptake in dynamic MR images
of the breast. The method is based on the direct visualisa-
tion of the parameters associated with a pixel-wise fit of a
linear-slope model to each slice image series. The model
parameters can be easily related to the shape of the en-
hancement curve (specifically the nature and degree of early
postcontrast enhancement, and of intermediate to late post-
contrast enhancement). The method requires no calibra-
tion or selection of threshold parameters. Additionally the
method utilises order statistic filtering to improve robust-
ness to small in-slice movement. The new pixel-mapping
method effectively reduces the sequence of images of a sin-
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gle slice over time to a single colour coded image. The
colour coding of each pixel is performed with respect to
the HSV [9] colour model and encodes the shape of the
enhancement curve. Preliminary results are reported for
six subjects with suspicious MRI findings that were sub-
sequently verified by pathology: three with benign lesions
and three with malignant lesions. The results indicate that
the proposed pixel-mapping method is a valuable visuali-
sation tool that can assist the clinician with the identifica-
tion of suspicious lesions. The method shows promise as a
replacement for, or adjunct to, the review of the raw time
series data and/or associated difference images.

2. Materials and methods
2.1. Image database

Image data from six subjects was used for this study.
The data originates from routine breast MRI examinations
performed by Queensland X-Ray, Greenslopes Private Hos-
pital, Greenslopes, Queensland, Australia in the last four
years. MRI examinations, of a single breast, were per-
formed on a 1.5 T Signa EchoSpeed (GE Medical Systems,
Milwaukee, USA) using an open breast coil which permit-
ted the subject to lie prone. A 3D dynamic scan using an
SPGR sequence of TE = 1.5 ms, TR = 5.4 ms, 10 degree flip
angle, and acquisition matrix size 256 x 256 interpolated to
512x512 (ZIP512) was typically used. Gadopentate dimeg-
lumine, 0.2 mmol/kg, was administered manually at a rate
of about 3 ml/s. The number of sagittal slices per volume
acquired for each subject depended on the size of the breast
and ranges from 22 to 56. The number of volumes per scan
for each subject, including one precontrast volume, ranges
from 7 to 11. Slice thicknesses, with 50% overlap (ZIP2),
range from 4.5 to 5 mm. The resulting slice images are of
size 512 x 512 pixels with an 8-bit per pixel intensity scale.

The six subjects were deliberately chosen: three exam-
ples of enhancing lesions subsequently confirmed to be ma-
lignant, and three of enhancing lesions subsequently con-
firmed to be benign. The MRI finding of the respective ra-
diologist as well as the subsequent pathology for each of
the subjects are shown in Table 1. The pathology together
with screen captures of the ROISs selected by the radiologist
(including the corresponding enhancement curves produced
using FUNCTOOL) provided the ground truth for the data.
A sample screen capture and associated enhancement curve
are shown in Figure 1.

2.2. Slice data normalisation
For the purposes of this study only the dynamic series

for each slice containing an ROI was used; i.e. one series of
images of a particular slice over time for each subject. The



Table 1. MRI findings and pathology for the
subjects in this study.

| Subject | MRI finding | Pathology
1 8 mm lesion malignant: invasive ductal
carcinoma grade 2
2 5 mm lesion malignant: ductal
carcinoma
3 8 mm lesion malignant: invasive ductal
carcinoma grade 3
4 16 mm x benign: fibrocystic
11.8 mm X change
11.5 mm lesion
5 small enhancing benign
lesion
6 focal area of benign: atypical ductal
suspicion < 3 mm hyperplasia

time interval between the acquisition of successive postcon-
trast slices is a fixed value for each subject. However, in
practice the clinician acquires several precontrast volumes
but retains only one of these (typically the one yielding the
least amount of motion artefact in the difference images)
for the purpose of constructing an enhancement curve. A
consequence of this is that for any given slice in space, the
difference between the acquisition time for the precontrast
image and the first postcontrast image depends on which
precontrast volume is chosen. This is illustrated (red over-
lay) in Figure 1; the width of the interval A is different to
that of B to L. In this study, this anomaly was corrected by
setting the time stamp of the precontrast slice to be that of
the first postcontrast slice minus the fixed postcontrast slice
interval. In addition, all of the times were offset so that the
precontrast acquisition time is zero.

To attenuate noise and to compensate for small in-slice
movements (on the order of one or two pixels) each slice
image within each volume was filtered using a 3 x 3 or-
der statistic filter (also called a rank filter or operator) [10]
defined to replace the value of the central pixel in a 3 x 3
sliding window with the third largest value. This filter was
chosen in preference to a mean or median filter because
these filters are more likely to miss or diminish the response
of small enhancing areas. It was chosen in preference to a
maximum filter because the maximum filter is prone to se-
lect impulse-type noise artefacts.

Finally, each filtered postcontrast slice was subtracted
(pixel-wise) from its corresponding filtered precontrast
slice, and the precontrast slice pixels set to zero. The result-
ing intensity values thus represent relative MR units (i.e.
relative to the precontrast values). This ensures that en-
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Figure 1. Top: Clinician-traced ROI for subject
1 and the corresponding enhancement curve
produced using FUNCTOOL (Note: The red
overlay is not produced by FUNCTOOL. Re-
fer to the text for an explanation). Bottom:
Proposed HSV visualisation.

hancement curves for individual pixels begin at (0, 0).
2.3. Pixel-wise model fitting

In the work of Kuhl et al. [11] three basic types (shapes)
of enhancement curve were identified as shown in Figure 2.
Type I curves are characterised by rapid early postcontrast
rise followed by a continued straight line or curved rise,
type Il by a rapid initial rise followed by a plateau, and type
III curves by a rapid initial rise followed by washout. This
characterisation suggests a very simple model of enhance-
ment based on two piece-wise line segments: the first seg-
ment describes the early postcontrast rise and the second de-
scribes the continued uptake (positive slope), plateau (zero
slope), or washout (negative slope). This model is known
as the linear-slope model in the plant and soil sciences [12].
Given a random sample of ¢ = 1,...,n observations on
the intensity response Y; of a given pixel at a corresponding
time ¢;, and assuming that the intercept of the first line seg-
ment is zero (as must be the case for the normalised data),
the model has the form:

s ={ o

if t; < a, and

pra+ B2 (ti —a) ift; > a,



where E [Y;] is the mean or expectation of the random vari-
able Y;, ; is the slope of the first line segment, « is the
point (time) at which the two line segments meet, and (s
is the slope of the second line segment. This model is not
linear in its parameters (because of the product of o and
(2) and hence cannot be fitted using linear least squares
(LLS). Rather it is necessary to use a non-linear least
squares (NLS) algorithm such as the Levenberg-Marquardt
or Trust-Region algorithms [13]. In contrast to LLS, NLS
algorithms are iterative requiring the specification of initial
parameter estimates [14]. For this study the Trust-Region
algorithm, as implemented in MATLAB (The MathWorks,
Inc., Natick, MA, USA), was used to fit the linear-slope
model to the enhancement curve of each pixel using the fol-
lowing initial parameter estimates: & = ¢y (the first post-
contrast time), 31 = yo/to (the slope of the line from the
origin and joining the observed value at the first postcontrast
time), and ﬁg = 0 (assumes the second line segment has no
slope). Another issue with NLS algorithms is that there is
no guarantee of convergence. Hence in this study the con-
vergence status of each pixel-wise model fit was recorded.
For the data used in this study the Trust-Region algorithm
never failed to converge. Two examples of the fitted model
are shown in Figure 2.

It should be noted that a more complex model of en-
hancement, the biexponential model (a two-compartment
pharmacokinetic model [15]), was initially considered in
this study. The model is defined: E[Y;] = aje Pt +
age’ﬁﬁi. However, although the model can be convinc-
ingly fitted to time curves of pixels in enhancing regions, in
many areas of non-enhancing tissue and in air it either fails
to converge outright or does not do so within a fixed number
of iterations. In the latter case the resulting parameter esti-
mates typically have extreme values making interpretation
difficult. Another issue with the biexponential model is that
it is a four-parameter model and it is more difficult to vi-
sualise four-dimensional data than three. For these reasons
the biexponential model was not used in this study.

2.4. Interpretation and visualisation

The three-parameter linear-slope model above suggests
that a way to visualise the model fit at each pixel is as a
colour specified with respect to a three-dimensional colour
coordinate system such as that defined by the RGB or HSV
colour models [9]. A naive visualisation can be achieved
using the parameters «, 31, and 35 as RGB or HSV colour-
space coordinates. The problem with this approach is that
the dynamic range for these parameters varies from subject
to subject (this is in part a consequence of the variability
in tissue-MR interaction between patients [1]). As a con-
sequence the meaning of the various colours is difficult to
interpret and even more difficult to compare between sub-
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Type I: 83% benign, 9% malignant
Ib

Type Il: 11.5% benign, 34% malignant

11

Type III: 5.5% benign, 57% malignant £ ~*°}

Figure 2. Left: Three types of signal intensity-
time curves and the respective proportion of
benign and of malignant lesions that exhibit
each shape-type [11]. Right: Two examples
of the linear-slope model fit (solid line) to the
normalised slice data (dashed line) for sub-
ject 1.

jects.

A better approach is to colour code the shape of the
enhancement curve at each pixel. The product a3; (the
height at the join point) is a measure of the degree of early
postcontrast enhancement. The slope (-2 is a measure of
the nature (i.e. continued rise, plateau, or washout) and
degree of the intermediate and late postcontrast enhance-
ment. These quantities can be visualised simultaneously
in HSV colour space as follows. The saturation (S) and
lightness (V) coordinates can be used to encode the prod-
uct a3 (early postcontrast enhancement) and the hue (H)
component can be used to encode 5. The resulting plot
will then show brighter and more saturated pixels in areas
of rapid early postcontrast enhancement, and the colour hue
will indicate the rate of intermediate and late postcontrast
enhancement. There are, however, three problems with this
approach. Firstly, if 82 is simply scaled to [0, 1] then the hue
associated with the value zero may be different for different
slices (either from the same subject or for another subject).
Secondly, in the HSV colour model as the value H varies
from O through to 1, the hue progresses from red through
orange, yellow, green, blue, magenta, and back to red. This
means that when visualising 35 the colour red can occur at
both extremely positive and extremely negative values (see
Figure 3). Thirdly, the dynamic range of the product oS
varies from individual to individual and can be greatly in-
fluenced by extreme values (e.g. due to background noise
and motion artefact).

A solution to the first problem is to clamp zero slope to
the middle of the H range. A solution to the second problem
is to remap the hue scale to obtain hues that range from red
at one extreme (washout) through green (plateau) to blue



Figure 3. Hue colour scales. From left to right:
the full range of H values, H values in the
interval [0,0.7] linearly scaled to the interval
[0, 1], and H values described by the function
shown and then linearly scaled to the interval
[0,1].

at the other extreme (continued rise). Two possibilities are
shown in Figure 3. The non-linear remapping is the better
solution because it gives a better gradation of hues between
the red and blue extremes (note the wide band of green hues
in the middle of the truncated HSV scale). The third prob-
lem can be overcome, or at least diminished, by constrain-
ing the visualisation to only those pixels for which 5; > 0
and o > 0. An example of the proposed HSV visualisation
method is shown in Figure 1.

3. Results: Comparison with clinically marked
ROIs

Each slice corresponding to an ROI in Table 1
was colour-coded using the proposed HSV visualisation
method. In all six cases the ROI marked by the radiolo-
gist coincides with the most prominent cluster of pixels in
the corresponding HSV map. Moreover the hues associated
with these clusters are indicative of the nature of enhance-
ment in the intermediate and late postcontrast phase: red
hues for pixels with a high degree of washout (indicative of
malignancy), blue hues for pixels with significant continued
enhancement (typical of benign lesions), and green hues for
pixels with plateau. The result for subject 1 is shown in
Figure 1 and shows a strong correlation between the ROI
marked by the clinician and the orange/red spots prominent
in the HSV visualisation. Interestingly, at least two other
smaller clusters of hot pixels, adjacent to the ROI, appear
suspicious. Results for another three subjects are shown
in Figure 4. Again, in the case of subject 2 several other
smaller clusters of hot pixels appear suspicious. In the case
of subject 4 several adjacent clusters of light-green pixels
appear to be focal areas of benign enhancement. In the case
of subject 5 the clusters of hot pixels in the lower right are
located within the liver and not the breast tissue and so are
not relevant. The smaller focal areas in yellow at the top the
breast, however, appear suspicious.
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4. Summary and conclusion

We have presented a novel pixel-mapping method for vi-
sualising the pattern of contrast uptake in dynamic breast
MRI. Each slice pixel is colour-coded to reflect the shape
of its signal intensity-time curve. This is done by fitting
a linear-slope model to each slice pixel and expressing the
associated parameters that describe the nature and degree
of early, and of intermediate to late postcontrast uptake as
coordinates in HSV colour space. The effect is that pix-
els with rapid and significant initial uptake appear brighter
and more saturated, whilst the nature and degree of the in-
termediate to late postcontrast enhancement is reflected in
the particular colour hue. We applied the method to data
from six subjects—three with benign lesions and three with
malignant lesions—and confirmed that the most prominent
clusters of pixels apparent in the HSV visualisation coincide
with the ROIs of suspicious lesions selected by the radiolo-
gist. The results suggest that the method shows promise as
replacement for, or adjunct to, the review of the raw time
series data and/or associated difference images.

The efficacy of the proposed method needs to be evalu-
ated on a larger database. This will be the subject of further
work.
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Abstract pletely unaware that images of their face are being captured
from a video camera and used for recognition purposes.
Video surveillance systems are becoming an indispens-Face recognition systems involve complex operations such
able tool in today’s environment, particularly for security as face detection, segmentation and normalisation. Feature
related applications. Surveillance footage is often routinely extraction and classification can then be performed to ulti-
used to identify faces of criminals “caught in the act” or mately verify or identify an individual. However, it has been
for tracking individuals in a crowded environment. Most discovered by numerous researchers that the large propor-
face images captured with these systems however, are smation of these recognition systems suffer due to poor quality
and coarse, making it extremely difficult to identify an in- or low resolution images [7]. This drop in resolution de-
dividual through human observation or via automatic face creases the amount of information available for identifying
recognition systems. or verifying an individual, ultimately resulting in a severe
Super-resolution (SR) is a technique that can overcomedegradation of recognition performance.
this limitation by combining complimentary information The use of low resolution (LR) images is extremely
from several frames of a video sequence to produce highprevalent in surveillance applications that involve the moni-
resolution images of a subject. A problem that plagues toring and the tracking of individuals in a cluttered environ-
many existing SR systems is that they can only deal withment. The majority of the images captured by these surveil-
simple, rigid inter-frame transformations, thus performing |ance cameras have a very low resolution due to the cheap
poorly with face images as faces are non-planar, non-rigid, |R imaging systems available for use in those particular en-
non-lambertian and can self-occlude. vironments. Furthermore, a person generally only occupies
This paper presents a SR system to overcome these limg very small region of interest in the entire field of view of
itations by using a robust optical flow technique. An inves- the camera. Thus, the amount of information contained in
tigation into the quality of the super-resolved images and a small group of image pixels describing the person is ex-
their dependency on the number of video sequence framegremely small. The amount of pixels containing the person’s
used in the reconstruction is undertaken. Different fusion face is even signiﬁcant]y less. To perform face recognition
techniques are also investigated and experiments are con+n such a low resolution environment is extremely challeng-
ducted over two image sequences. Results show significaryhg.
improvement of the image quality and resolution over the £ tace recognition to operate in a surveillance environ-
original low resolution sequences. ment, a capacity must exist to generate higher resolution im-
ages of a person’s face. This goal can be achieved through
the use of super-resolution (SR) techniques, a signal pro-
1. Introduction cessing method which has recently experienced a prolific
expansion in research. SR techniques can be used to pro-
Face recognition technology, along with other forms of duce a high resolution (HR) image of any arbitrary scene by
biometric authentication, have become increasing importantjudiciously combining a number of low resolution images.
in modern society, especially with the continuing threat of The aim of this reconstruction approach is to estimate a HR
terrorism [10]. The major advantage of using the human image with finer spectral details from multiple LR observa-
face as a biometric measure is its non-intrusive nature, agions degraded by blur, noise, and aliasing [8]. It is not suf-
very little effort is required by the user. Another advan- ficient to just resample one single observation of the scene
tage in surveillance applications is a person may be com-as size does not equate to resolution. Increasing the resolu-
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tion could be viewed as either increasing the signal-to-noiseon the number of video sequence frames used in the recon-
ratio while keeping the size fixed and/or approximating the struction process. Results are produced using the combina-
image at a larger size with reasonable approximations fortion of 3, 5, 7, and 9 video frames in the super-resolution
frequencies higher than those representable at the originateconstruction process respectively. Two different fusion
size [5]. techniques, a robust mean and the median, are also investi-
Super-resolution techniques have enjoyed good succesgated to ascertain their affects on the quality of the produced
in a wide variety of applications including medical imaging, HR images.
satellite imagery, and some pattern recognition applications  The outline of the paper is as follows. Section 2 provides
[9]. Many of these proposed techniques have been devel-an overview of the super-resolution optical flow algorithm
oped on the assumption that the system operates in a conemployed in this paper. Section 3 presents the experimental
strained environment, for example: only rigid objects as- results on two face image sequences, including an experi-
sumed in the scene or only simple transformations are em-ment on a facial expression analysis image set to test the
ployed. Consequently, many of these proposed techniqueslgorithm’s robustness to drastic local non-rigid deforma-
are not applicable to images involving the human face duetions. Concluding remarks are discussed in Section 4.
to the inherent difficulties that exist in this domain. Some

of these problems include [1], 2. Super-Resolution Optical Flow

e Non-Planarity: It is not sufficient to assume the en- ) ) . .
human face is far from planar. ferent observations or “snapshots” of the same scene. These

LR images are subsampled (aliased) and contain sub-pixel
¢ Non-Rigidity: Local deformations occur frequently shifts, containing complementary information which can be
as facial expressions change and consequently no asmerged into a single image with higher resolution than the
sumptions involving the rigidity of objects can be original observations. Generally, the process followed by
made [11]. most SR image reconstruction techniques can be described

. . ) by three basic components,
e Occlusions:Movement of the face will result in many

partial self occlusions. 1. Motion compensation (registration),

¢ lllumination and Reflectance Variatioffaces are sub- 2. Interpolation,
ject to specular reflections that vary across the face,

particularly off the cheeks and forehead. 3. Blurand noise removal (restoration).

The SR method employed here and described in [6] follows
this approach. The observation model that relates the HR
image to the observed LR images can be described as fol-
lows,

To overcome some of these problems, particularly the
non-planarity and non-rigidity of the face, it is possible to
use optical flow techniques to recover a dense flow field that
describes a deformation or mapping for every pixel in the
scene. By determining these local flows, it is possible to
track the motion of a complicated non-planar and non-rigid wherey,, denotes thé& = 1. .. p low resolution imagespD
object such as the human face. The remaining two problemss a subsampling matrixB;, is the blur matrix, M}, is the
of occlusions and illumination variation can be addressedwarp matrix,z is the original HR image of the scene which
through robust estimation methods. is being recovered, and is the additive noise that corrupts

Previous work in [6] presented a super-resolution sys- the image. This scenario is graphically illustrated in Figure
tem using optical flow that can be used to overcome somel which shows how the LR observed imageis obtained
of the limitations introduced by the human face. This work from the original continuous scene.
involved the use of a “graduated non-convexity” algorithm  As seen from Equation 1, the SR reconstruction problem
to recover the optical flow [2]. This algorithm was based essentially is an inversion problem as the process lies in the
on robust estimation techniques which addressed violationsdetermination of the HR image, from multiple low reso-
of the brightness constancy and spatial smoothness assumpdtion observationsy,. This scenario is also an ill-posed
tions - two issues that severely affect previous optical flow inverse problem as a multiplicity of solutions exist for a
techniques. Related work using optical flow is also adoptedgiven set of observation images [4]. There are numerous
by Baker et al. in [1]. This paper, however, presents an SR image reconstruction methods proposed in the literature
investigation into the quality of the super-resolved images to generate a HR image from a series of LR observations.
generated using the algorithm in [6]. The quality of the Consequently, the way in which the registration, interpo-
produced images are also assessed against their dependeniation and restoration stages are performed vary according

Yk = DB Myx + ny, 1)

74



Continuous Desired HR kth warped HR image xk
Scene image x

L Ideal sampling Warping Blurring || Under-sampling _>Q_> kth observed

(no aliasing) LR image yk

Additive
noise nk

Figure 1. Super-resolution observation model.

to the method employed. Please refer to [3] and [9] for a
review of super-resolution techniques.

As discussed earlier, previous approaches to super-
resolution perform poorly when applied to applications in-
volving the human face as faces are non-planar, non-rigid,
non-lambertian, and are subject to self occlusion [1]. A
super-resolution system that is based on optical flow, how-
ever, is capable of overcoming these problems due to the es-
timation of a dense flow field that describes a deformation or
mapping for every pixel in the scene. The incorporation of
optical flow overcomes the principal difficulty of estimating
motions of a non-rigid object. The following sections will
describe the outline of the proposed system and the details
of the individual modules.

Original image
sequence

1. Interpolate

Registered and
warped frames

4. Fusion Super-resolved

frame

21 System Outllne Fused frame

The super-resolution system proposed in this paper takes
an image sequence as input and outputs the super-resolution Figure 2. Super-resolution system flow dia-
image sequence along with the optical flow between succes- gram.
sive frames. This concept is illustrated in Figure 2 which

shows the super-resolution system flow diagram. Please refer to [6] for more details on the super-
The individual steps of the algorithm are described as resolution system and [2] for the robust optical flow algo-

follows and are repeated for all images in the input se- rithm.
guence,

1. Interpolate the original image to twice the input reso- 3. Experimental Results
lution using bilinear interpolation.

2. For N = No. of frames used in the reconstruction  Two sets of image sequences (fiaeial expressiorand

(where N is odd), compute the optical flow between Surveillancesequences) were used to test the performance
the current reference image and (mé_l)/2 previous of the SyStem with Varying Conﬁgurations. The camera pO'

images and théN — 1) /2 following images. sition was fixed for both sessions, with the subject moving
in front of the camera against a static background. The sub-
. Register thé N —1)/2 previous andN —1) /2 follow-  ject undergoes extreme facial expression changes in the fa-
ing images to the reference image using the displace-cjal expression sequence and the surveillance sequence is a
ments estimated from the optical flow stage. typical surveillance video, with the camera mounted at ceil-

ing height. Both sequences were selected to test the optical

. Estimate the super-resolution image using a fusion f laorithm’ : ith the | di dqi
technique (robust mean or median) computed across ow aigorithm's performance wi € Issues discussed in

. . . Section 1.
the reference image and th®¥ — 1) registered images.
g &' —1)reg g The captured HR images (ground truth) were downsam-

. Restore the final super-resolved image by applying a pled to half the spatial resolution in each direction and used
deblurring Wiener deconvolution filter. as input to the SR system. Figure 3 shows a single frame of
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each image sequence, and their respective regions of interby this since it takes only the middle value across the esti-

est (ROI). All error measurements were taken from the ROI. mations.

The quantitative metrics used to evaluate the system recon- Diminishing returns prevent image quality from improv-

struction error was the mean squared error (MSE), defineding with more frames as the super-resolution system in its

as, current state does not make full use of the information con-

MSE — f};ol fj;gl(zm,n — Zmon)? @ tained.in the LR images. From the error plots, it appears

Ni—1 Nifl(zm ) that 5 is the optlimum nu.mb(_ar of frames for.th_e sy;tem. As
m=0 &n=0 ' the optical flow information is used as arpriori registra-

wherez,, ,, is the reconstructed image ang ,, is the orig- tion only, an iterative approach similar to [1] refining the
inal HR image. estimations would achieve better results.
Original Downsampled
HR image LR image 207802
2.08E-02 1
2.06E-02
Eacial i W 2.05E-02
aclal expression
sequence = 2.05E-02
2.04E-02
2.04E-02
2.03E-02 T T T
1 2 3 4
Number of frames used
Surveillance ‘ —— Bilinear — — — Bilinear deblurred —e— Robust mean —%— Median‘

sequence

Figure 4. Average reconstruction error for the
facial expression sequence. For reference,

Figure 3. Original HR and downsampled LR the MSE for nearest neighbouris ~ 3.142 x 1072,
images with highlighted ROI’s.

As mentioned in Section 2, the algorithm can take an

arbitrary number of frames on either side of the reference 3.28E-03
image for computation of optical flow and fusion. Tests 3.26E-03 |
were conducted using 3, 5, 7 and 9 LR frames to reconstruct 3.24E-03 |
1 SR image. Two methods of fusion were also tested, the § 3.22E-03
robust mean as described in [6] and the median operator. 3.20E-03 |
Figures 4 and 5 show the results for the facial expres- 3.18E-03 {
sion and surveillance sequences, revealing some interest- 3.16E-03

ing results. The robust mean operator's performance de-
grades severely as more than five frames are used whereas
the median operator error undergoes very minor degrada- ‘—Bilinear— — — Bilinear deblurred —¢— Robust mean —I—Median‘
tions. Both fusion methods however, still outperform bi-
linear interpolation (with and without deblurring), with the
exception of the 9-frame robust mean fusion for the surveil-
lance sequence.

Figure 6 shows the difference between using the robust
mean and median operator when reconstructing with nine  Figure 7 shows four frames from the facial expression
frames. The image fused by the robust mean is more blurredsequence, with results using the robust mean and median
around edges and facial features. The difference imageoperators (5 and 9 frames for both) along with the bilinear
prominently shows the edges and features of the face. interpolated, LR input and HR ground truth images. When

The difference in performance is a result of the inherent using 5 frames, the resulting image for both operators ap-
limitation in the optical flow algorithm. When more frames pear similar. For 9 frames however, it is clear that the ro-
are used to compute the optical flow, motion (pixel displace- bust mean images are more blurred than the median ones.
ment) from the farther frames can be large enough for the The results demonstrate that the optical flow algorithm is
optical flow algorithm to fail and adversely affect the robust performing and tracking the drastic non-rigid local defor-
mean results. The median operator is relatively unaffectedmations very well.

Number of frames used

Figure 5. Average reconstruction error for the
surveillance sequence. For reference, the
MSE for nearest neighbour is  4.934 x 1073,
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Robust mean (9 frames)

Median (9 frames)

Difference

Figure 6. An SR image reconstructed from 9
frames. (surveillance sequence).

4. Conclusions and Future Work

This paper has presented an optical flow super-resolution
system to over come problems caused by the human face

that plagues many existing SR systems. The optical flow
algorithm have been shown to excel in overcoming these
problems. The system is especially useful for surveillance

applications, as faces captured with surveillance systems

are small, coarse, and undergo non-rigid transformations.
An investigation was carried out into its dependency on
the number of frames used in the reconstruction process
Results showed that a global optimum of 5 frames existed.
Two fusion techniques were also investigated. For the opti-

mum number of 5 frames, the robust mean method resulted[10]

in slightly better performance quantitatively, although both
methods appeared very similar visually. When using more

frames, the median operator resulted in better performance

due to rejecting the registration errors introduced by the op-
tical flow breakdown. The optical flow algorithm performs
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" [9]

poorly when the motion or pixel displacement between its
two input frames is too large as it has trouble finding corre-
spondences between the frames. Future work plans to ex-
periment with a high speed camera (over 100 frames per
second) to reduce this effect.

Future work will also involve modifications to the system
to include refinement of its SR estimations through a series
of iterations in a similar fashion to [1] for the SR image to
converge and improve results.
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Abstract of an ideal motion. Smith and Lovell [16] give a more de-
tailed description of the system and the swing analyser mat.
Visual tracking of the human body has attracted increas- In this paper we focus on the visual tracking module of this
ing attention due to the potential to perform high volume project. We provide some background literature and show
low cost analyses of motions in a wide range of applica- results from the visual tracking module.
tions, including sports training, rehabilitation and security.
In this paper we present the development of a visual track-
ing module for a system aimed to be used as an autonomou
instructional aid for amateur golfers. Postural informa-

tion is captured visually and fused with information from Algorithms to perform human tracking from multiple

a golf swing analyser mat and both visual and audio feed- yiews can be thought of as being in two categories; deter-
back given based on the golfers mistakes. Results from theninistic and stochastic.

visual tracking module are presented.

2. A Brief Overview of Tracking Algorithms

2.1. Deterministic Tracking Algorithms

1. Introduction
Deterministic algorithms assume that the human body

Visual tracking of human movement has attracted much position can be uniquely determined at each point in time.
attention due to the wide variety of applications which could Luck et al.[10, 9] and Small [15] adopt a deterministic ap-
be performed autonomously however currently need humanproach where they construct a visual hull using shape from
interpretation. These applications include sports training, Silhouette methods and fit a body model to it using a physics
rehabilitation and security. Autonomous interpretation of based fitting mechanism. Luek al. [9] achieves tracking
human movement allows a much larger volume of analysesat 9Hz (each frame of video requirgls s to process) using
to be performed at a much reduced cost. Biometric analysis25mm’ voxels and a 25 degree of freedom (DOF) human
has already established itself as an effective training tool formodel in this manner. Mikiet al.[13] adopt a similar ap-
athletes, although most techniques rely on the use of retroproach whereby they again form the visual hull from shape
reflective markers or magnetic sensors to be placed on arfrom silhouette methods however use an extended Kalman
athlete before such analysis can be performed. filter to fit the body model. They achieve tracking at 10Hz

The aim of this project is the development of a system using25mm?* voxels and a 23 DOF human model.
which uses visual cues to obtain a golfers postural infor- The methods described above rely on background sub-
mation, and analyzes this with respect to a learned idealtraction methods to produce an accurate volumetric hull. In
motion. This data is then fused with information from a the event of motion in the background, or some outdoor set-
golf swing analyser mat which detects information about tings, background subtraction will not be sufficient to form
the club head which is infeasible to detect visually. Com- an accurate visual hull. In theses cases it is not always pos-
pletely automated feedback can then be given based on difsible to uniquely determine the body position from a practi-
ferences between the athletes motions and the technicallycal feature set. Generally events like background clutter and
correct motion. Golf has been chosen as the sport in focusocclusion prevent the body position from being uniquely de-
due to the limited movement of the player and the presencetermined at a given time.
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2.2. Stochastic Tracking Algorithms gether. To achieve this Sminchiescu and Triggs incorpo-
rate motion boundaries, intensity edge energy, optical flow
Stochastic algorithms do not rely on the body being and body model priors to form a robust cost function. They
uniquely determined at each point in time. Instead they as-achieve monocular tracking of 3 DOF human model at
sign probabilities to possible body positions and seek the0-0056Hz.
most probable position. The Particle Filter, first used in ~ When the nature of the application allows for post pro-
visual tracking by Isard and Blake [7], was introduced to Cessing of tracking results, a backwards optimization phase
successfully track in the event of multi modal probability ¢an be added to the stochastic tracking algorithms to im-
density functions (pdf). Particle Filters approximate a pdf Prove results. Isard and Blake [8] present a framework for
by sampling from it. Predictions of the object position atthe @n output smoothing filter. The smoothing filter can be
next time step are based on the probabilities of these samthought of as finding the Baum-Welch solution to the best
ples (particles). In this way a particle filter can retain multi- Path through a Hidden Markov Model, where the transi-
ple hypotheses of the objects position. Deutsetel. [2] tional probabilities are derived from a dynamic model. This
improved the performance by adding annealing layers to theSmoothing filter provides a powerful tool when multiple hy-
algorithm, allowing the pdf to be more extensively sampled Potheses of the object position are present.
from in regions of interest, generally the high probability
regions. A further improvement was made by Deutseiter 3. Modelling the golfer
al. [3] by varying the amount of noise added to each particle
during the sampling process, and introducing a crossover Human tracking applications generally use about 30 de-
operator similar to that in genetic algorithms. grees of freedom (DOFs) to model a person. These models
A problem for particle filters is that the higher dimen- are overly simplified for the task of tracking a human during
sionality of the configuration space, the more patrticles re- a golf swing however. Currently we use 42 DOFs consist-
quired, and hence the higher the computational cost. Mac-ing of 3 translational and 39 rotational DOFs as shown in
Cormick and Blake [11] showed that the number of particles Figure 1(a). This a high dimensional space for he particle

required,/V, can be found by filter to search through, and the amount of particles hence
computational time needed for the particle filter grows ex-
N> Diin ) ponentially with the dimensionality of the space.
~ ad Our model model is constructed as a link list, where each
whereD,,;, anda < 1 are constants, andlis the dimen- link has a set of rotations and a surface modelled by a trun-
sionality of the search space. Deutsckerl. [3] report cated elliptical conic, shown in Figure 1(b). A similar ap-
successful human tracking @i7Hz using a29 DOF hu- ~ Proach was used by Deutscheral [2] and Goncalvest
man model. al. [5]. Sminchisescet al [14] uses shape deformable su-

Sminchiescu and Triggs [14] present an alternative ap- per quadratic ellipsoids to model the surface, and €ua

proach to stochastic tracking using the Covariance Scaled?- [4] uses @ summation of three dimensional Gaussian
Sampling (CSS) algorithm. CSS propagates a muIti-modaIde,”S_'ty dIStI’!bUtIOh known as metabglls. We use truncated
prior, essentially a mixture of Gaussians, and locally opti- elliptical conics as they are computationally cheaper and do
mizes the new estimates such that they correspond to local'ot réquire any DOFs to model them.

minima in the posterior. Minima are sought as optimization
involves minimizing a cost function as opposed to maximiz-
ing a pdf. During propagation, each Gaussian is sampled
from according to the shape of the cost function, allowing
sampling to be biased along the directions of most uncer-
tainty. During optimization several samples may converge
to the same local minima. Sampling in this way reduces
the number of particles required for successful tracking as
samples are better chosen to lie in regions of interest, and
are optimized to reach minimas instead of randomly find-
ing them as with particle filters. This method was primar- (a) Degrees of Freedom (b) The Model Sur-

ily developed for monocular tracking, where the cost func- face

tion is ill conditioned as approximately one third of joint

variables are unobservable at each time instance. The key Figure 1. Modelling the articulated body

to using this approach is that the cost function is in some

sense smooth, meaning local minima are not clustered to- Since we have an expectation about the possible postures
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a golfer can take during the swing, a principal component Model Order| L2 Norm Error | CAIC Value
analysis (PCA) could be used to reduce the dimensionality 0 1695.114 Inf

of the search space. In time this will be done, however cur- 1 84.9189 101.2427
rently only two golf swings have been manually annoted - as 2 5.4762 26.6286
it is a time consuming process. Once tracking results have 3 5.3464 31.3275
been obtained that are representative of all the possible pos- 4 5.2819 36.0917
tures of the golfer it is hoped a PCA can be performed to 5 5.2782 40.9165
reduce the configuration space to aro@2fdlimensions. In 6 5.2770 45,7441
the case of the golf swing, we know the hands must always 7 5.2765 50.5722
be holding the club. This information could also be used to 8 5.2762 55.4005

restrict the search space. Currently any configuration where )
the hands are more than a threshold distance apart are given Table 1. Model Order Selection
a zero probability.

5. Results

3.1. Dynamic Model
The tracking results presented here are performed used
the APF algorithm described in Section 2.2. The PAPF

Due to the specific nature of the tracking in this case, algorithm was not used due to its incompatibility with
a dynamic model can be used to improve the trackers per- 9 P y

formance. As mentioned above, only two swings have beenthe output smoothing filter also described in Section 2.2,

manually annoted, each of which consist§®frames. Us- which was applied_ to our results. The body model was as-
ing a second order dynamic model in the DOF search sumed known apriore, however background was assumed

space, we have x 42 x 55 = 4620 equations with which unknown during the tracking. An office en\_/ironment was
to solve for2 x 422 + 42 = 3570 variables. Due to the used pgrely for the convenience of capturlng'th('a footage
similarity between the two hand annoted swings, the dy- and. calibrating the cameras. The tracker was |n|t|al|zec.j.by
namic model proved too powerful resulting in a near singu- setting the model to an approan_ate golf ao!dress position
lar noise covariance matrix. To over come this, a PCA was and then using an APF tq _d_o a quick transla_ﬂonal search.
performed to reduce the search spacetdimensions, giv- Observational probabilities were determined by casting

ing a25% variable to equation ratio. This dynamic model me?suremFenttImes t;angetr;‘tlal o the prOJeﬁ!on of the flmk d
was then transformed back into the origidaldimensional surtaces. meatures along the measurement lines were foun

space, resulting in a practical noise covariance matrix. by high pass filte_ring th_e grey scale values along these I_ines,
with features being points above a set threshold. Details of

this method are given by MacCormick [12] . The proba-

4. Cameras bilities for each measurement line were combined using a
sum of squared differences approach, as used by Deutscher
et al.[2]. Deutscheet al.[2] uses a different method to de-

In this application we use Dragonfly cameras from Point termine probabilities, they build an edge map for the image
Grey Research [17]. They synchronously captii@x 480 and assign probabilities based on the proximity of a sampled
color images a80 frames per second. point to an edge from the edge map. We did not adopt this

Since it is desirable to keep the system as small as posmethod as we assert the measurement line approach is more
sible, low focal length cameras are needed so the camerasensitive to low contrast features, such as exist between the
can be placed as closely as possible to the golfer. This intro-eft upper leg and the wall in Figure 2. We do concede how-
duces radial distortion which we estimate using a techniqueever that our approach generally producing a less smooth
described by Hartely and Zisserman [6], whereby param-pdf, i.e the pdf contains many more local maxima and so is
eters are chosen to make real world straight lines straightmore difficult to search.
in the image. To choose the order of the radial correction  Self occlusion models were used, with an added con-
function, Consistent Akaikes Information Criteria (CAIC) straint that should the measurement line pass through an-
described by Bozdogan [1] is used. The results are shownother link the same color the measurement line was counted
in Table 1, with a second order model being used as it hasas occluded. This was done so if, for example, the upper
the smallest CAIC value. arm was beside the torso features would not be expected

Projection matrices were determined from real world and between the two links.
image point correspondences, using the DLT algorithm with  The edge probabilities were combined with color prob-
non-linear optimization described by Hartley and Zisser- abilities by adding their sum of squared differences. The
man. color probabilities were determined by taking the interior
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(a) Frame 1

(b) Frame 15

(d) Frame 52

Figure 2. Results of Tracking at Selected
Frames
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most point on each measurement line, and comparing it to a
known distribution of the links color.

Figure 2 shows tracking results at selected frames.
Note the cameras are calibrated to act as mirrors as
it is easier to give feedback in that manor. Each
frame took approximately 25 minutes to process on a P3
833Mhz machine, with a MATLAB implementation of
the APF. A video of the tracking results can be found at
http://lwww.itee.uq.edu.auiris/.

6. Conclusions and Future Work

Here we have shown that accurate tracking of the golfer
during a standard golf swing is tractable without the need
for background subtraction. The dynamic model proves a
powerful tool for tracking in the high dimensional space
used to model the golfer. Future work will include learn-
ing the body model from the video sequence, removing the
color probability from the observational model as well as
reducing the time required for tracking.
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Abstract gorithm must be selected (or created) for that task. Until

recently however, research into the 3D surface correspon-

A correspondence framework has recently been pro-dence problem was hindered by a lack of uniform technol-
posed to unify a wide variety of surface matching algo- ogy, and the absence of a consistent model for comparing
rithms, and provide a consistent structure for establighin existing approaches and developing new ones.
new ones. When an algorithm is implemented using the
framework, it is divided into five stages. A moduleis created A correspondence framework for surface matching al-
for each stage of the framework, and that module is placedgorithms has been presented to address these issues [10].
in a library (for that stage of the framework). Algorithms The framework has been derived from the perspective of
are created by connecting five appropriate modules from therigid surface correspondence, which constitutes a major
library. It is envisaged that in the future, algorithms ik~ subcategory of surface correspondence. It is both a con-
created by automatically connecting five suitable modulesceptual model and a software design tool, which facilitates
for their specific surface matching tasks. This paper takes athe analysis, comparison, development and implementation
step towards this goal, by presenting a metric for assessingf rigid surface matching algorithms. It is general, unifyi
the outcomes of the final stage of the framework. The metric Wide variety of existing algorithms using consistent ter-
provides a quantitative value that determines the suitabil minology. Itis also flexible, enabling the the synthesis of
ity of an algorithm for a specific task. Six algorithms are powerful new algorithms.
presented and their suitability over a range of surfaces is .
tested. Results show that the outcome of each experiment 1he framework divides the process of correspondence

reflects the expected outcome. Thus, the metric is an ap_into five stages. Algorithms are implemented as a series of

propriate tool for algorithm selection. Future directions V& modules, one for each stage of the framework. A future

the end of the paper discuss the concept of using metricobiective of the framework is to use it for automatic algo-

at the other stages of the framework, so that the automatic'ithm creation. That is, a method would be used to select
algorithms selection process can be realised. the five best modules (from modules that are available in a

framework library) for a given surface matching task. This
paper takes a step in the direction of automatic algorithm
. selection, by presenting a quantitative metric for asagssi
1 Introduction the outcomes of the final stage of the framework.

A significant body of research is available in the field of =~ The paper begins by outlining the framework in Sec-
three dimensional (3D) surface correspondence establishtion 2. Section 2 also presents six algorithms whose compo-
ment. Correspondence computation is the process of estabrents already exist within the framework library. The ntetri
lishing mappings between two rigid surfaces. It is used to and method for assessing the outcomes of the final stage of
determine which portions of the two surfaces overlap. an algorithm are presented in Section 3. The metric is then

An abundance of algorithms has been developed forused to assess the suitability of each of the six aforemen-
computing the coarse initial mappings between two sur- tioned algorithms over a variety of surfaces, in Section 4.
faces. However, no single algorithm has prevailed, which The expected and actual results are compared. Section 5
can match any two arbitrary surfaces. This is due to the factthen discusses future work with regards to completely auto-
that algorithms are application specific, as they place re-matic algorithm selection using the framework library. Fi-
strictions on the types of the input surfaces they can matchnally, Section 6 summarises the paper with concluding re-
[10]. When given a particular matching task, a suitable al- marks.
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Algorithm  Expected Suitability |

SIM a wide variety of surfaces, except those that
exhibit symmetry about an axis of rotatior

2 The Correspondence Framework

The correspondence framework is both a conceptual

model and a software design tool for surface matching al- | 5y surfaces with a smooth topological

gorithms. The framework consists of five stages: region variations and a significant amount of

definition, feature extraction, feature representatiooal mutual overlap

matching, and global matching [10]. When matching pair-

wise surfaces, the framework is employed as demonstrated | ICM smooth surfaces with relatively high

in Figure 1. resolution and significant topology
As a conceptual model, the framework enables the re-

searcher to analyse each of the five stages of a surface| RBD a wide variety of surfaces, particularly

featureless pairs with significant

matching algorithm on its own accord [10]. The stages of .
overlapping segments

one algorithm are directly comparable to the stages of an-
other. Algorithms are developed by connecting five appro- | qi-rBD  a wide variety of surfaces, more robust
priate stages of existing algorithms. against symmetry than SIM

The individual functions of the stages of the framework
are described briefly below. For further information on the | DSM-RBD  a wide variety of surfaces, particularly

framework and algorithm selection/creation, the reader is featureless surface pairs with fewer
referred to [10]. The first stage of the framework, region overlapping segments than RBD can
definition is the stage where localised regions are selected handle

on both input surfaces. Feature extraction is the stageavher

intrinsic surface properties are extracted from regioes-F Table 1. Six correspondence algorithms, and

ture Representation is the stage where features extracted the surface types they are designed to match.
from regions are represented in a way so that they are com-

parable to other feature representations. Local Matching

is the stage where local correspondences are hypothesised

between two surfaces, and grossly erroneous matches argyordinate frame. For rigid surfaces, the registratiorapar
rejected. Global Matching is the stage where global corre- peters are a rotatidR and a translatiof. The accuracy of
spondence and the subsequent coarse initial alignment bege alignment is then assessed by determining the proximity
tween two surfaces are computed. between the overlapping segments of the surfaces.

Four existing algorithms and two new algorithms have  There are two important factors in registration assess-
been developed to fit within the framework: Spin- ment. The first is the establishment of Extrinsic Point Cor-
image Matching (SIM) [6], Geometric Histogram Match- respondences (EPCs) between surfaces, and the second is
ing (GHM) [1], Intrinsic Curve Matching (ICM) [7], Ran-  the selection of the metric that is used to measure the prox-
dom Sample Consensus based Data Aligned Rigidity Con-imijty of the overlapping segments of two surfaces. Both
strained Exhaustive Search (RBD) [4], SIM with RBD these factors are discussed in the following subsections,
(SIM-RBD) [9], and D2 Signature Matching with RBD  \yhere the most generic metric is selected to test the six al-

(DSM-RBD) [11]. These algorithms and the types of sur- gorithms that were presented in Section 2.
faces they are designed to match are highlighted in Table 1.

The following section introduces a quantitative method for 3.1 Extrinsic Point Correspondence
assessing correspondence algorithms, which will be used Establishment
to determine whether the expected suitability of each algo-

ithm listed in Table 1 i t. . . N
rthm fisted in 1able L 1s correc Given two surfaceX andY’, EPC establishmentimplies

specifying a mapping between a point &nhand one ort’,

3 Assessing the Quality of Global where the points are close to one another. Some common
Correspondences restrictions that determine whether or not an EPC is valid
are [12]:

The general method for assessing the accuracy of a , the distance between the points must be below a preset
global correspondence (mapping) between two surfaces is  threshold: and

performed as follows. First, the global correspondence is
established. The mapping is then used to compute the reg- e the angle between the surface normals of the two
istration parameters, which align both surfaces in a common points must be below a preset threshold.
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Figure 1. The correspondence framework

In addition to this, only the% of closest correspondences different surface pairs, which are matched using the algo-

may be used. The remainifit00—p)% are discarded tore-  rithms presented in Section 2. The surfaces are compared in

move the possibilities of matching non-overlapping paints terms of acquisition, topology, and degree of overlap. The

Also, only non-boundary points (on surfaces meshes) canresults of matching each surface pair using each algorithm

be used as EPCs, to reduce boundary errors. are then presented, and the actual versus expected outcomes
In some algorithms, one poidf may only match with  for each algorithm are discussed.

a single point orl” (for example [7]). However, generally

more correspondences are used (for example [2, 13]). The4.1 Test Data

method presented in this paper is the latter, as it is a more

generic approach to EPC establishment. The test pairs used in the experiment are presented in

Figure 2. Note that the surfaces are highly subsampled ver-

3.2 Measuring the Proximity of Two sions of the original data, so that the robustness of the algo
Surfaces rithms can be examined. The registered surfaces column of
Figure 2 demonstrates that a perfect alignment between two

Given a set of EPCs, that adhere to the aforementionedow resolution surfaces is not possible. Thus, the relative
restrictions, a metric is required that quantifies the proxi  heights of the two surfaces are shown. The surface segment
ity of two surfaces. This section lists a few metrics, and (light for X and dark forY’) closest to the reader is high-
selects the most commonly used one to measure the perforighted. A summary of the mode of acquisition, degree of
mance of global correspondences. overlap, and topology of the surfaces is presented below.

Given a set of EPCS, some common metrics are: ThesceNEsurface pair was captured using a mobile unit

equipped with a structured light sensor [14]. The surfaces

e counting the Number of Point (NP) correspondences are displayed as triangular meshes, containing over 2500

in the set [4]; vertices each. The data is typical of an indoor scene, con-
taining sharp edges and planar facets.

The ANGEL surfaces were captured by placing an angel
figurine on a turntable, and using a Minolta 700 range scan-
ner to acquire views of the figurine at different rotations [3
The triangular meshes shown are similar in size, both over
800 vertices each. The surfaces have distinct topologigs an

The metric that is used in this paper is NP. NP is gener- OVerlap significantly. _ _
ally more robust than SA and M for the following reasons. 1 h€DINO surface pair was acquired using the same scan-
For MI, a greater number of EPCs need to be establishedn€" and process as thuGEL pair [3]. The twoDINO
than for NP. NP selects only the best EPCs, and is thus anéshes vary greatly in size, with the first having 964 and
more robust metric. SA is very sensitive to surface resolu- the second having 667 vertices. Both surfaces have distinct
tion, whereas NP can be applied to a greater variety of data [0Pologies. However, there is much less mutual overlap be-

In the next section NP is used to test the performance of thefWeen them than thenGeL pair. The overlap is limited to
six algorithms presented in Section 2. the back leg and tail of the dinosaur, and only small patches

on the head and front leg.

The HUB surfaces are mesh representations of synthetic
range images, which were created to test an object recogni-
tion algorithm [5]. The two meshes are similar in size, with

The objective of this paper is to provide a quantitative the first and second consisting of 1096 and 1132 vertices
metric that can be used to assess the suitability of an algo+espectively. Although the surfaces have a large percentag
rithm for a particular surface type. This section presemts s of overlap, they are highly symmetrical about the z-axis,

e accumulating the Surface Area (SA) of the immediate
neighbourhoods surrounding the EPCs [1]; and

e computing the Mutual Information (MI) between the
surfaces using the EPCs [13].

4 Results
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Surface 1 Surface 2 Registered 4.2 OQOutcomes

Surfaces
The NP scores achieved by matching each surface pair
SCENE shown in Section 4.1 using each of six algorithms discussed
" ‘ b ‘ in Section 2 are presented in Table 2. The NP scores are
BN B given as a percentage of the greatest number of possible cor-
' ' m ' respondences that can be computed between two surfaces.
= — = These values are used to compare the actual with the ex-
ANGEL pected outcome of each algorithm, which is discussed next.
Algorithm
Data SIM | GHM | ICM | RBD | SIM- | DSM-
RBD RBD
DING SCENE 84 80| 19| 74| 75 77
ANGEL 85 66 70 67 23 47
DINO 83 20 71 55 50 70
HUB 0 75 34 96 95 70
BANANA 75 0 55 88 82 62
DUCK 86 0 89 85 80 85

Table 2. NP scores (%).

As expected, SIM produced highly accurate global cor-
respondence results. Its only failure occurred onHbe
data set. This was expected, due to the symmetry of both
HUB surfaces about the axis. The NP values for SIM
were generally very highx 75%) in all cases. This im-
plies that a significant degree of overlap was found between
surfaces. SIM performed better than all other algorithms fo

' the SCENE ANGEL, andDINO data sets. However, for the
less topologically distinasANANA data set, RBD and SIM-
RBD produced higher NP values. This is due to the robust-
ness of these algorithms for data with less distinct feature

Figure 2. Test data: registered surfaces that ICM produced a high, but only slightly better NP value than

have mutual partially overlapping segments. SIM for the buck surface pair, indicating that both algo-
rithms match local feature representations accurately.

With the exception of theius surfaces, GHM produced

poorer results than the SIM algorithm on all accounts. A

high NP value & 80%) was achieved for the CENE data

set, and theNGEL andHUB data sets achieved moderately
which makes them difficult to match. high NP values5% <NP< 75%). The NP scores indicate
that GHM is not ideal for computing the correspondence
between surfaces with fewer mutual overlapping segments,
such as th@INO set. This is because only small segments

BANANA

DUCK

The BANANA surfaces originate from the same database
as therus surfaces [5]. They are also mesh representations
of synthetic range images, with the first and second con- . o . . 4
taining 783 and 851 vertices respectively. The two surfacesoverlalope‘j in the coarse intial registration. GHM is also

also have a large percentage of overlap, however they |aCQtJin§ultablehfor Stlggiﬁiilxwthn:jecmgftm? to_;;r?lo%:u(i:lalr eetm
distinct topology and varying curvature. ons, such as a Sets. The failure 1o

achieve NP scores for these surfaces pairs was expected, as
The puck surface pair was captured using a turntable, outlined in Table 1.
and a 3D-colour laser scanner [8]. The triangular meshes The only high NP value % 80%) achieved by ICM
contain fewer than 550 vertices each. The only distinct fea- was for thebuck data set. ICM produced accurate results
ture in both surfaces is the sharp upward curve at the neckfor this data due to the data’s smooth changes in curva-
of the duck. ture, which are required for feature extraction. The algo-
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rithm achieved moderately high resul&§ <NP< 75%) plications). The following section discusses using qualit
for the ANGEL andDINO data, which also exhibited rela- metrics at the other four stages of the framework, such that
tively smooth variations in curvature. A moderate NP value concept of complete automatic algorithm selection becomes
(55% <NP< 65%) was obtained for theANANA surfaces.  conceivable.
Because of their lack of smooth topology, NP scores of less
than50% were obtained for thecENEandHUB surfaces. 5 Eyture Work
In summary, ICM performed as expected: better for sur-
faces with smoother curvature variation.

RBD is a recommendable algorithm for surfaces with
few distinct topological features. This was evident in its
very high NP scores>X 85%) for the HUB, BANANA,

The correspondence framework provides a systematic
approach for developing and implementing surface match-
ing algorithms. This systematic approach gives rise to the
i - possibility of using the framework to automatically select
and buck surface pairs. Moderately high NP values g qjication specific algorithms. Given two surfaces, the fiv
(65% <NP< 75%) were also obtained for theCENEaANd ot appropriate modules (one for each stage of the frame-

ANGEL dgta sets, furthe_r demonstrating the robustness Ofwork) will be selected to compute the correspondences be-
the algorithm. RBD achieved a NP score of oabf% for tween the surfaces.

Fhe DINO. surface pair. This was expected,_as the algorithm A step towards automatic algorithm selection was made

is less likely to produce accurate matching results wheniy gection 4, where a quality metric was used to assess the
the degree of mutual overlap between surfaces diminishesn ) correspondences of each algorithm. Future work in-

In summary, it is recommended that this algorithm is very |ydes specifying evaluation metrics at each stage of the
suitable for featureless surface pairs which have sigmifica framework, such that the suitability of a module with re-
overlap. spect to a particular surface type can be assessed. An exam-
SIM-RBD was expected to improve the robustness of ple of an evaluation metric is as follows. For region defini-
the original SIM algorithm where surface symmetry is con- tion, the metric may include information regarding storage
cerned. The NP score show that SIM-RBD did perform requirements, size of regions, number of regions, and so on.
well on theHuB surface pair. The robustness of the RBD  The five evaluation metrics would be included in an al-
global matching module eliminated any false positive lo- gorithm that sits outside the framework library. This algo-
cal matches produced by the SIM modules. SIM-RBD also rithm would automatically select the five best modules for
it provided satisfactory results for surface pairs withéew  the particular task at hand. Examples of possible schemes
topological variations§ANANA, andDUCK), but was not  are genetic algorithms and neural networks. It would be
as accurate as RBD. THECENEresult was almost equiva-  imperative to incorporate some learning capability inte th
lent to the RBD outcome. TheNGEL result was very poor,  scheme, such that particular modules are automatically se-
indicating that the algorithm is generally not as widely ap- |ected for specific surface types. Note that the possiility
plicable as either the SIM or RBD. having a tool for automatic algorithm selection is only con-
DSM-RBD was expected to be a superior algorithm than ceivable now that a systematic model for surface matching
the RBD for cases where surfaces contain a smaller degreés available. Prior to the development of the correspondenc
of mutual overlap. DSM-RBD performed as expected. It framework, no such model existed.
produced a moderately high NP value7of’ for the DINO
data set, almost5% higher than the RBD result. Moder-
ate to high results (NP 60%) were also achieved for the
SCENE HUB, BANANA, andDUCK surface pairs. The algo-
rithm had difficulty with theaANGEL data, most likely due
to the small regions, and non-optimised parameter value
selected. Generally, this algorithm is recommendable for
surfaces with few distinct topological features, and lower

6 Conclusion

This paper presented the results six surface matching al-
Sgorithms that have been encoded within the correspondence
framework. Four restructured and two new algorithms were
tested. The objective of the paper was to demonstrate that

degrees of overlap. It is a solution to the problem that RBD the framework can be used to select algorithms for partic-

is not suitable to handle, that is, the case where less mutua\Jlar surfac_e types. EE.lCh algorithm was used to maich six
) surface pairs, and their correspondence results were-evalu
overlap exists between two surfaces.

_ . ated by assessing the NP values of the registrations com-
In summary, it can be stated that each algorithm gener-

. “puted from the mappings. It was shown that each of the six
ally perfqrmed as expgcted. Therefor(_a, using the NP me_tr'calgorithms does indeed favour particular surface types:
metric with the specified EPC establishment scheme, is a
suitable means of assessing global correspondences. This e SIM generally performs well across a wide variety of
is an important step in the area of automatic correspon- surfaces, but has difficulty in matching surfaces that

dence algorithm selection (for given surface matching ap- exhibit symmetry about an axis of rotation;
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These results reflect the expect outcomes for each algo-

GHM is generally less accurate than the SIM, and
would be more applicable to match surfaces of higher
resolution, and with more topological variations;

ICM only performs well on surfaces with smooth cur-
vature variation;

RBD is ideal for featureless surface pairs with signifi-
cant degrees of overlap;

SIM-RBD improves the robustness of SIM for surfaces
that exhibit symmetry about an axis of rotation; and

DSM-RBD is a good algorithm for surface pairs with
fewer features and a smaller degree of mutual overlap
than the RBD algorithm is accustomed to handling.

rithm. Thus, the correspondence framework, in conjunction
with the NP metric, is a suitable tool for selecting applica-
tion specific algorithms.

Using the correspondence framework, future work will
include developing a scheme for automatic algorithm selec-

tion. Section 5 discussed the concept of having aevaluatlon[ 3] A. Rangarajan, H. Chui, and J. S. Duncan. Rigid point fea

(7]

(8]

9]

[10]

[11]

[12]

metrics at each stage of the framework, such that the best al-
gorithm can be constructed for each particular application
It must be re-emphasised that automatic algorithm selectio [14]
is only conceivable now that the framework, which is a sys-
tematic model for surface matching, has been developed.
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Abstract are special devices that, by and large, are designed to suit

computer hardware rather than human user. Nevertheless,
This paper presents a new scheme for hand posture sehumans use gestures in daily life as a means of communi-
lection and recognition based on statistical classification. It cation, for example hand shaking, head nodding, and hand
has applications in telemedicine, virtual reality, computer gestures are widely used in friendly communications. Us-
games, and sign language studies. The focus is placed oring machine vision algorithms, a computer can recognize
(1) how to select an appropriate set of postures having a the user’'s gesture/posture and perform appropriate actions
satisfactory level of discrimination power, and (2) compar- required in virtual reality environments or in computer and
ison of geometric and moment invariant properties to rec- video games. This paper aims at application of posture-
ognize hand postures. We have introduced cluster-propertybased interaction in the areas like telemedicine, sign lan-
and cluster-features matrices to ease posture selection andyuage recognition, virtual reality, and computer and video
to evaluate different posture characteristics. Simple and fastgames.
decision functions are derived for classification, which ex- A|though several aspects of directing computers using
pedite on-line decision making process. Experimental re- human gestures/postures have been studied in the literature
sults confirm the efficacy of the proposed scheme where ayesture/posture recognition is still an open problem. This
compact set of geometric features yields a recognition ratejs due to significant challenges iesponse time, reliabil-
of 98.8%. ity, economical constrainsgndnatural intuitive gesticula-
tion restrictions [9]. The MPEG-4 standard has defined Fa-
cial Animation Parameters to analyze facial expressions and
1. Introduction convert them to some predefined facial actions [6]. Prin-
cipal component analysis has been used for hand posture
Human-machine interface (HMI) has become an essen-recognition [2]. Jiaret al. [8] has developed a lip track-
tial part of our technological revolution. It offers both Ing system using lip contour analysis and feature extrac-
consumers and providers enormous opportunities for ex-tion. Similarly, human leg movement has been tracked us-
panded access. However, as with any burgeoning technoing color marks placed on the shoes of the user to determine
logical innovation, HMI faces a wide array of possibilities. the type of leg movement using a first-order Markov model
More generally, virtual reality, as an artificial creation of [3].
interactive environment resembling real life, is attracting A neural network-based computing system has been
more attention among researchers. Furthermore, in manyused in [14] to extract motion qualities from a live perfor-
telemedicine applications such as remote patient care andnance. The inputs to the system are both 3D motion capture
smart home-based health care devices, patients are remotelfwhere position and orientation sensors collect data from
monitored. In such applications, ambient intelligence is in- the whole body of the performer) and 2D video projections.
tegrated into the monitoring devices such as cameras in or-This system, which has been used in an extended project
der to measure patients’ gestures and postures. at the Center for Human Modeling and Simulation, Univer-
The technology for on-line interaction in all of above ap- sity of Pennsylvania, provides the capability of automating
plications over the Internet is maturing due to advances inboth observation and analysis processes. Finally it produces
communication tools and modern video transcoding exper-natural gestures for embodied communicative agents. The
tise. Users usually interact with machines using keyboard, performer wears a black cloth in a dark background to fa-
mouse, joystick, trackball, or wired glove. Most of these cilitate hand and face detection tasks.



Here, a finite state machine is employed to model four qual-
itatively distinct phases of a generic gesture. Binary marked

Davis and Shah [4] have developed a method for rec- ?" 4} ,@ D, ?{\
ognizing hand gestures applying a model-based approach ;@9 (% o A {% ‘ﬂj ! @' @!
a b G d e f g h
g i =~ = B e
gloves are exploited to track fingertips. Gestures are broken 0 g ?E ‘ﬁ\ i BN Q'\ )
to postures and represented as a list of vectors and are the {@? &? Sg% @
matched to some stored vectors using table lookup. i i o

Invariant moments have been widely used for ges- & ‘@\y
ture/posture detection. Negt al. [11] have proposed a =7 “‘ /
system for automatic detection and recognition of human @ @ ﬁ : ‘
head gestures/postures. It combines invariant moments an v.ooowoox
hidden Markov model (HMM) for feature extraction and % | 2 DOVES HANDALFABET
recognition tasks, respectively. The best advantage of this W @ @ "\ﬂ? "“‘”“‘”"““’
approach is that it can operate in a relatively complex back-
ground. However, the computational requirements arising
from the invariant moments extraction and HMM’s appli- Figure 1. International sign language hand al-
cation render the approach inappropriate for real-time ap-  phabet [2]
plications where several gestures/postures are involved. As
a result, the system can only recognize "YES”, "NO”, and
"PO” head gestures.

In some circumstances it is necessary to ignore motion
path analysis of the gestures for fast processing. This kind
of ana|ysis is referred to amsture ana|ys'ls|n this paper Initially, the collection is grouped into 25-hand alphabet.
we propose a new discipline on how to depict a set of appro- The images are 255-level gray scaled generated by a hand
priate hand postures for applications aiming at visual-basedn black sleeve in a dark background. Figure 1 shows rep-
interface. This is to find simple but robust postures which resentative postures and Figure 2 depicts some examples of
could be easily recognized and have distinguishing featuresthe images. Due to varying lighting conditions of the im-
This study addresses two aspects of posture recognition forges within the database using a unique threshold to bina-
human-machine interface. First, which postures are morefize images is inadequate. Figure 3 shows instances where
recognizable, and second how to extract features which in-& unique threshold cause inappropriate segmentation of the
corporate both recognition power and speed requirements iand shape. For this, K-mean clustering is employed for
such applications. Towards these goals, we have develope®inirization in the pre-processing stage. This successfully
a novel methodology based on recognition rates and intro-segments hand postures from the background (see Figure 3).

duce two matrices:cluster-propertyand cluster-features Size normalization using nearest-neighbor interpolation
The former is a structure to save single-valued properties ofis applied next. This is to achieve scale invariance property,
the postures while the latter is for multiple-valued feature \hich allows different size postures to have similar features.
vectors describing posture images. The bounding box of the region of interest is found first

The rest of the paper is organized as follows: next sectionand then normalized te x h pixels 64 x 64 pixels in our
explains our approach in detail. Section 3 presents experi-experiments).

mental results and finally Section 4 concludes the paper and
poses some new research directions.
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tions without any need to change its general structure.

Next, for each segmented-normalized postyteelong-

ing to a posture groupr;, i = 1...1, we extract/ shape

. propertiesP;, j = 1...J. Currently, for the hand col-

2 Hand Posture Analysis lection, I is 25 and.J is chosen to be 14 corresponding

to 25 posture clusters and 14 predominant posture prop-

One of the most important aspects of HMI in virtual real- erties respectively. The properties include seven geomet-

ity, telemedicine, and computer games, where user commu-ic and seven invariant moment-based functions. Geometric

nicates with the program’s engine using his/her hand ges-properties are: area), perimeter §r), major axis length

tures/postures, is to reasonably select (or design) appro{mj), minor axis length:«{7), eccentricity éc), and the ratio

priate gestures/postures. This section presents a generaf ar/pr, andmj/mi. The invariant moment-based func-

scheme on how to assess several possibilities. To explairtions have been widely used in a number of applications

the proposed scheme we utilize a collection of 2080 hand[7, 13, 10]. The first six functionép; — ¢¢) are invariant

postures [2, 12], and show how the approach works on thisunder rotation and the last ore is both skew and rotation

collection. The procedure can be adopted for other collec-invariant. They are based on the centrgl-th moments



Figure 2. Hand posture samples

Figure 3. Instances where lower thresholds
make many unwanted noisy regions (upper
two images) and higher thresholds destroy
the hand region (middle two images), while K-
mean clustering segments hand region prop-
erly (lower two images)

(uq5) of a 2D imagef(z, y), which are defined as follows:
pi =Y Y (@ —2)'(y—9) f(x,y) 1)
z oy

Then, the invariant moment-based functions are defined
as

¢1 = m20 + o2

b2 (1120 + 7102)* + 417,

¢3 (n30 — 3m2)? + (3n21 — n03)?

s = (30 +m2)* + (n21 + 103)*

¢5 = (n30 — 3m2) (N30 + M2)
- [3(n30 + m2)? — 3(n21 + 103)?]
+(3n21 — 103) (121 + 703)
- [3(m30 + m2)? — 3(n21 + M03)?]

#6 = (m20 — Mo2) [(7730 + m2)? — (21 + 7]03)2]
+4n11(n30 + m2)(m21 + Mo3)
¢7 = (3m21 — no3)(M30 + M2)

: [(7730 +m2)* = 3(n21 + 7703)2]

—(m30 — 3112)(N21 + M03)

- [3(n30 +m2)? — 3(n21 + nos)?]

2
wheren;; = (ui7)/(119) andy = (i + j)/2 + 1.
To determine the recognition power of eaGh cluster,

we exploit a classification scheme using the propeties
Initially; we try to classify 500 randomly selected postures
(20 of each group) into the associated groups. Recogni-
tion ratesR;; fori = 1...7andj = 1...J are obtained
and saved in appropriate entries in@uster-property ma-
trix. The classification is based on Bayesian rule assuming
Gaussian distribution for the hand posture patterns[1, 2]. To
extract a decision function for our classifier, we consider
number of 1D probability density functions. Each function
involves I pattern groups governed by Gaussian densities,
with meansm;; and standard deviatian;;. Therefore, the
Bayes decision function have the following form [5]:

dij(9) = p(g/Gi)P(G;) 3

that is identical as

L[]
dij (g) = \/%O" ] € I P(GZ) (4)
ij

fori=1...Tandj =1...J,wherep(g/G;) is the proba-
bility density function of the posture pattegrfrom cluster
G; and P(G;) is the probability of occurrence of the corre-
sponding cluster.

Assuming equally likely occurrence of all classes (i.e.,
P(G1) = P(Gy) - = P(G;)--- = P(Gy) = 1/I), and
because of the exponential form of the Gaussian density,



which persuade the use of natural logarithm, and since thewhere E;{-} denotes the expected value of the argument
logarithm is a monotonically increasing function, the deci- over the postures of clags; using multiple-valued property
sion function in Eq. 4 can be modified to a more convenient P,. Approximating the expected valug;; by the average
form. In other words, based on the aforementioned assumpvalue of the quantities in question yield an estimate of the
tion and facts, we can use the following decision function, mean vector and covariance matrix as

which is less computationally expensive and much faster for

oo : 1
the classification of hand postures: Mik = ﬁi 52. & (112)
dij(9) = In[p(g/Gi)P(G))] (5) ’
= Inp(g9/G;) +In P(G;) and )
. = —_— T — . /T

considering Eq. 4, it can be written as Ca N; 5;.(55 ek (12)
1 (g —mi;)? where N; is the number of posture vectors from class

dij 9) = —pn2r—Inoi; - 207, +n P(G5) (6) G; and summation is taken over those vectors for=

1,2,...K.

Dropping the constant values% In 27 andIn P(G;), To obtain a simple decision function for the multiple-

which have no effect on numerical order of the decision valued case, considering that the logarithm keeps numeri-
function, an expeditious decision function is obtained as  cal order of its argument, substituting Eq. 8dp.(£) =

In [p(§/Gi)P(G;)] yields

dij(9) = —lnoy; — M )
2073 dir(§) = —(n/2)In2m — (;/QZ}H |Ci|—
fori = 1...7andj = L...J, wherem,;; ando;; are l(i/PQ()CES i) G (€ = man)]
the mean and standard deviation of posture gtGupsing (13)
property P;, andg is the corresponding scalar property of Once again, the term-(n/2)In 2 is the same for all
an unknown posture. cases and if all classes are equally likely to occur, then

Utilizing the above classification approach we calculate P(G;) = 1/Ifori = 1,2,...,1 that is a constant and
recognition rateg;; for each single-valued proper) and a5 no effect on the numerical order of the decision func-

for each posture groufr; and save them in the crossing tjon, Hence, a simple and expeditious decision function is
cells of the corresponding rows and columns of the cluster- yptained as

property matrix.
Next, to appraise a combinatory analysis and depict an
efficient feature vector to be used for posture recognition, (&) = —In |Cii| — (€ — mik)TCz?f(ﬁ —mie)  (14)
a set of K = 18 different combinations of the geometric
properties and invariant moment-based functions is generfor i = 1...7 andk = 1... K. Note thatC;; values are
ated and recognition rates are obtained. Here, since théndependent of the inpgt which means they can be calcu-
properties are multiple-valued, the decision function for the lated off-line and saved in a look-up table. They are fetched
classification is obtained differently. In the multiple-valued from the look-up table at on-line stage to accelerate decision
case, the Gaussian density of the vectors inithgosture making process.
class has the form The diagonal element,., is the variance of theth el-
ement of the posture vector and the off-diagonal element
1 . o crs 1S the covariance of, andz,. When the elements
p(§/Gq) = ﬁe[‘f(f‘mw Cir (6=man)] z, and z, of the feature vector are statistically indepen-
(2m)"/2|Ci] 8 dent,¢., = 0. This property has been used to identify
for k = 1,2,... K, where¢ is the extracted feature v(egtor autonomous features and to pick them in the combination

. . . ) of features in multiple-valued properties. Noteworthily, this
of an unknown posture and is the dimensionality of the L . : ;
o . . fact renders the multivariate Gaussian density function to
feature vectors, - | indicates matrix determinant. Note that

e o . the product of univariate density of each elemenf otc-
each density is specified completely by its mean veetgr . i .

. . . ' tor when the off-diagonal elements of the covariance matric
and covariance matri;;,, which are defined as

C;, are zero. This in turn expedites the generation of the

mik = Ep{€} 9) look-up table. N .
TherecognitionrateR;, fori =1...Tandk =1... K
and are calculated utilizing Eqg. 14 and saved in appropriate en-

Cik = Eip{ (& —mu) (€ — mm)T} (20) tries in another structure calletuster-features matrixThis



represents not only the distinguishably of the isolated hand
postures but also the recognition power of different sets of
features to describe postures.

The general paradigm explained above provides a
straightforward method to select distinguishable postures
and has been shown to be effective in experimental results

(next section). More importantly, column-wise summations
in the cluster-propertyand cluster-featuresnatrices indi-
cate the recognition power of the simple properties and
complex features respectively. Row-wise summations ex-
hibit the discrimination power of each posture, which is an
important clue to the selection of postures for the applica-
tion in use.

3 Experimental Results

As stated before, a database of 2080 hand postures is
used for the experiments. The database is publicly avail-
able in [12]. There are 25 sets of postures having number
of members from 40 to 100. In the training stage the statis-
tical model parameters are obtained. These include means
and standard deviations (scalars) for individual properties
and means (vectors) and covariance matrices for combined
features. In the recognition stage 500 randomly selected
postures (20 in each of 25 groups) from the database werdure clusters and the columns corresponds to a variety com-
applied and tried to do classification using the approach ex-bination of features (feature vectors). The number of entries
plained in Section 2. in the feature vectors varying from two to seven. There are

For each test posture the singular properties and the feaa massive number of different combinations but we chose
ture vectors are obtained. These are to evaluate a specifionly those properties which previously showed to have bet-
posture based on its geometric properties and feature sets rder discriminating power. These properties have tentatively
spectively. The recognition rate in each entry in thester- been chosen based on their independent characteristics us-
property matrixis the number of correctly classified pos- ing covariance matrices. Thauster-propertyand cluster-
tures divided by the number of inputs. For example, if features matrices are relatively large and space limitation
12 out of 20 number of input postures in the clustér preclude us to represent them here.
are correctly classified by the decision function given in ~ Moment-invariant functions showed lack of efficacy
Eq. 7 using perimeter property into the same cluster, thenwhile different combination of geometric properties ex-
the recognition rate in rows 1, columnpr of thecluster-  hibit higher recognition rates. The overall recognition
property matrixis calculated to be 12/20=60%. In this part, rate of 98.8% is obtained using a five-entry feature vector
14 individual properties (7 geometric and 7 invariant-based {mj, mi, ec, ar, pr}.
functions) are examined for the 25 posture groups. To be
able to compare recognition power of different properties,
an overall recognition rate is obtained for each column of
the matrix by simply averaging the recognition rates in that
column. The overall results show that the top three best sin- We proposed a novel paradigm to select efficient hand
gular properties armj, mi, andar/pr. The top five best dis-  postures usingluster-propertyand cluster-features matri-
tinguishable postures, which are explored using row-wiseces The former includes recognition rates for different
averaging of the recognition rates in tbkuster-property postures using singular properties and the latter deals with
matrix are depicted in Figure 4. multiple-valued features. The recognition rates are obtained

Next, we tried to classify test postures using 18 combi- utilizing two simplified decision functions. The proposed
natory feature sets. The recognition rates are obtained usin@pproach can be used in telemedicine, virtual reality, video
the decision function in Eq. 14 and the results are saved ingames and sign languages aiming at visual-based interface.
the cluster-features matrixwhich currently in our experi- ~ Moreover, we have examined several features to discrimi-
ments has 18 columns. The rows corresponds to hand posnate hand postures in a simple, fast, and robust way, which

Figure 4. The top best five postures,in row-
wise order, based on the data in the cluster-
property matrix

4 Conclusion and Further Work



is necessary in real-time applications. The results explic-

itly show discrimination rank of individual hand postures,
which can be used to reasonably select appropriate posture$l1l]
in different applications. Moreover, the combination of fea-
tures have been examined and a small feature vector con-[lz]
taining only five simple features yields an overall recogni-

tion rate 0f98.8%.

The proposed approach can be applied on other postureg; 3
including limb, head, and whole body postures. Shape fea-
tures extracted from the posture image can be easily eval-
uated for efficacy using the proposed scheme. Moreover,
we intend to employ the proposed approach in immersive [14]
distributed environments, where several users using a dis-
tributed system communicate through their hand or body
gestures/postures. For further improvements, objective cri-
teria for user satisfaction can be defined and a time-based
comparison can be accomplished.
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Abstract constraints are used to facilitate the optical flow computa-
tion over closely-spaced views. In [3], a method is pro-
Estimation of the fundamental matrix is key to many posed that relies on the Expectation-Maximization (EM) al-
problems in computer vision as it allows recovery of the gorithm to iteratively estimate structure and motion without
epipolar geometry between camera images of the samecorrespondences. At each iteration, a new structure from
scene. The estimation from feature correspondences hasnotion problem is solved for virtual measurements that are
been widely addressed in the literature, particularly in the derived from a probability distribution. This probability
presence of outliers. In this paper, we propose a new robustdistribution is iteratively refined over the set of correspon-
method to estimate the fundamental matrix from two setsdences. It is acknowledged that results for occlusions or
of features without any correspondence information. The spurious features have not been demonstrated and that the
method operates in the frequency domain and the under-EM algorithm can converge to a local minimum.
lying estimation process considers all features simultane-  |n this paper, we propose a method to estimate the fun-
ously, thus yielding a high robustness with respect to noisedamental matrix from two sets of features without the need
and outliers. In addition, we show that the method is well- for correspondences. The two sets of features are the 2D

suited to widely separate viewpoints. orthographic projections of a set of 3D object features from
_ different viewpoints. Our method deduces motion param-
1. Introduction eters without correspondences by evaluating the frequency

One of the main objectives of computer vision is the re- SPectra of the 2D feature spaces. The approach is based on
covery of structure and motion information from a sequence &7 intégral projection model and has previously been ap-
of camera images. The determination of the fundamentalP!i€d t0 estimating 3D rigid body transformations based on
matrix plays a key role in this context since it allows the '@W images [7]. Here, we extend this work to feature cor-
computation of the underlying epipolar geometry. A variety respondences. The estimation process considers all features
of methods have been proposed to compute the fundamengimultaneously, making the method robust with respect to
tal matrix from point correspondences in stereo images. A N0ise and outliers.
comprehensive overview is given in [4]. However, the iden- L
tification of these correspondences remains a fundamentaz' Integral Projection of Sparse Features
problem. The sensitivity to noise and outliers of classical 2.1. Concept and relationship to parallel projection
approaches to the estimation of the fundamental matrix is
well-known [12]. We will illustrate the integral projection scheme based

The estimation of the fundamental matrix without cor- on a set of 2D features that we project into 1D. The integral
respondences remains largely unaddressed in the literaprojection model determines the 1D projection values by in-
ture [3]. Some methods deal with the case of correct tegrating the 2D feature scene along lines that run parallel
but incomplete correspondence information by extending ato the view axis. Due to the duality betwe8tructure from
minimum set of features into a complete set covering all Motion andMotion from Structurgrecording static scenes
reconstructible features [9]. Alternatively, occluded fea- with multiple cameras from different viewpoints is equiv-
tures are artificially generated by projecting computed 3D alent to recording dynamic scenes with one static camera.
feature coordinates onto computed camera positions [10].Suppose we have a 2D object that is represented by a num-
However, both of these methods rely on the prior knowl- ber of 2D feature points in both the original and the trans-
edge of a correct set of initial correspondences. Other ap-formed position. Integrating along lines that are parallel
proaches tackle the correspondence problem by using geoto the view axis results in the 1D feature projections. Fig-
metrical constraints, such as in [5], where geometric rank ures 1(a) and 1(b) depict this situation for five features. In

- : ‘ » these figures, the view axis is theaxis of the scene co-
Universiy of Biteh Goumii, Vancouer, B, VT Los. Canag o ! Electicaland Computer Engneerina. e o rdingte system. The integral projections are denoted by
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I(y) andI’(y) respectively. Let us assume that all 2D fea- Thus, the relationship between the Fourier speg¥, n)
tures are located on the object surface and are in the fieldand F5 (£, 7, () is:
of view of an orthographic camera. Under these assump-

tions, integral projection is identical to parallel projection. .
gral proj parallel proj Faéon) = [ fala.2)e € dodydz
RS

y y y y
Visible [ 3 Projection Visi ] Projection
é’ﬂiﬁ‘e\%g gggg;\i\ = I3(&n,0). (5)
SR ,
] r . . . . . .
2D Feature—_ VA T 32 === Equation 5 is known as the projection-slice theorem and is
i 2D Feature A | 1D Feature commonly used in X-ray tomographic reconstruction [1].
= - N As (5) shows, the spectrum of the projected feature data is
the ¢, n—plane (where, = 0) of the corresponding spec-

@) (b) trum of the 3D feature data. Next, we will discuss what this
. relationship means for stereo projections of a 3D feature set.
Figure 1. Integral projection of feature set (a) before and

(b) after transformation 2.3. Effect on stereo projections

For general object geometries, object faces including their Let us now consider that we have two 2D integral pro-
corresponding features might become obscured or revealegections of our 3D feature data from two cameras at differ-
after the scene transformation. Therefore, the visible objectent viewpoints. However, to simplify the derivations, we
surfaces before and after the transformation are generallyconsider the equivalent case of projecting the original and
not only transformed versions but differently shaped. There a transformed set of 3D features onto one camera projec-
will consequently be deviations between applying an inte- tion plane instead by applying the rigid-body transforma-
gral projection or a parallel projection to the transformed tion Tscene We decompos@sgeneinto a rotation matrixk
scene as Feature 5 in Figure 1(b) illustrates. and a translation vectay with

2.2. Mathematical Model

In our model, we describe each 3D feature by a Dirac
function at the appropriate feature location. Thus, assumingwhere z(, yo and z, are the translational components of
N features, our 3D feature space is represented by: the scene transformation with respect to they, z coor-
dinate axes of the scene coordinate system. Therefore,
Tscenetransforms each 3D feature poiRt= (z,y, z) into

A = (20,90, 20)" (6)

N

fs(@.y.2) = 1; 0@ —apy—yz—a) () prZ (.3, 2)T according to the following equation:
where(z, yi, 2;) are the individual feature locations. In- P'=RP +A. ©)

tegral projection determines the 2D feature projections by

integrating f3(x, y, z) along lines that are running parallel We now introduce the vector
to the view axis of the camera. Using our integral projection

approach and assuming that thexis of our scene coordi- A= (&, C)T (8)
nate system is aligneq wit_h the view_ axis of the camera, the
corresponding 2D projection data will be where¢, ) and(¢ represent the 3D frequency components of

N F5(¢,m,¢) in (4). Using the vectors from (6) and (8), the
folz,y) = / fs(2,y,2) dz = Z 5z — 2,y — yi) (2) 3D spectrum that corresponds to the transformed scene is
R k=1

/ __—j(ATA) T
The Fourier spectra ofz(z,y) and f53(z,y, z) can be de- Fy(A) =e F3(RTA). ©)
noted as According to t_he projection-slice theorem (5), the 2D spec-
F _ y)e—dEs ) go g trum Eg(g,n) is the{ = 0 plane of the 3D spectrum of
2(&m) R2 fa(w.y)e vy the object. Therefore, the two spectra of the projections be-
N fore and after the scene transformation show matching lines
- Z eI (Emr+nyx) (3) that run through the origin of the coordinate systems of the
Pt spectra. The magnitudes of the two spectra along these lines

4 will be identical, while the phases will show an offset which
F3(&,n,0) = / fa(x,y, 2)e I ETTWHCE) qdu dy dz depends upon the translational component of the transfor-
R3 mation. Here we propose a method for detecting matching

N lines in the 2D Fourier spectra as this give us valuable infor-
= Z eI (Ezptnyrt+Car) 4) mation on the 3D scene transformatiffenethat has taken
k=1 place.
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2.4. Analysis of the transformation parameters This yields a relationship betwegrandn along the match-
ing line dependent upon the angi®s¢ andp. Thus, the

_ Letus assume that, n) and(¢’, ') are the correspond-  angle« of the matching line can be found. Similarly, the
ing frequency locations along the matching lines of the anglea’ can be determined from

spectraFy(&,n) and F3(¢',n') respectively. Equation 5

yields the following relationship & n,0T =RT. (¢ v, 07, (16)
Fi(&'n'") = F5(¢',n',0) (10) Since the two equations fdr, o’) depend on three rota-
tion angled, ¢, p, this problem is not invertible in the gen-
and finally with (9) eral case. In other words, various sets of 3D rotation angles
yield the same matching line anglgs, «’). However, the
Fi(¢n) = ej(i’acoJrn’yo)F2 (&,1n). (11) rotation matrixk can be determined from the matching line
angle pair(«, o’) up to an unknown rotation parameteas
Let us introduce the matching line angle pair, o/)  follows:
with respect to the- and£’-axes of the frequency spectra
Fy(€,m) and F}(¢', 1) respectively. The values of the 2D I T N S,
spectraFy (&, 1) andF5 (&', i) along the matching lines can = :21 :iz :ig =R R; R, (17)
31

now be transformed into one-dimensional representations
Fi(p) and F{(p) wherep denotes a 1D frequency index.

Thus, (11) can be transformed into: whereR', R, are rotation matrices that rotate around the
' z-axis at angles’ and (—«) respectively and? rotates
Fl(p) = €777 Fy(p) (12) around thez-axis about an unknown angte Therefore,
! assuring that the orientations of the rotations are consistent
where we define the displacement,as with the ones in (14), the parametersitpecified in (17)
are:
= 5o ina’. 13
0 = To COSQ Yo SIn.x (13) ri1 = cosa' cosa + sina’ cosTsina
Detecting the matching lines in the two 2D spectra therefore ri2 = cosa/sina —sina’ cosTcosa
yields two types of information. Firstly, by recovering the ri3 = sina’sinT

displacement we gain information about the translational s / .
Sl COS — COSx COST Sl &

components;, andyy. Even thoughr, andyg can not be o = o, ,
isolated fromp, we can reveal information about their rela- T22 = Sl SINA -+ COSQ COSTCOSQ
tionship. Secondly, additional information about the scene reg = —cosa sinT
transformation is contained in the angle pait o') itself. ry = —sinTsina
To discuss this in more detail, we will examine how .
(ar, /) depend on the rotation of the 3D feature scene. Let T2 = SIMTCOSQ
us assume that the scene has been rotated by the @ngles r33 = COST (18)

andp around ther-, y- andz axis respectively according to

the following rotation matrix: 3. Estimation of the Fundamental Matrix

3.1. Determination of the Epipolar Lin
R = Rg") Rgﬁ) RS)) pipolal es
COS ¢ COS p —cosfsin p + sinfsin ¢ cos p In order to derive equations for the epipolar lines, we
= | cos¢sinp cos 6 cos p + sin 6§ sin ¢ sin p need to examine the relationship between two orthographic
—sin¢ sin @ cos ¢ projections of a 3D point under variation of the unknown

sin 0sin p + cos 0sin ¢ cos depth value of this point. This variation of the feature depth
6 P 05 P 14 corresponds to a back-projection of a 2D feature point into
T COSC@SZ (égz (;m(bSlnp (14) the 3D space and resuilts in a line which naturally includes
the original 3D feature. The projection of this line onto
, . T the second projection plane is defined as the epipolar line.
The rotation matrix? transforms eachT3D featufe, y, z) For orthographic projections, all epipolar lines are parallel.
into a corresponding featur@’, y', 2’)" according to (7). The epipolar geometry for 2D parallel projection stereos has
Equation 9 shows that also establishes the transformation peen studied in [2].

between corresponding frequency indices in the 3D Fourier  ynder pure rotations of the feature scene, we find the 2D
spaces of the original and the transformed scene. Accordmgprojection(x;.’ y!)T of a 3D featurdz, y, z)7 from (7) with

to (5) and (10), the transformation of the frequency gair A peing the null vector an@ being given by (17) and (18).
andr into the corresponding matched frequend@€s)’ is  varying the feature depthyields the epipolar line equation
described by for pure rotations:

&, n,0" =R (¢,n,0)7 (15) cos(a’) z!. +sin(a’) y. = cos(a) z +sin(a)y  (19)
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For general scene transformations, the displacemaent Equations 27 and 28 must be fulfilled for all possible values
from (13) has to be added to account for translations. Thisof x andy which implies

results in the equation
N, , Fiy=Fp=Fy =1»=0 (32)
cos(a) ' + sin(a’) y' = cos(a) x + sin(a) y + o (20)
Thus, (27) and (28) become

Fiz = cos(a) (33)
F3 = sin(o). (34)

for the epipolar lines of a featuke;, y).
3.2. Derivation of the Fundamental Matrix

The fundamental matri¥’ is defined by the equation
. It should be noted that there is a remaining a degree of free-

p Fp=0 (21) dom in the construction of the fundamental matrix. That
is, since the epipolar line equation in (20) can be multiplied
with an arbitrary scalar on both sides, multiplying the ele-

)T (22) ments of F' in (29) to (34) with an arbitrary scalar would
still yield a valid fundamental matrix.

in two images [4], where the 2D points are denoted in ho-

mogenous coordinates as 4. An Algorithm for Estimating the Funda-
v e mental Matrix

v
= y=on dl= g Y= (23)  4.1. Estimation of the parameters

for any pair of matching points

p = (u7/U7w)T7 p/ = (ul7/l}/’w/

Geometrically,F' represents a mapping between apointand  The accurate estimation Ok, o/, o) is crucial for the ac-

its epipolar line. Thus, the fundamental matrix can be re- curate determination of the epipolar geometry and the fun-

garded as the algebraic representation of the epipolar gedamental matrix. We have designed an algorithm that re-

ometry. In Structure and Motion from stereo views, clas- lies on a maximum likelihood model to robustly extract the

sical methods such as the 8-point algorithm [4, 8] use the matching line angles. Letting two vectdrandc denote the

following procedure to determing’: First, feature points  sampled frequency data along the matching lines in the first

are identified in the stereo images. Then, point matches areand second spectrum respectively, the maximum likelihood

established conventionally based on proximity and similar- model leads to the following objective function:

ity of their intensity neighbourhood. Finally, the unknown

matrix £ is computed from (21). max |[R(F~1{b-c})|
Having identified feature points, our approach pursues a - 1] ||

different strategy to find®". We first established epipolar

geometry constraints based on the proposed integral projecwhereF ! denotes the inverse Fourier transformation. An

tion scheme. We then use the resulting epipolar line equa-terative Levenberg-Marquardt search is then used to find

tion to construct the fundamental matrix. For this, we write the maximum of the resulting objective function.

(35)

Fas The estimation of the displacements based on a Lank-

P iz Fig Reed-Pollon frequency estimator [6]. We derive a vector
F=| Fa Fpn P (24) from the complex frequency vectabsandc such that

F31 F3p Fs3

Using this notation, the epipolar line equation can be di- Py = br. - cx . (36)

rectly derived from (21) and (22): |bk ||k |

(Fiiu+ Frav+ Fisw)u' + (Foy u+ Foo v+ Fogw)v’ This leads to the following estimatefor the displacement
+ (F31u+ Fyov+ F3w)w' =0 (25) . arg (X, et ) (37)
o= —-— "+,
Without loss of generality, we lab = 1 andw’ = 1 in 2rAy

hich case with (23), (25) becomes .
wh with (23), (25) where A; denotes the frequency resolution along the

(Fiiz+ Fioy + Fi3)a' + (For @+ Fagy + Fag)y' = matching lines. Potential overruns of tBe range in the
r r r 26 phase of the sum in the numerator of (37) can cause ambi-
e —Fyy—Fs (26)  gities. However, this can be avoided by choosing a suffi-

A comparison of (26) and (20) yields ciently small frequency resolutione.
. _ (T 1
Fust FaytFig = coslol) - {27) Ay < (38)
F21 x + F22 Yy =+ F23 = SID(O( ) (28) 2(|xmax| + |ymax|)
F3 = —cosa (29) where z,.x andy,., are the maximum allowable scene
F3 = —sina (30) translations inz- andy- direction respectively, parameters
F33 = -0 (31) which are assumed to be known a priori.
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4.2. The overall algorithm In addition, we incorporated integer rounding of the 2D fea-
) ) ) tures to model the effect that, in practice, features are not
The proposed algorithm involves four basic steps: known with perfect accuracy. We synthetically generated a
single mismatch by shifting one of the thirty features in the
1. Given two sets of features that represent the 2D ortho-first 3D feature set into a random position within the 3D fea-
graphic projections of a set of 3D features from dif- ture cube. This step was performed after the 3D scene trans-
ferent viewpoints, find starting values for the match- formation and before the feature projection. The dashed ar-
ing line angleqas, &,). These starting values can be row in Figure 2 shows this mismatch.
found by first extracting the discrete frequency vec-  The epipolar lines were determined for two arbitrarily
tors by, andc;, along the matching lines of the spectra selected features that are marked by squares in Figure 2.
Fy(&,m) andFy (€', n') respectively, evaluating the ob- |t can be clearly seen from the solid epipolar lines that re-
jective function given in (35) for all vector combina-  sults from the proposed integral projection approach are far
tions and choosing the angle pair that corresponds tomore precise than the dashed epipolar lines generated with
the vector pair that maximizes the objective function.  the conventional method. The fact that we provided the con-
L, . ventional method with the correspondence information that
2. Using(as, &) as initial values, perform a Levenberg- a5 correct apart from minor rounding noise and one sin-

Marquardt search to iteratively approximate the match- gje mismatch even further corroborates the advantage of the
ing line angle paifamax, ah,.,) that maximizes the proposed approach.
objective function in (35). Each iteration yields new

estimatega, &’). Exit when the search algorithm con-
verges to a solution or a maximum number of iterations
has been reached.

3. Select the frequency resolution according to the con-
straint in (38). Then, extract the discrete frequency
vectors b, and ¢; along the lines with the angles
(&, &) inthe spectrdy (&, n) andF,(¢', ). Compute
rt using (36) and finally the displacement estiméte
using (37).

y coordinate of 2D features

YA

4. Using the final estimategy, &/, &), either retrieve the
epipolar line that corresponds to a feature location
(z,y) from (20) or compute the elements of the fun-
damental matrix’ using (29) to (34).

| I I I I h I . | . I
-1000  -800 -600 -400 -200 0 200 400 600 800 1000
x coordinate of 2D features

5. Experimental Results , : , ,
Figure 2. Comparison of epipolar lines

As test data, we generated a random sé¥ @D features
and projected these features onto a 2D plane using ortho- In a second test, we quantitatively examined the per-
graphic projection. We synthetically generated a variable formance of our approach with respect to the conventional
percentage of random mismatches during this process. method under various percentages of mismatches. Specif-

In our first test, we compared two epipolar lines in the ically, we generatedv. = 100 random features identically
second projection plane that correspond to an arbitrary fea-to the first test. Both the original large and a small scene
ture (z,y) in the first projection plane. The first epipo- transformation(¢ = 5°,0 = 2°,29 = 7, yo = 8) were
lar line was generated with the proposed algorithm. The applied. In both cases, we synthetically generated mis-
second epipolar line was generated from a conventional,matches as a percentage of the total number of features
correspondence-based linear approach [11]. We provided[0, 2,4, 6,8,10]%).
the conventional method with the correspondence infor- As a quantitative performance measure, two pairs of
mation which is hard to obtain in practice [3], therefore mean square distancelI$D9 were computed. The first
putting the conventional method at an advantage. Fig-MSD pair was derived from the distances of those corre-
ure 2 shows the 2D features that result from the projec- spondences that were only subject to rounding ndise,
tions of thirty 3D features that were randomly generated in correctly corresponding feature points (matched points), to
a 2000 x 2000 x 2000 pixel sized cube. The 2D features the estimated epipolar lines. The computation of the sec-
that correspond to the 3D features before and after the scenend MSD pair was based on the distances of the syntheti-
transformation are depicted by crosses and circles respeceally generated outliers (mismatched points) to their respec-
tively. The solid arrows represent the displacement vectorstive epipolar lines. For each percentage mismatch, we per-
of the 2D feature correspondences. We used a relativelyformed ten independent tests of ISDs each time using a
large scene transformation ¢p = 20°,0 = 45°) in az- different random set of 3D points. We then averaged these
imuth and elevation and translations(ef, = 15, yo = 10). MSDsto obtain statistically reliable results. This data is
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shown in Figures 3(a) and 3(b) for both the large and the outliers are present, the linear method estimates the epipolar

small scene transformations.

MSD

“ =&~ Linear approach: MSD for matched points
10" r =&~ Integral projection approach: MSD for matched points
4. Linear approach: MSD for mismatched points
- Integral projection approach: MSD for mi
i T ;i T

7 8 9 10
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w4 Linear approach: MSD for mismatched points
=& Integral projection approach: MSD for mi
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T

4 5 6
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(b)

Figure 3. Mean squared distances for various percentages
of mismatches using (a) large transformation parameters
(¢ = 45°,0 = 20°, zo = 15, yo = 10) and (b) small trans-
formation parameters)(= 5°,0 = 2°,x9 = 7,yo = 8)

We can make the following observations for both the

large and the small scene transformations: If there are no g
outliers in the correspondence data, the linear method shows

slightly smaller matchetSDsthan the integral projection

approach. However, in the presence of mismatches, which[10]

is typically the case in practice, tidSDsof the matched

points are smaller by several orders of magnitude for the in-
tegral projection than for the linear method. For the linear

approach, th&SDsof the mismatched points are smaller
than theMSDsof the matched points. This highlights the

sensitivity of the linear method to outliers and the robust- [12]

ness of the proposed method. TM&Dsof the mismatched
points reach minima &% mismatches for the linear ap-

proach. This shows the undesirable effect that if only few

lines for these mismatched points relatively well. In con-
trast, theMSDsof the mismatches for the integral projec-
tion approach are significantly larger than ti&Dsof the
matches. This shows the robustness of the integral projec-
tion approach towards outliers in the correspondence data
for both small and large scene transformations.

6. Conclusions

In this paper, we have proposed an approach to deter-
mine the fundamental matrix from feature points, with-
out any correspondences, that is robust to mismatched
points. This can be seen as a major advantage over classical
correspondence-based approaches, since establishing corre-
spondences is a problematic task and mismatches have a
significant impact on accuracy. Results have been presented
to show that the proposed method is robust in the presence
of outliers in the feature data. In particular, tNSDs of
the integral projection approach for matches are smaller by
several orders of magnitude than the correspontSips
of the linear method when outliers are present.
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Abstract

This paper reports on the development of an
artificial vision system implemented in softwarelan
its application to mammography. It describes a
supervision strategy that facilitates the machine-
centered learning of complex visual tasks. The key
contributions of this paper are the descriptioroof
“active” learning strategy and a mechanism by
which pixels associated with individual artifacts
visible to a human eye in an image can be captured
and used as training examples for a machine-
learning algorithm. Techniques are discussed in the
context of the analysis of micro-calcificationsheT
significance is that it provides a means by whith i
defined concepts (e.g. visual characteristics of
tumors) that are embedded in a complex image (e.qg.
mammograms) can be more efficiently and
accurately learned by a machine.

Keywords
Machine vision, hexagonal lattice,
mammography, space-variant sensor

automated

1. INTRODUCTION

Breast cancer is the most common form of cancer in
women and the second highest cause of death for
women in the world . One million new cases were
discovered last year with over 580,000 of those
coming from the United States, Europe and
Australia. Between one third and one half of that
number of cases currently add to the mortalityltota
each year [1,2]. Consequently these same countries
are leading the research into breast cancer detecti
and treatment.

A leveling of the rate of mortality and morbidityel

to breast cancer in western countries has been
attributed to the various programs of early detecti
and intervention [3]. This enables most cancers ca
be detected while still relatively small and more
successfully treatable. With some qualificatiofy, [
10] screening mammography is considered the best
early detection method available. Consequently,
most national guidelines recommend a combination
of procedures including periodic clinical
examination and screening mammography for
women over the age of 40 years [3].

Screening mammography is typified by a huge
volume of cases (sets of radiographs) to be
processed with a very low yield of detectable
abnormalities. Correctly and consistently detegtin
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and diagnosing early stages of masses and micro-
calcification clusters from the range of complex
“normal” background breast tissue arrangements has
proven to be a difficult, tedious and time-hungagkt

for most mammography radiologists [4,5].

With low intrinsic specificity, one feature of cemt
CAD applications is that as the sensitivity is
increased the number of false positive indications
also increases, leading to increased patient recall
rate. Conversely as sensitivity is decreased then
number of false negative indications increases,
meaning that more tumor indications are missed [4].
At this time, no CAD system can approach the
optimal combination of sensitivity and specificity
that a competent screening radiologist can attain
[11]. Sensitivity in most CAD tests is acceptabia

the best figures for specificity are less than thiel

of a radiologist practiced in screening
mammography.

It appears that before any confident reduction of
their workload with CAD can happen the specificity
figures must improve dramatically. In essenceithis
a problem of expanding the capabilities of machine
vision and learning with respect to digital image
analysis.

From a graphical analysis perspective, discerning
indications of cancer from the complex background
of breast parenchyma is essentially a “signal to
noise” exercise [4]. A trained radiologist can

classify more than a dozen different abnormal &ssu

artifacts from an infinite range of normal tissue

densities and arrangements. Each type of artifact
might appear in countless different configurations,
ensuring that program-driven machine learning,
concept generalization and classification remains
unachieved.

This paper reports on the in-progress developmient o
a software-based machine vision/learning system
named “Akamai”. The word “Akamai’ comes from
the Hawaiian language and means “smart” or
“intelligent”. Akamai presents a human-supervised
machine learning process that captures expert
knowledge using image mark-up tools, to train the
machine to visually recognize and classify image
artifacts in digital mammograms. Using this
software system, the machine learner is trained to
“see” what the expert sees and correlate this thith
expert’s determination of the detected image atifa



Sufficient, selected training examples with
significant features indicated, allows us to create
learner that can generalize a concept from
accumulated knowledge and apply it to the task of
classification. In Akamai, a “lazy” or supervisor-
centered learning mode with the highest level of
human supervision, each training example might
take the expert several minutes to load, mark-up an
classify. With a complex concept, requiring a é&arg
number of training examples, the supervision
overhead soon becomes prohibitive.

We describe here a progressive machine learning
approach that is learner-centered and allows the
machine to take advantage of its increasing
“expertise” to minimize human supervisor input. A

sequence of increasingly machine-centered learning
modes move the machine from a slow, “passive”
learner to one that is actively and interactively

seeking input from the human supervisor.

This paper presents a description of our approach t
the development of a machine vision/learning
system and its learning methodology. Key
algorithms are described in detail that highligms
system’s unique nature and significant potential fo
image analysis. Results from a case study using
Akamai in the analysis of indications of micro-
calcifications are presented. Their significanoe f
application of the system to other lesion types and
other medical imaging applications are discussed.
Performance considerations are discussed along with
current and future directions for research and
development.

2. CIPA — IMAGE PARTITIONING

Akamai implements some of the key functionality of
the primate vision system [17,18], taking advantage
of aspects that relate to efficient memory usage,
learning from visual cues and image processing
speed. A primate’s retina has an arrangement of
cones that is described by a hexagonal lattice. [19]
The hexagonal architecture optimizes both
information capture and error reduction by providin
maximum receptor area with minimum inter-
receptor space. Bees exploit this property to
optimize the quantity of honey stored for the amoun
of wax used. This property, known as the
honeycomb conjecture was not proven until recently
by Peterson [20].

The concepts of space-variant sensing and the
hexagonal lattice [19,20] were combined to form the
underlying architecture of a new paradigm for
artificial vision, named Spiral Architecture. The
thrust of this paradigm is that it attempts to actr
computational principles inherent in biological
vision systems and implement them in digital
technology. The mathematical structure of the
Spiral Architecture is Lie Algebra and is described
in [21].
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Akamai takes advantage of the efficiencies of

hexagonal architecture and  multi-resolution
processing by implementing CIPA, the
“Constructive  Image Partitioning  Algorithm”.

Outlined below, and presented in detail in [22F th
algorithm extracts descriptive attributes (equinake
classes) of the image by collecting together
hexagonal pixels, which are contiguous and

surrounded by a boundary consisting of pixels of
similar intensities. Figure 1 displays a collentiof
seven hexagons of the lattice; where it can be
observed that any three mutually adjacent hexagons
form a Y-junction at their point of confluence.

Figure 1. Hexagons arranged such that a center
hexagon is adjacent to six other hexagons.

The algorithm provides a computational method to
establish this boundary by tracing a path along the
edges and thus between hexagons. The edge
between two hexagons is called an “edgelet”. The
path is generated from an initial point by selegtin
the next path element (edgelet) from a choice of tw
at the Y-junction. The algorithm chooses the path b
remaining between pixels with maximal intensity
differential. The reader is referred to [22] fan a
explanation of why the method never involves an
arbitrary decision in the choice of path elements.

The CIPA algorithm iteratively partitions the pixel
data producing new equivalence classes at each
repetition. The equivalence classes correspond to
entities visible in the image by the human observer
The equivalence relation on the lattice is the
property of connectedness; two adjacent hexagons
are connected if their common edgelet is not pfrt o
a boundary.

At the first iteration, all hexagons are conneced
thus form a single equivalence class. The path
commences at the edgelet of a Y-junction separating
the two pixels of maximum differential intensity. |
both of the remaining edgelets of the Y-junctioa ar
not part of a boundary, then the edgelet associated
with the larger of the two derivatives, is placadai
priority queue. The algorithm then repeatedly
performs the following two steps:
= Remove an edgelet from the priority queue; if it
is not part of a boundary, label it as a boundary
and
= Place the edgelet corresponding to the larger of
the Y-junction's two remaining edgelets, into the
priority queue.



This boundary generating process terminates when
the priority queue is empty. The closed boundary
establishes a finer partitioning of the class by
producing two new equivalence classes from the
original.

A natural data structure to associate with the
algorithm is a binary tree structure. Each nodthef
tree holds an equivalence class. The root ofrde t
represents the entire input image partitioned ato
single equivalence class and thus possesses little
visual information. The children of a node are the
new equivalence classes that result from the
boundary generated at the parent node. At the
completion of each repetition of the algorithm, the
collection of leaf nodes represents a partitionifg
the image. Nodes at different levels of the tree
represent views of segments of the image at differe
levels of resolution. Each leaf node of the
completed tree represents an atomic visual entity.

3. MACHINE LEARNING IN AKAMAI

Mitchell defines a machine-learning algorithm as

one that can learn from experience (observed
examples) with respect to some class of tasks and a
performance measure [12]. A learning algorithm

can construct classifiers and/or hypotheses that
represent and explain complex relationships in.data

Broadly, machine-learning schemes can be classified
as either “unsupervised” or “supervised”. In
unsupervised learning, no information is givenre t
learner about the data or the output and a set of
programmed rules are followed to characterize,
classify and cluster the output data. Supervised
learning has (expert) knowledge about the data, its
representation and characterization, and usesathis
priori knowledge to classify data examples.priori
knowledge is accumulated through sets of training
data, pre-classified into positive and negative
examples of each concept to be learned.

Sufficient, quality examples need to be provided to
ensure the learning algorithm can reach its reduire
accuracy in terms of sensitivity (detection) and
specificity (identification). Accounts have revedl
that most individual learners are stronger in eithe
sensitivity or specificity [14]. To ensure high
sensitivity, a large range of representative, pasit
training examples may be required. Conversely,
specificity is improved when an equal, or prefeyabl
larger number of negative training examples are
supplied to the learner. These trends point to the
requirement of a large amount of training data to
ensure accurate induced classifiers.

Graphical data sets in medical imaging are a
complex mixture of signals and noise, presenting a
learning environment that is best suited to the
supervised learning approach. Supervised learning
methods can be classified as either rule-based,
statistical or ensemble learning methods [13]. eRul
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based methods (decision trees, version spaces, lazy
learning, rule-based, etc) are ideal learners where
classification is based upon discrete or categbrica
attributes.  Statistical methods (naive Bayesian
networks, neural networks, support vector machines,
etc) are ideal in situations where there are mialtip
dimensions to discern and where attributes are of a
continuous nature. Each individual learning
algorithm/method has its strengths and weaknesses.

Akamai has access to range of different learner
modules that can be used to induce the required
classifiers for mammogram analysis. Its current
default learner is the decision tree and is culyent
being applied to detection and analysis of micro-
calcification clusters. Other learners for making
weighted or statistical decisions can also constrlic
using a Bayesian network and/or a neural network
module.  Future developments provide for the
implementation of ensemble learners to better
classify some of the more complex concepts in
mammograms.  Current work with the Akamai
system is developing on three fronts and these are
explained in greater detail in following sectiorfs o
this paper.

4. GUIDING THE SUPERVISION PROCESS

In this section we describe an interactive,
performance enhancing strategy (a process) that
streamlines the acquisition of the training senfro
graphical data. In particular, a goal of this gsgis

to maximize accuracy of classification and minimize
the expenditure of resources in acquiring the ingin
examples. One of the scarce resources in this gsoce
is the time taken by the human supervisor to aequir
the training examples.

Our approach to achieving this goal is to initially
build a classifier from special instances indioativ
aspects of the target concept provided directlyhiey
supervisor. Then, progressively relax the
supervisor's responsibility for the identificatiawf
training instances as the power of the classifier
improves. The technique described below embodies
this strategy. Either the supervisor or Akamai can
assume the responsibility for driving the proceks o
acquiring training examples. In either case, as
Akamai is presented with each training instance, it
adds the instance to its training set and re-buikls
classifier from the new set.

4.1 Supervisor-Driven Mode

In Supervisor-Driven mode, the supervisor takek ful
responsibility for the classification and order in
which the artifacts are displayed. This responigjbil
can manifest in one of two sub-modes, Static and
Dynamic.

4.1.1. Static Mode

The goal of “Static” mode is to generate a coll@tti

of key occurrences or views of the target concept.
The collection should also contain examples of the



target concept represented over the full range of

resolutions employed by Akamai. The goal is

achieved by having the supervisor interact with

Akamai as described in the following process:

e The supervisor marks the boundary of a key
instance of the target concept on an image
presented on the GUI with the use of a mouse.

e The supervisor then instructs Akamai to foveate
on the marked artifact.

e« Akamai responds by searching through its
internal representation of the image for the
collection of pixels that most closely resembles
the boundary of the marked artifact.

e Akamai then displays its artifact on the GUI so
that the supervisor can visually compare
Akamai’s artifact with the marked up artifact.

» After a best match has been established, the
supervisor classifies Akamai’s artifact as one of
four possible categories: ‘Is’, ‘Part’, ‘Not™ or
‘Candidate’.

* The newly created training example is then
added to the training set.

This Static mode is generally employed in the ahiti

stages of the supervision process to generateveosit

training instances at high resolution and candidate
instances at the lower resolutions.

4.1.2. Dynamic Mode

In “Dynamic” mode, the supervisor partially

relinquishes to Akamai the responsibility to locate

the training examples. The goal of Dynamic mode is
to have Akamai learn candidate instances so that it

can successfully determine when to foveate a

candidate artifact. This implements a form of

“reinforcement” learning and is achieved with

Supervisor/Akamai interaction as described in the

following process:

e Akamai traverses its internal representation of
the image. The traversal corresponds to the
sequence of artifacts as generated by CIPA.

e On display of each artifact, the supervisor
classifies it appropriately. Each time the
supervisor judges that the features of the current
artifact represent a possible instance of the
target concept but requires a view of the artifact
at higher resolution, the classification of
‘Candidate’ is applied to the instance.

e At this point, Akamai pauses from the sub-tree
traversal at the current resolution and attempts
to locate the artifact at a higher resolution for
the supervisor to classify.

* As each artifact is presented to the supervisor,
Akamai makes a prediction with its latest
updated classifier. Akamai compares its
prediction with that of the supervisor's
classification and keeps a running account of its

error rate.

e This error rate is displayed on the GUI so that
the  supervisor can monitor Akamai’s
performance.
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This mode is generally continued until such time as
Akamai’'s error rate is sufficiently small; at which
time, the supervisor changes the mode of supervisio
to move the learner/classifier on to the next most
active and responsible role.

4.2. Akamai-Driven Mode

In the Akamai driven mode, the supervisor
relinquishes further responsibility to Akamai févet
learning process. Akamai drives the traversat®f i
internal representation from the current statet®f i
classifier while the supervisor merely provides
feedback to Akamai on its prediction of each attifa
displayed. This mode has three sub-modes,
“incremental”, “next-positive” and “all-positive”.
Each of these sub-modes differs only in the amount
of supervisor feedback provided to Akamai.

4.2.1. Incremental Mode

With operation in “incremental” mode the supervisor
provides feedback on all artifacts that Akamai
considers. The primary goal of the mode is to
provide Akamai with feedback on its performance in
identifying candidate instances and thus its abitt
distinguish between the artifacts it should foveate
and those that it should ignore. Supervisor feeklba
permits Akamai to recover from false positive
predictions at lower resolutions, which would
otherwise drive Akamai's traversal to higher
resolutions unproductively. Incremental mode
continues until such time as the supervisor deems
that Akamai is identifying candidate artifacts
sufficiently well; at which time the mode is swigzh

to the more machine-centered Next-Positive mode.

4.2.2. Next-Positive Mode

In Next-Positive mode, Akamai requests feedback

on each of the artifacts that it classifies as i’

The goal of the feedback in this mode is to reduce

Akamai’s false positive error rate. This is acleigv

with Supervisor/Akamai interaction described as

follows:

« Akamai traverses its internal representation of
the image searching for candidate instances of
the concept employing the current state of its
classifier to distinguish between candidate/non-
candidate artifacts.

< When it finds a candidate instance, it searches
its internal representation at the next higher
resolution for an artifact at the identified
location in the image.

« In this process, if it finds an artifact that it
classifies as a positive example of the concept, it
displays it on the GUI and waits for supervisor
feedback.

This mode continues until such time as the

supervisor deems that Akamai is identifying

instances of the concept at a sufficiently low erro
rate; at which time the mode is switched to All-

Positive.



4.2.3. All-Positive Mode

In All-Positive mode the supervisor provides
feedback only after Akamai displays all of the
artifacts that it has classified as positive. The
supervisor’'s goal is to correct all of Akamai’'ssal
positive and false negative classifications. Tis th
end, upon Akamai’'s completion of its attempts to
identify all occurrences of the target concept, the
supervisor marks up artifacts on the GUI in a manne
similar to the technique employed in Supervisor-
Driven Static mode. When the supervisor completes
this feedback process, a measure of Akamai's error
rate is computed and displayed on the GUI. Akamai
also has the opportunity to add the supervisor's
feedback to its training set and re-build its dfeess
This mode continues until the supervisor deems
Akamai's overall performance is optimal. At this
time Akamai’'s ability to identify and locate
instances of the target concept is considered good
enough to be employed without supervision.

5. CASE STUDY

Figure 2 displays a cropped mammogram containing
micro-calcifications. The supervisor's task is to
classify the nodes composing the tree structure of
Akamai's internal representation as either positive
negative training examples of the target concépt.
this case: “micro-calcification”.

= ; 3
Figure 2. Cropped mammogram showing micro-
calcifications

In this study, the CIPA tree structure for the
mammogram contains approximately 1000 nodes.
The number of nodes that correspond to micro-
calcifications is only about 2 percent of the total
Initial use of Supervisor-Driven Static mode
permitted these 20 nodes corresponding to positive
instances of the target concept to be accessed
directly and classified accordingly. The remaining
980 nodes were then explored in the modes with
lower levels of human supervision.

In Supervisor-Driven Dynamicmode about 20

negative instances of the target concept were
obtained to balance the number of positive and
negative training instances. The supervisor then
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switched toAkamai-Driven Incrementainode with
this initial classifier of micro-calcifications. v@r
the next 20 nodes, Akamai employed the classifier t
correctly classify each of these negative instances
The supervisor then switched tAkamai-Driven

Next-Positive mode to correct Akamai's
classification of false-positive predictions. Ihist
mode Akamai incorrectly moved to higher

resolutions frequently. It was then concluded that
more instances of ‘candidate’ were required antl tha
these instances would be best obtained at
Supervisor-Driven Statianode. In this case, the
supervisor was not able to emplékamai-Driven
All-Positive mode due to the excessively high error
rate in the mode below.

6. DISCUSSION

“Active” learning in Akamai is still only in early
developmental stages but already demonstrates
significant potential. While tentative results rfro
the limited case study did not allow training to
proceed to the lowest level of human supervision, i
did demonstrate the feedback cycle that ensures
learner accuracy.

Convergence in demonstrated learning and positive
feedback is required before higher modes of machine
driven learning are allowed. This ensures,
progressively, that there are sufficient positivel a
negative examples to maintain both sensitivity and
specificity at an acceptable level. This learning
scheme has some similarity to elements of
“reinforcement learning” [15,16] and seeks to
minimise knowledge “noise” by seeking rule
reinforcement, vision correction and corroboration
of classification correctness.

Ostensibly, the same technique applied to clasgjfyi
the micro-calcification concept can be appliednyg a
lesion concepts in a similar way. What differs are
the characterizing attributes of each concept avd h
much training data is required to learn the contept
an acceptable accuracy.

The need to make the input of training data more
efficient is driving the development of a
collaborative training paradigm with an effective
collaborative user interface. Both the paradigm an
interface, work in progress, are required to
streamline the training data input and to make most
effective use of trainer (supervisor/expert) time.

7. CONCLUSION

In this paper we have given an overview of the

motivation for developing a computer-assisted

method for detecting and diagnosing artifacts in

medical images. In particular we have stressed its
importance in application to the area of screening
mammography and the need to improve the accuracy
and timeliness of diagnosis of abnormal lesions.



Algorithms used in this machine vision/learning
software are primarily biologically inspired. Salun
justification is given for their development asoalt

for human-supervised machine learning, particularly
in the area of data embedded in complex images.

Machine-learning paradigms and strategies are
discussed, in particular the “supervised” learning

modes and the overhead that they exact in terms of

supervision time. A progressive scale of supemmisi

modes is described that concurrently ensures that

sufficient training examples are entered to mamtai

standards of accuracy, and that the supervision

process is executed in the most efficient manmer.

case study is described that demonstrates thesstage

of supervision progression and the requirement for

convergence towards consistent results before the

machine-learner is accepted.

With the results of this preliminary case study we

have demonstrated sufficient success to warrant

further investigation of this new supervision and
learning strategy.
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A PDA Based Artificial Human Vision Simulator
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Abstract

Much recent research attention has focused on providing
some form of visually meaningful information to blind
people through electrical stimulation of a component of
the visual system. Current technology limits the number
of perceived points of light (phosphenes) that can be pro-
vided to a user and methods are required to optimize the
amount of presented information. This paper describes a
PDA based artificial human vision simulator, and pro-
poses a method for alerting a user of possible looming
obstacles. Experimental results indicate that obstacle
alerts can be successfully provided, however with the cur-
rent smulator components, high-quality lighting and ac-
curate image segmentation is critical for reducing the
number of false alerts.

Keywords
Visual prostheses, blind mobility, artificial humanieis
image processing, simulation.

INTRODUCTION

Existing mobility aids for the blind typically provide mo-

bility information via tactile (eg. long cane or guidegjlo
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normally sighted people are receiving the same experience
as a blind recipient of an AHV system.

The first reported AHV simulation research was conducted
by Cha et al. [2] at the University of Utah, who buailde-

vice consisting of a video camera connected to a wonit

in front of the subject’s eyes. A perforated mask was
placed on the monitor to replicate the effect of indil
phosphenes. This research found that a 25x25 array of
simulated phosphenes, with a field of view of @@uld be
required for a successful device.

The simulation display in Cha et al. (1992) used a simple
television-like display. A more sophisticated approach
was proposed by Hayes et al. [3]. In their researmh, t
different image processing applications were used to dis-
play simulated phosphenes to a seated subject, who wore a
head mounted display. Phosphenes were presented as
solid grey scale values equal to the mean luminancesof th
contributing image pixels or as a dome-shaped gray-scale
distribution whose centre had the mean luminance of the
contributing image pixels, and the edges matched the
background intensity, The main result was to conclude that
the phosphene array size will be the most importastbifa

or auditory (eg. ultrasound based aids) sensation. An alin @ useable prosthesis.

ternate approach is to provide a vision substitute lnyrele

cally stimulating a component of the visual system.isTh
approach is referred to as Artificial Human Vision (AHV

or a “visual prosthesis”.
blind person may perceive spots of
“phosphenes”.

During electrical stimulatian
light,

(subretinal), in front of the retina (epiretinal),ettoptic

called match an ideal prosthesis output.
Currently four locations for electrical (such as drop outs; size and gaps), contrast and gray levels
stimulation are being investigated: behind the retina could be varied experimentally.

Another image processing approach has investigated the
requirements for AHV facial recognition [4]. Consigfin

of a Low Vision Enhancement System (LVES) connected
to a PC, the simulation displayed a circular ‘dot mask’ to
Electrode properties

The authors reported
that reliable face recognition using a crude pixelized grid

nerve and the visual cortex (using intra and surface eleccan be learned and may be possible even with a crude pros

trodes) [1]. As there are technical limits to the bemof

thesis.

electrodes which can be implanted, image processing teChsyaiic simulation image research has also been comducte
niques are required which can maximize the usefulness o{)y Boyle et al[5], who found that most image processing

the available phosphenes.

techniques were not very helpful at low resolutionsi{typ

As blind mobility aids are often expensive and require ex- cally a 25x25 array).

tensive training, it is desirable to be able to dbjety

: , ‘With the exception of the research by Cha et al. [k,
compare the usefulness of different devices. Psychoephysi

simulation studies described have involved static images.

cal and mobility course assessment should help in deveIOpHowever the ecological approach to perception, widely

ing and comparing AHV systems with other technical aids

for the blind. Due to the difficulty in obtaining experime

referenced in the literature on blind mobility, emphesi
movement in a complex and changing environment [6].

tal participants with an implanted AHV device, a number o, ¢ rrent research at QUT is investigating methods for
of simulation studies have been conducted with normally ,nnancement of mobility for AHV system users using im-

sighted subjects. The simulation approach assumes thal e sequences. This research has suggested that the dis-



play from a visual prosthesis could use different informa- We have adapted a standard headgear device to include a
tion reduction and scene understanding information meth-bracket for holding the Pocket PC in front of a subgect’
ods depending on the task context and the type of sceneeyes (Figure 2). The viewing distance from subject syes
For mobility purposes this display depends on three mainapproximately 65 cm. The PDA screen display is 8.89cm
dimensions of the current scene (Figure 1): Toatext diagonal with a resolution of 240x320 pixel.

(we may need more information reduction in a cluttered
shopping mall than street crossing); fresk (safely nego-
tiating a traffic crossing may require different infotioa
than finding a doorway) and actiwlerts (the system
should provide a warning in hazardous situations) [7].

A visual prosthesis simulation has been developed to in-
vestigate the mobility display framework shown in Figure
1, This portable head mounted device consists of a Per
sonal Digital Assistant (PDA) and an attached digital
camera. The PDA display is used to present the
phosphene simulation. A normally sighted subject can Figure 2. Front and side views of the AHV smulator
wear the device and be assessed on various mobilky tas ;e in the present study.

under different contexts, alert scenarios and image proc-

essing conditions. A sheet of material (not showfig:
ure 1) is used to limit the subject’s visual information
the PDA display.

SOFTWARE

The main requirement for the simulation software is to
convert input from the camera into an on-screen
phosphene display. The current system reduces the resolu-
tion of captured images from 160x120 RGB to 32x16 or

. 16x12 greyscale “phosphenes”. In addition, background
' processing need to determine if an alert warning should be
displayed.

The Flycam-CF Software Development Kit was used for
accessing images from the camera. The simulator soft-
ware was developed in Microsoft embedded Visual C++
version 4.0. A 32 bit Windows test application was also
developed using Microsoft Visual C++ version 6.0 to test
methods on image sequences previously captured from the
PocketPC and camera.

The traditional approach to image based obstacle avoid-
ance, using a single camera, is to estimate the ofiteal
within the image sequence, compensate for camera motion
Figure 1. Proposed mobility display framework (ego motion), and suggest turning towards the direction

where the optical flow is smaller [8]. However teacu-

lation of optic flow and ego motion is computationally
HARDWARE expensive, particularly on a PDA. The approach used in
The main benefit of using a PDA is the small sizghth the current project is to segment each image, and then
weight and a lack of connecting cables. Current generatio check the size and rate of expansion of each segment be-
PDA's are however constrained by relatively slow CPU tween contiguous images. To improve computation time,
and bus speeds, and lack a floating-point unit for realeach 5x5 pixel area from the original 160x120 pixel image
number computation. is used to generate one 32x24 phosphene “blocks”.

The current project uses a HP iPaq 2210 Pocket PC thafhe main steps used in the PDA simulation are shown in
includes an Intel XScale PXA255 (400 MHz) processor Figure 3. A set of arrays for both the current and presvi
and has an internal bus speed of 200MHz. For imagemage is maintained, including the block grey-level value,
capture, a Lifeview Flycam CompactFlash Camera Card iswarning segments, and segment size. An array of allo-
used, consisting of a 350K CMOS sensor, with a viewing cated segments is also maintained across images.

angle of 52°. The combined weight of the camera and

PDA is 164 grams.




Steps 1-4
Initially each 160x120 pixel RGB bitmap supplied by the certain rate and larger than a certain size are usdd-to
camera SDK is converted into a 256 grey-level image. Iftermine the presence of a looming obstacle: therdfoze

the difference between the sum of grey-level valuahén

160x120 image. Image segments that are expanding at a

loss of spatial resolution is compensated by improved

current image and the sum of grey levels in the previoussearch time in the segmentation steps.
image is greater than a threshold, the current scese ha

assumed to have changed and the previous and segment

arrays are reset (step two). The threshold used is 2457605tep 6

chosen as a 10% change in total image grey level for thesteps 6 through 10 use the 32x24 block array. The eight
image: (160x120x128)/10).

In step three, the 256 level image is converted to an 8wise manner for a matching grey-level value. If afithe

grey-level array. This reduction of grey-level infottina

neighboring blocks of each block are scanned in a clock-

grey-level values match, and the matching block has been

assists with the execution speed of image segmentationallocated to a segment, the current block segment ie set
The 3x3 median filter, applied in step four, is applied to the matching block segment. If there is no matching-gre

reduce noise.

there are only 8 grey levels to consider.

This filter is computationally effidieas

—»

1. Obtain a 160x120 pixel RGEB image

L4

2. If the current image luminance sum =
threshold, re-initialise

L 4

3. Convert the image to 160x120 8 grey level

image
Y

4, Apply a 3x3 median filter over the image

L4

5. Reduce the image spatial rezoclution to

32x24 pixels
Y

&. Segment the image bazad on
neighbourhood grey lavels

L4

7. Search for the current block segment
vrithisn the previous itmags

Y

2. Smooth the updated segment values in

current image

2. Calculate the rate of expansion for each
segment from the previcus and current

itmages.
v

10. Display the simulator cutput

L4

11. Copy the current image to the previous

image

Figure 3. Block based AHV simulation steps.

Step 5

level or segment available, a new segment is alldcate

Step 7

This step searches for the position of each curresukbl
array element in the block array created from theipusv
image. As the camera is moving between frames (due to
head movements and gait), ego motion is considered by
searching over a 5x5 block area in the previous block array
in the following manner: the current block value istfir
compared against the previous block array value. If there
is no match, a search is conducted over the neighb8ring
blocks in the previous block array. If a match id stit
made, a search is conducted over the 16 blocks neighbor-
ing the 8 blocks. If there is no match from anyhaf 5
blocks, a new segment is allocated to the current block.

Step 8

The final stage of segmentation stage smoothes thenturr
block array segments. For each block, a search is per-
formed on the immediate 8-block neighborhood and, if
there is a matching grey-level value, the current seggimen
updated to the matching block’s segment.

Step 9

To check the rate of expansion, a comparison is made be-
tween the area (number of blocks) of each segmerg- Se
ments that are larger than a preset threshold (cuyr2tl
blocks in area) are considered. If the rate of expansio
(Current image allocated segment size/Previous image
allocated segment size) is greater than a thresholalgean

is set for that segment.

Steps 10-11
Finally the “phosphenes” are displayed on the PDA dis-

In this step the 32x24 “block” array is generated. The play. If a segment has been identified as an alertsel-
value of each “block” is determined by calculating the me ment blocks are identified with an “alert colour” (cuntlg

dian value of the 25 contributing pixels in the original pink).

As the Pocket PC operating system does not sup-



port the Microsoft DirectX set of APIs for high penior
ance graphic display, the Game Application-Programming
Interface (GAPI) is used to directly access the display
memory. In our simulation display, the block arrayxs e
panded to fill the 240x320 pixel display. To improve effi-
ciency, blocks are only displayed if they differ froneth
previous display.

Sample processing
Figure 4 illustrates the algorithm steps on a single image.

guence, the experimenter walked towards a bus shelter
obstacle along a path with overhanging trees (a distaince
approximately 10 metres). Both sequences ended with the
collision of the camera and the final obstacle. SEhin-

age sequences were then analyzed on the PC based version
of the alert software. Alerts were compared agadesiti-

fied obstacles within the sequence (fences, overhanging
trees, etc).

The results for the postal box (Table 1) sequence dte inf
enced by a white fence on one side of the path. Burin
the sequence captured at early afternoon, this fence was

In this image sequence a subject has veered into bushesaptured less frequently which led to a reduction in valid

next to a path. 4a is the original 160x120 pixel grey scale
image. 4b is the same image after median filtering and
conversion to 8 grey level values. 4c is the 32x24 block
representation of 4a. 4d shows the location of akgt s
ments which have been set for this image.

alerts. This suggests that following known structured) suc
as walls or fences, may be a useful method of using an
AHV system (a similar method, called shorelining,ris f
qguently used by blind people while walking next to walls
or paths). Aside from the early afternoon sequenee, th
ratio of correct/total number of alerts (Figure 5) dasesl

as the experimenter moved away from the fence and in-
creased again towards the postal box. An example of cor-
rect obstacle identification for the mid-morning pogtax
sequence is shown in Figure 8.

Table 1. Postal Box image sequence results.

Time of Mean Correct | Total Result
Capture g\r/ee{ Alerts Alerts | (%)

Mid morning 110.60 | 13 18 72.2
Early afternoon 102.05| 7 19 36.8
Mid afternoon 91.91 14 21 66.6
Late afternoon 87.70 11 23 47.8

Table 2. Bus shelter image sequence results.

(c) (d)

Figure 4. Example of block based image processing

Time of Mean Correct | Total | Result
Capture g/?( Alerts Alerts | (%)

Mid morning 72.73 7 8 87.5
Early afternoon 110.48 18 18 100.0
Mid afternoon 76.44 3 7 30.0
Late afternoon 81.82 1 4 25.0

EXPERIMENTAL RESULTS

To evaluate the performance of the obstacle alerpoem
nent of the AHV simulation, two sets of image sequences
were captured at different times of the day using the simu-
lation held at head height. The first sequence involved
walking slowly around a bend and towards a postal box
(approximately 15 metres in total). In the second se-
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Figure 7. Exampleincorrect alert warning.

False alerts were usually shadows on the path, orrdze a

Figure 7d shows the alert segment, which has been incor-
rectly identified.

CONCLUSION

A functional AHV system needs to provide useful informa-
tion about the current environment, be reliable, fiancin

near real-time and integrate different visual functi(ets
obstacle avoidance). In this paper a low cost PDpaloiz

of receiving and processing camera input and outputting
simulated phosphenes, has been demonstrated. An origi-
nal method to simulate AHV and to provide a simple
looming obstacle alert has been provided. To improve
program efficiency a reduced “block” approximation of
each image is used: the use of blocks reduces both memory
requirements and the number of calculations required for
segmentation and searching for matching segments be-
tween successive images. The reduction in grey levels
from 8 bits to 3 bits improves performance of the median
filter. Ideally each 8 bit 160x120 pixel image would be
used for image segmentation and segment matching be-
tween images, however limitations in processor and bus
speed, limited memory, and the lack of a floating point
processor are current technological constraints.

The results of two experiments at four illumination lsve
have indicated that the initial segmentation and adequate
illumination is a significant factor in system perfante.

The results indicate that the block based method shows
promise for development in future AHV systems, although
it will be important to consider what ratio of correderts
versus false alerts will acceptable for system uggbili

Future AHV simulation enhancements could utilise colour
information: The two obstacles used in this study were
both distinctly coloured (red postal box and green bus shel-
ter). Additionally, cheap Global Positioning SysteniP&
cards are now available for PDAs and could be integrated
to provide useful information on approximate walking
speed and location. It should also be possible to séiliti
image data (eg. using Bluetooth) from an additional cam-
era, which may allow estimates of depth to be made.

Further experiments are planned with the simulator within
an indoor mobility course at QUT. Four different image
processing methods will be used to present phosphene
simulation displays while participants perform two mobil-
ity-related tasks. Results and feedback from these experi-
ments should provide useful information for the future
development of the simulation software, and for aréfic
human vision systems in general.

surrounding an obstacle. In figure 7 above, a path shadow

is incorrectly identified as an obstacle. The medikn

tered and 8 grey level image is shown in figure 7a. The 32
x 24 block image (7b) has been segmented in figure 7c.
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Abstract

In this paper we present an algorithm for the gen-
eration of the multiple view constraints for arbitrary
configurations of cameras and image features corre-
spondences. Multiple view constraints are an impor-
tant commodity in computer vision since they facilitate
in determining camera locations using only the corre-
spondences between common features observed in sets
of uncalibrated images. We show that by a series of
counting arguments and a systematic application of the
principles of antisymmetric algebra it is possible to gen-
erate arbitrary multiple view constraints in a completely
automated fashion. The algorithm has already been uti-
lized to discover new sets of multiple view constraints
for surfaces.

1. Introduction

Structure From Motion (SFM) is the process of cal-
culating the structure of a scene observed by the mo-
tion of an uncalibrated camera/s simultaneous with the
egomotion of the camera/s and their intrinsic calibra-
tion properties. Calculation of multiple view (a.k.a.
multiview) constraints is a key component of SFM and
is mandatory in order for a 3D /4D reconstruction to be
achieved without apriori knowledge of the scene, cam-
era’s motion or calibration.

A precise understanding of the antisymmetric alge-
bra underlying the multiview constraints is necessary
in order for their utilization. Typically the implemen-
tor of SFM software would reference the exact alge-
bra for these correspondences from resources such as
[4, 1]. The most common multiview constraints are
the 2-view (Fundamental Matrix) and 3-view (Trifo-
cal Tensor) these utilize correspondences between sets
of common points and/or lines observed in all the im-
ages. An example of the trifocal configuration for a
point observed in 3-views is shown in Figure 1.

Figure 1. Trifocal Tensor point transfer.

In this paper we present an algorithm to determine
the precise nature of multiview constraints for arbitrary
combinations of cameras and feature correspondences.
This is not only useful from a practical viewpoint but
also from a theoretical one seeing as new multiview con-
straints can be generated in some instances by changing
the inputs to the process. This approach to generating
multiview constraints has been of central importance in
the discovery and utilization of a new set of multiview
constraints for degree-2 dual surfaces [6].

The development of this approach to determining
multiview constraints relies upon the principles of ten-
sor algebra in the style of [12] utilizing the concept of
the tensor tableaux introduced in [7]. A rudimentary
introduction to some of these concepts is presented in
the proceeding section.

2 Tensor Basics

Tensors are a generalization of the concept of vectors
and matrices. In this sense vectors and matrices are 1
and 2-dimensional instances of a tensor. Tensors are
composed entirely from vector spaces. These vector
spaces can be combined using a range of well defined
operators resulting in differently structured tensors.



2.1 Vector Spaces

We will limit our study of the geometry herein
to projective vector space P™. An element of an n-
dimensional projective vector space in the tensor no-
tation is denoted as xm4i € P". The symbol ,, A? is
called an indeterminant and identifies several impor-
tant properties of the vector space. Firstly in order to
better understand the notation we must rewrite x* in
the standard vector form. This is achieved by listing
the elements of the vector space using the indetermi-
nant as the variables of the expression. In this manner
the symbol (x) that adjoins the indeterminant is merely
cosmetic. For example a tensor and the equivalent vec-
tor space can be defined as,

mA] — s s
= [mAg, mAT, -

x m AR (1)
where m identifies the multilinearity of the indetermi-
nant, s depicts the degree (or step) of the indetermi-
nant. The last element describing the indeterminant
is 4, we most commonly refer to i as the index of the
indeterminant. The index reflects a position within the
vector space described by the indeterminant. We stress
that the labeling of indexes for a given indeterminant
is arbitrary but must remain consistent. The standard
indexing is ¢ € {0...n} for an n-dimensional projective
vector space (lexicographic).

Indeterminants of a regular vector (vertical) space
(P™) are called contravariant and indeterminants of a
dual (horizontal) vector space *P™ are called covariant.
The conventions of linear algebra refer to contravariant
vector spaces as simply vectors and covariant vector
spaces as covectors. The notation for a dual vector
(covector) space is analogous to that for a regular vec-
tor space,

X s = [ AG m AL A (2)
the only difference is that the vector is transposed. In
the interests of compactness and clarity often we will
abandon the entire set of labels for an indeterminant
via an initial set of assignments.

2.2 Tensor Products

The basic tools used to construct the alge-
braic/geometric entities in the tensor notation are
called operators. There are three different types of
operators that we use and for each operator we will
maintain two differing representations. We refer to
these different representations as the tensor form and
the equivalent vector form (Table 1). In Table 1
the symbols v¢ = (*}") — 1, 78 = ("}") — 1 and
T = H?:l(ni +1) -1

The two different forms of the tensor are representa-

tive of the fact that we can always rewrite a tensor ex-
pression as an ordered vector of it’s unique coefficients.
Writing a tensor as a vector of coefficients abandons
any symmetry present in the tensor, resulting in a less
fruitful representation for symbolic derivations since it
limits the way in which a tensor expression can be con-
tracted. The advantages of the vector representation of
a tensor expression arise from a reduction in the redun-
dancy created by the (anti)symmetry of the elements
within a tensor resulting in a more efficient represen-
tation for mappings between vector spaces.

2.3 Tensor Tableaux

Tensor tableaux provide a tool that may be used for
the description of tensor expressions. Tensor tableaux
facilitate study of the precise composition of a tensor
expression that may also be translated directly into an
algorithm to compute a tensor expression from com-
posite parts. In the following examples x4, x? ¢ P2.

The basic structure of the tensor tableaux is de-
termined from the tensor expression itself. As a first
example we present the tableaux for a Segre product

(a.k.a. outer product) xAy? = 245 resulting in.

0O 0] 00
0 1 01
0 2| 02
1 0 10
1 1 11
1 2 12
2 0] 20
2 1 21
2 2 22

We can see that the columns on the left of the
tableaux are filled by the indeterminants of the expres-
sion that we wish to formulate and the column on the
right is the result of the expression. The rule for build-
ing a minimal tableaux given an expression is to first
write the result of the expression in the right column,
indexing only the unique non-zero terms. Columns to
the left of the result include the singular indetermi-
nants (or composite terms) that compose each row of
the result. Moving to another example for antisymmet-
ric operations, x4yPB! = z[45! results in the following
tableaux.

B
1] 01
2
2

-02

0
0
1 12

In this example we see that the columns to the left of
the result are the elements of a 2-step antisymmetric
sequence in P2. The signs in the front of the result



Operator Symbol | Tensor Form Vector Form
Segre - xAiBj x*" € P™ where x4 € P"
Antisymmetric (Step-k) [..] x4 Bjl x™ ¢ pm
Symmteric (Degree-d) () x(AiA5) x* epn

Table 1. Tensor Operators

indeterminants are derived according to the rules for
antisymmetrization given in [7].

From a computational perspective the advantage of
using the tableaux formulation is that the structure
of complex sequences of tensor operations can be pre-
determined and reduced into a minimal sequence of
multiplications and additions with simple array index-
ing. The sequence of terms displayed in each row of
the tableaux are indexed such that they may be used
as pointer offsets into arrays to calculate tensor expres-
sions on a computer.

3 Multiple View Constraints

Multiview constraints can be utilized as a means to
determine a projective estimate of the cameras loca-
tion entirely from feature correspondences between a
set of images. Due to this fact the utilization of multi-
view constraints forms the basis for structure recovery
in SFM applications. Multiview constraints used in
conjunction with robust statistics are critical in identi-
fying and handling incorrectly tracked features in SEFM
applications [10, 9, 11, 4].

In the proceeding sections we present the theory re-
lating to the multiview constraints for a set of views.
Firstly, we introduce the concept of the Joint Image
Grassmannian tensor [12]. Following this we outline
an algorithm to calculate arbitrary degree-d multiview
constraints in m-images.

3.1 TheJoint Image Grassmannian

The multiview constraints for a given configuration
of cameras and scene features (in general position) can
be formulated via an antisymmetrization of the joint
image projection (JIP) matrix derived from the recon-
struction equations [12, 4]. This method of generating
multiview constraints is consistent with viewing the co-
efficients of the constraints as the Grassmann coordi-
nates of a particular configuration of cameras [12].

The step-(n+ 1) antisymmetrization of independent
vector spaces xi? € P" is xl08x»fl = 0. By definition
we can also state that a step-(k + 1) antisymmetriza-
tion of a n-dimensional projective vector space forms a
k-dimensional projective subspace for an abstract pro-
jective vector space P™ [2]. This manner of forming

subspaces allows us to determine Grassmann tensors
characterizing the span of projective vector spaces that
are invariant (up to scale) to changes in the projective
basis.

Applying this concept to the problem of determining
the multiview constraints for a given set of cameras,
we find that it is possible to form a Grassmann tensor
from a selection of independent row vectors from the
JIP matrix. This special Grassmann tensor is referred
to as the Joint Image Grassmannian (JIG) tensor in
the multiple view geometry literature [12],

[A..B] — plA  pB]
I = P[a0 Pag] (3)

where x* € P3 and x4,x% € P2, resulting a 3-
dimensional projective subspace spanning P3. The se-
lection of the image indeterminants A...B from the
rows of the JIP matrix determines which images the
resulting multiview constraint will represent.

The choice of rows for linear features obeys the sim-
ple rule that for an image to be included in the multi-
view constraint, it must be represented by at least one
row, and less than 3 rows. This leads to well known
set of matching tensors for points (Table 2) and also
explains why there is at most 4-view multiview con-
straints for linear features in P3. In order to make
the expressions for the multiview constraints in Table
2 succinct, we assign x4, x%,x¢ xP € P? to be coor-
dinates in images 1 to 4. The number of DOF in the

Views Constraint
2 A1 A2B1 B2l Aoy Bo — )
3 1lA1A42B1C1]y Aoy BoyCo — 0(8,05)
4 TA1B1C1 D1l Ao BoyCoy Do — 0( 4, B5Co Do]

Table 2. Linear Multiview Constraints for
Points

multiview constraints for m-views is given as follows
[12],
DOF], . =11lm—15 (4)

since each camera has (3 x 4 — 1 =)11 DOF modulo
the (4 x 4 — 1 =)15 DOF for an arbitrary projective
transform in P3. In the next section we will expand
upon these concepts in order to derive an algorithm
for manufacturing generalized multiview constraints.



3.2 Manufacturing Multiview Constraints

In order to utilize multiview constraints to solve for
the relative orientation between a set of cameras, it
is necessary to be able to reformulate the joint image
feature vector associated with these cameras into the
appropriate set of multiview constraints. The most
general approach for solving for the coefficients of a
multiview tensor is to reshape it’s coefficients into a
vector x% and form the multiview constraints derived
from the joint image features into a matrix A? that
contracts against the coefficients of the multiview ten-
sor,

Alx> = 0P (5)

this is always possible.

We now proceed by making some general remarks
about the dimensionality and combinatorics of multi-
view constraints, including the extension to embedded
features of higher degree. This is necessary in order to
develop an algorithm for the construction of the con-
straint matrix AZ. Firstly, the total number of coef-
ficients composing a degree-d matching tensor over m
images is,

m o od
vy +1
AﬁngH( 2 )—1 where v; € {71,...Ym}

i1 Vi

(6)
where each ~; is equal to the number of rows chosen
from image i’s projection matrix. This implies that
the vector of coefficients can be defined as x* € PAzﬁd,
this is a homogeneous vector since one of the overall
coefficients of the multiview tensor will always be lost
to scaling. By packing the elements in the vector in the
same sequence as they are specified symbolically in the
JIG tensor expression we can arrive at a lexicographic
ordering for the vector.

The dimension ( is determined by the number of
solutions for a particular multiview constraint given
a particular combination of image features. We rep-
resent the combination of image features as the set
G €{¢,...,Cn} where again m is the number of im-
ages involved in the multiview constraint. The ele-
ments of this set are the DOF; of the various image
features (in P?) involved in the multiview constraint,
these can be referenced from [7]. The result is an ex-
pression for the total number of solutions for a partic-
ular combination of image features,

DOF;; = ﬁ <Vg - 1) (7)

i1 NG T

and consequentially x? € RPOFit| The fact that ¢; —
~; can never be negative in the binomial equation is
coincident with the fact that no multiview constraint

relationship is possible unless the DOF; > ~,; for each
image i included in multiview tensor. If we are only
interested in the independent solutions to multiview
constraints then we can make a substantial reduction
in the size of DOF;js by using only the affine part of
each image feature,

()

i1 \Gi — Vi

the resulting constraint matrix AE will contract with
the tensor’s coefficients x* leaving just the independent

solutions in the associated zero vector 0°.

In practise this reduction in the number of solutions
is easy to achieve due to the fact that dependant so-
lutions correspond to entries in the zero vector 07 in-
volving one of the projective scaling coefficients from
the (embedded) image feature in P¥2. By normal con-
vention in the computer vision literature this scaling
coefficient is at the end of the vector and canonically
scaled to 1 for an affine representation. Therefore by
indexing one short of the complete length of each inde-
terminant composing the zero vector of solutions, we
will be left with AZ.

An optimization is available when determining the
constraints corresponding the Azllt’d columns in each
row of the constraint matrix. In cases where the num-
ber of solutions DOF;s > 1, there will be numerous
zero entries throughout the rows of the constraint ma-
trix AZ. The number of non-zero entries in each row
is precisely,

m

T’ = [TI048 + 1) = (G =)l (9)

=1

where T7:% < A% This equation accounts for the
fact that when ({; = ~;) the indeterminants corre-
sponding to rows of the ¢TH image’s camera matrix
in the JIG tensor (3) can be dualized resulting in the
interaction between the coefficients of the multiview
tensor and the image feature for that image being sim-
plified to a standard vector contraction (this is illus-

trated in the examples below).

One last observation is in regard to the DOF of a
combination composed of a multiview tensor and a set
of image features contracting against it. We will refer
to this as the DOF of the multiview constraint,

m

DOFy = H(Cz — v+ 1) (10)
=1

this equation reflects the DOF provided by one (sin-
gular) set of the image features ({;) in correspondence
with a matching tensor (7;). The effective measure of



the DOF . may reduce as further sets of image fea-
tures (¢;) are included in the total set of constraints A2
used to solve for the multiview tensor. This is the case
for the linear quadrifocal tensor (as was shown in [3, 8])
and is also the case for other higher degree embedded
multiview tensors.

It is now possible to consolidate this information re-
garding a particular multiview constraint combination
into a precise algorithm to formulate the constraint ma-
trix A? (see Algorithm 1). This algorithm will only
ever need to be run once in order to generate a map
(tensor tableaux) that transforms a given joint image
feature vector into it’s corresponding multiview con-
straint A2,

Algorithm 1: Manufacturing Multiview Con-

straint Tableaux
Input : The number of images m, the degree-

d, the DOF of the image features (; €
{¢1,...,¢n} and the number of rows
used to generate the multiview tensor
i € {'Yla .- -Vm}

Output: A tensor tableaux corresponding to the
construction of the constraint matrix A?
([DOF¢ x A7)

begin

Determine T74% (9) and DOFy; (7)

for i < 1 to DOF;; do

for j — 1 to Y™ do
1. Determine the true index (j' «— j)
2. Evaluate the sequence of m image
feature coefficients from the joint
image feature vector corresponding to
Agjj , by eliminating the
indeterminants associated with 0% and
x%’" from the total set available, this
simplifies in the case (; = ;.
3. Evaluate the sign of Agz_,

end

4 Examples

We now present several examples of the application
of Algorithm 1 to a selection of different multiview con-
straints. These examples have been picked to best illus-
trate the range of problem types to which the algorithm
is applicable. In light of the depiction in equation (5)
of the coefficients of the matching tensor (x) being
contravariant and the function of the image features
in the constraint matrix (A?) being covariant we will

utilize the ‘x’ expression in front of the image feature’s
indeterminants in the tensor tableaux.

4.1 TheFundamental Matrix

The first example of the application of Algorithm
1, is in determining the multiple view constraints for
the Fundament Matrix (2-view) assuming a point-point
correspondence between the images. From Table 2 we
can state the JIG expression for this combination as
IA142B1 B2l g Aoy Bo — (). This form of JIG expression
assumes a selection of rows ; € {2,2} from the JIP.
This selection of rows corresponds with the A%l = 9
according to (6) and since the image features are both
points (; € {2,2}) DOF;s = 1 (8).

This is a special case of the algorithm since (; =
v; Vi, this means that the indeterminants from both
images associated with the matching tensor (A & B)
can both be dualized resulting in one covariant indeter-
minant for each image that contracts precisely with the
image feature’s indeterminants (*A & *B). The corre-
sponding tensor tableaux for this constraint is given as
follows.

AB *A*B

00 00
01 01
02 02
10 10
11 11
12 12
20 20
21 21
22 22

4.2 TheTrifocal Tensor

As a further example of the application of Algorithm
1, we demonstrate it’s utilization in determining the in-
dependent multiview constraints for the Trifocal Ten-
sor (3-view) assuming a point-point-point correspon-
dence between the images (see Figure 1). From Table
2 we can state the JIG expression for this combination
as I[A142B1C1] g Aoy BoyCo — 0(B,c,)- This form of JIG
expression assumes a selection of rows ; € {2,1,1}
from the JIP - this isn’t the only valid combination of
rows - 2 rows could also be attributed to either the
second or third image.

This selection of rows corresponds with A*! = 27
coefficients according to (6), since all the image fea-
tures are points ((; € {2,2,2}) there exists DOFj; = 4
solutions (8). In this case just the first image’s inde-
terminants can dualized and second and third image’s
indeterminants are alternating. The tensor tablueaux
corresponding to the T>! = 12 rows for the first of the
constraints is as follows.




[ABC “ABC By, |

022 011 00
021 -012 00
012 -021 00
011 022 00
122 211 00
121 -212 00
112 -221 00
111 222 00
222 211 00
221 -212 00
212 -221 00
211 222 00

4.3 TheDual Quadric Fundamental Matrix

The 2-view multiview constraint for dual quadrics
was first introduced in [5], the concepts associated with
degree-2 symmetric embedding of the projection ma-
trix are discussed in [7]. In this case the dimension of
the image feature space is 2 +1 = 6 and the dimension
of the scene feature space is v3 4+ 1 = 10.

The rank of the 2-view JIP matrix for dual quadrics
is only 9 (instead of the full 10) [5]. The 2-view mul-
tiview constraint is composed of a selection of 9 rows
of the available 12 from the degree-2 JIP matrix re-
sulting (for example) v; € {5,4} therefore A%? = 90.
The image features in this case are the dual apparent
contours of the quadric ¢; € {5,5} thus DOFy = 5
(8). In this case just the first image’s indeterminants
can be dualized and second image’s indeterminants are
alternating. The first 6 of Y22 = 30 rows for the first

mt
of these constraints is as follows.
| AB *A*B Bs |
010 05 0
011 -04 0
012 03 0
013 -02 0
014 01 0
110 15 0

5 Discussion

In this paper we have presented an algorithm for the
generation of the multiple view constraints correspond-
ing with arbitrary configurations of image features. We
showed that via an application of the principles of anti-
symmetric algebra it is possible to treat the formation
of constraints in an entirely general fashion.

This algorithm can be incorporated into a toolkit for
multiple view geometry and utilized to generate any
manner of multiview constraint. The application of
this algorithm to new projection operators (and combi-
nations of image-to-scene feature correspondences) can

be used to derive novel configurations of multiview con-
straints. It has already been used successfully in the
generation of the novel multiview constraints presented
in [6].
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Abstract

Maximum Likelihood Estimation (MLE) is widely
utilized in the computer vision literature as a means
of solving parameter estimation problems assuming a
Gaussian noise model for the measurement data. In
order to solve a MLE problem it is necessary to have
knowledge of the true parameters of the Gaussian noise
model. Since this knowledge is unobtainable in practical
setting approximate MLE has become a popular alter-
native. The theory behind the approximate MLE frame-
work is presented and an analysis of the bias character-
istics of the method for noisy data is performed. Sev-
eral experiments are performed to ascertain the opti-
mality of approximate MLE solutions and to determine
whether or not there is a correlation between the degree
and dimension of the algebraic hypersurface and opti-
mality of the error metric.

1. Introduction

Parameter estimation is of central importance to a
wide range of problems in computer vision such as line
fitting, conic fitting and multiview constraint estima-
tion. Parameter estimation is applicable in any situ-
ation where we wish to derive an unknown set of pa-
rameters from noisy measurement data by utilizing a
functional relationship between the measurements (ob-
servations) and the parameters.

In this paper we will develop the basic theory un-
derlying parameter estimation with the assumption
that the measurement data is corrupted by Gaussian
noise. Gaussian parameter estimation has received
much attention in the computer vision literature due to
favourable properties of the Maximum Likelihood Es-
timation (MLE) framework utilizing a Gaussian noise
model for the measurement data, a selective chronology

of the literature in this area can be found in [9, 10, 7].

We focus our attention on the approximate MLE
framework utilizing a Gaussian noise model for the
measurements. We perform a series of experiments on
different estimation problems to determine the efficacy
of this framework in determining approximations to the
true values of the measurements (nuisance parameters)
and more specifically how the accuracy of these approx-
imations varies as the level Gaussian noise applied to
measurements increases in addition to the degree and
dimension of the hypersurface.

This information is of great importance to the imple-
mentor of parameter estimation software since the ob-
jective function minimized for such problems requires
apriori knowledge of the true estimates of the nuisance
parameters and consequentially the unknown parame-
ters themselves.

2 Parameter Estimation

Parameter estimation is the process of calculating a
set of variables (parameters) associated with a mathe-
matical model, given a set of noisy measurements re-
lated to the model. As a form of convention we will
denote the measurement data as a vector x € R™ and
the parameters as a vector # € R™. In our discus-
sion we make the distinction between measured values,
approximated values and true values of the measure-
ments and the parameters, for this purpose we will use
the notation x/6, X/6 and x/0 respectively.

Assuming a standard measurement model for our
data we have X = X + G(fix, 023y ), where X is the true
value of the measurement and G(jix,52%x) is an in-
dependently distributed Gaussian probability distribu-
tion function (pdf) with mean fix, standard deviation
Fx and covariance Y.



2.1 TheFunctional & Bilinear Models

In this section we develop two different models for
a parameter estimation problem. The models are re-
ferred to as the functional and bilinear parameter es-
timation frameworks and they cater for two distinct
problem types. Both of these frameworks utilize noisy
measurements (x) (and possibly other known data) to
determine a solution to a set of parameters (). Of
interest in some situations is the calculation of the so
called nuisance parameters, these are defined as the
approximate values of the noisy measurement data (ie.

In practise we only have access to noisy measure-
ment data (x) from which we wish to approximate the
true value of the parameters (). This problem is ill-
posed since there is no means of determining the exact
nature of the true noise model (G (jix,72%y)) affecting
the measurement data. Instead we can only approx-
imate the noise model (G(fix, 525)) resulting in the
eventual estimate of the parameters being only an ap-

proximate solution (6).

The functional model for parameter estimation uti-
lizes a mapping between the parameters () and the
measurements (x).

x = f(0) (1)

We can view the relationship (1) as the basis for a least-
squares estimation problem (either linear or non-linear)
and define the following fundamental relationship be-
tween the noisy measurements and the approximate
parameter values,

x=f(0) +e (2)

where € = X — X = G(fix, 623) is the approximation
to the additive noise obtained by utilizing the mapping
(1). If the mapping (1) is linear then we can substitute
f(0) for A, where A is a constraint matrix resulting
in. .

x=Af0+e¢ (3)
The other model that we will consider is the bilinear
model for parameter estimation. This assumes that
their exists a mapping f(x) such that it is possible
to form an equation linear in the coefficients of the
parameters,

e= f(x)0 (4)

in this case € = x — X = G(jix, 625%). It is not as ob-
vious how we justify the same derivation of the noise
model for this problem type however we will show in
later sections that the nuisance parameter (X) can be
determined in a non-specific fashion satisfactorily. The
bilinear model can also be expressed as a linear map-

ping A = f(x) resulting in an analogous linear form,
e=A0 (5)

the constraint matrix (A) in this case is a linear func-
tion of the measurements.

We can generalize the two frameworks (2) and (4) in
most instances by simply utilizing the objective func-
tion (which is a pdf) since € retains the same definition,

R(x,0) = (6)

this represents the relationship between the noisy mea-
surements and the approximate of the parameters with
the noise model. The solution to (6) corresponds with

the parameter vector (§) resulting in W =0 and

, R
agf(;f@ > 0. A particular approach to parameter

estimation is said to be asymptotically unbiased iff.
lim,—oo E[f] = 0. An approach is said to be con-
sistent, iff. lim,, .o E[R(x,0)] = 0 and efficient iff.
VAR[A] > % where F is the Fisher information ma-
trix [7].

2.2 MLE for Gaussian Distributions

Maximum Likelihood Estimation (MLE) is a partic-
ular approach to parameter estimation. The goal of
MLE is to increase the likelihood that the estimate of
the parameters () is correct assuming the relationship
(6) between the parameters and measurements. The
objective function for MLE is determined as the log of
the objective function (6),

R (x,0) = log R(x, §) (7)

when dealing with exponentially defined noise models
(such as a Gaussian distribution), it is much easier to
maximize (7) than it is to minimize (6) due to simplifi-
cation of the pdfs by the logarithm. MLE has the prop-
erties of being invariant to reparameterization, asymp-
totically unbiased, consistent and asymptotically effi-
cient in the context stated above. However, a MLE
solution can be heavily biased when the number of mea-
surements (m) is small.

The pdf of (6) simplifies very conveniently when us-
ing MLE with a Gaussian noise model to the following
objective function.

N | =

Rauw(x,0) = =3 (xi — %) 'S5, (xi — %) (8)
=1

This expression for the objective function is equivalent
to the square of the Mahalanobis distance of € assum-
ing a covariance matrix 3y, (||e||2E ), in practise this is
simple to compute. )



3 Approximate MLE for Gaussian Dis-
tributions

MLE schemes seek to find the value of 6 that max-
imizes the pdf (7), which is equivalent to finding the
value of § that minimizes the Mahalanobis distance (8),

min [[€]3, = max Ry (x, 0) 9)
6 * 6

with the constraint that 6 must lie orthogonal to the
null space of the least-squares constraint. We have
already noted that MLE in a practical setting is in-
tractable due to a lack of knowledge of the true noise
distribution. We can however develop an approxima-
tion to the MLE residual (Ramr(x,6)) allowing us to
make affective use of the underlying principles.

3.1 Approximate MLE Residual Function

Returning to the fundamental statements of the
MLE framework we can write the residual (8) of (7)
as a Taylor series expansion to give us an alternative
representation.

. .~ O0R ,0
Ramrn(x+ Ax,0) = Ry (x,0) + %

5"RML(X, é)

nloxm

Ax +

Where Ax = x—x and n+1 is the number of times that
the function R anrr, (%, 0) is continuously differentiable.
Also R,, is the remainder term which will converge to
zero as n approaches infinity. From this point we can
proceed by developing a residual function for approx-
imate MLE. We start by rewriting (10) with just the
first two terms of the RHS. This has the effect of mak-
ing a first-order approximation to the proper MLE.

~ +5RML(X, é)

Ramr(x+Ax,0) ~ Ry (x,0) = Ax (11)

Making the substitution Rz (x, 8) = € and identifying
Jg = g—; as the Jacobian of the residual function with

respect to the measurements we have.
JLAX = —¢ (12)

We wish to solve for Ax subject to the equation above,
the standard method to solve problems of this type is
Lagrange multipliers [6]. After an application of La-
grange multipliers we find that the first-order approx-
imation of Ax is,

Ax=%—x~ -SJe (I8N e  (13)

Ax"™ + R, (10)

making this equation negative and applying the Maha-
lanobis distance we find,

Ramr(x,0) = [[x - %]}~ (IL0IL ) e (14)

which is the approximate to the proper MLE residual
function (8).

4 Experiments with Error Metrics

Error metrics allow us to determine the approximate
distance between hyperplanes and embedded features,
as well as providing approximate corrections to a hy-
perplane position that is not coincident with an embed-
ded feature. In this section we present the formulae for
the error metrics corresponding to curves in P? and P3
and surfaces in P3, these are all instances of approxi-
mate MLE [9, 6].

Of greatest interest is the performance of the ap-
proximate MLE framework in determining the error
metrics and the associated corrections in situations in-
volving high levels of noise and configurations that in-
volve singular points on the feature. This information
will be useful in assessing the efficacy of approximate
MLE for practical purposes where we desire the error
metrics to perform gracefully in the presence of large
amounts of error and singular points, a similar analysis
is performed in [10]. The analysis in this case differs
since we wish to quantify the results through many
random trials using embedded features of varying de-
gree and dimension to establish whether or not these
variables play a role in the optimality of the ensuing
estimates.

4.1 Nuisance Parametersand Error Metrics

In [8] the embedded hypersurface representation
for curves and surfaces in P2 and P? was introduced
utilizing tensor algebra. These features can be ex-
pressed by tensor algebra as codimension-1 hypersur-
faces hg(d)xﬁ(d) = 0 using the symmetrization oper-
ator. The coefficients of a hypersurface of degree-d
embedded in P" will have (generically) either v =
(dZ") — 1 DOF if it is a curve(vd)/surface(v§) or
£ = (df) — (d;?f) — 1 DOF if it is a Chow polyno-
mial.

We are interested in determining the distance of a
hyperplane x? € P™ from a hypersurface - where the
hyperplane is not exactly incident with the hypersur-
face - using the bilinear parameter estimation frame-
work (4). The parameters of the model are the co-
efficients of the hypersurface hgw) € P2 and we will
assume those to be fixed, the measurements correspond
with the hyperplane x? € P? lying on or near the hy-
persurface. The noise model (¢) in this case is asso-



ciated with the contraction of the embedded hyper-
plane x#” with the coefficients of the hypersurface
hg) (this will be 0 for a hyperplane incident with the
hypersurface). With these specializations equation (4)
becomes,

(d)

€ = hﬁ(d)Xﬁ (15)

where € is a 1-dimensional Gaussian pdf G(0,02%y).
In order to determine an approximation to the nui-
sance parameter (the unperturbed position of the hy-
perplane) %°, we utilize equation (13) resulting in,
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Ax =% —x
allowing the approximation to be calculated as X =
x + Ax. The corresponding error metric for embed-
ded hypersurfaces in P™ can be defined according to
equation (14).

[EEESENESTING >0 D

An example is shown in Figure 1 of the correction
of a series of points in P2 to their approximate location
on a conic. The error applied to the points is synthetic
and made to lie normal to the tangent of the conic.
The bias exhibited by this approximate form of cor-
rection is evident in the location of the black crosses
being consistently perturbed from their true location
(the green circles).

Figure 1. A section of a conic with the true
points (0), approximated points (*) and noisy
points (+). The approximations are consis-
tently perturbed from the location of the true
points.

4,2 Curvesand Surfaces

Having outlined the general form for the approxi-
mate error metric and nuisance parameters associated
with features of codimension-1, we can now specialize
this formulation for curves in P2 and P3 and surfaces.

Definitions of the noise models and the incident hyper-
planes are presented for the different features in Table
1.

The definition of the noise model and accompanying
error metric for a planar curve and a surface are very
similar. Analytically, the major difference between pla-
nar curves and surfaces is the fact that surfaces lie in P3
and planar curve lie in P?, both sets of parameters are
of codimension-1 and (generically) have no additional
constraints unless we are estimating a special form of
the hypersurface (eg. a parabola for degree-2).

The case for space curves embedded in a Chow poly-
nomial is somewhat different (see [8]). The coefficients
of the Chow polynomial of a curve are subject to a set
of ancillary constraints generated by a simple relation-
ship between a subset of the polynomials coefficients
[1, 2, 8]. The noise models presented in Table 1 are
geometrically valid iff. the coefficients of Chow poly-
nomial satisfy the ancillary constraints.

4.3 Experiments

In order to assess the optimality of the approximate
error metric (14), we have performed a series of random
experiments where we compare the approximate values
determined for the nuisance parameters (%) with the
true values (X) using the pythagorean equality (||x —
x[|? = ||lx —x[|? + ||x — %||?, see [5]). We expect there to
be a bias in the estimates of the nuisance parameters
but we are most interested in the extent of the bias as a
function of the noise applied to the measurements (x)
as well as the degree (d) of the embedding.

The process used to test the nuisance parameters is
to generate random degree-d planar Bezier curves and
degree-d triangular Bezier surfaces and via the process
of approximate implicitization (see [3]) determine the
corresponding implicit equations (¢4 /Sy ). Since
we now possess a parametric and implicit form of the
Bezier we can accurately generate noisy measurements
(x) normal to the curve/surface at regular intervals -
using the deCasteljau algorithm [4] to calculate tan-
gents and then antisymmetric algebra to determine
normals - whilst also retaining the true value of these
points (X).

The experiments are structured such that each ran-
dom planar curve and surface is tested at 100 positions
(x) along it’s domain with a 1-dimensional zero-mean
Gaussian noise of varying standard deviation (o) ap-
plied to the true measurement of each point in the
direction of the normal. The results from tests on
100 randomly generated degree-d (d = 2,...,4) pla-
nar curves (Left) and surfaces (Right) are presented in
Figure 3. The values on the vertical axis of Figure 3
are the average of ||x —%||? — ||x — %x||? — [|x — %||? (for
an optimal estimator this value should be ~ 0 [5]), the
horizontal axis is in terms of the standard deviation



Feature Parameters | Measurements Noise Model
(d)
Planar Curve C 4 (d) x4 € p? €= C,(d) XA( :
d
Surface S, @ x? e P? €e=S,@x"
(d)
Space Curve (1) C_ ) x“ € P° e=C_@x"
(d) (d) (d)
Space Curve (2) | C_wP% x4 e P? e=P%4Cwx”

Table 1. Degree-d feature types (hypersurfaces) and their associated noise models in P? & P3

(o) of the noise applied normal to true measurements.

The results in Figure 3 indicate that as the standard
deviation of the noise is increased, the approximate
MLE of the nuisance parameters becomes increasingly
less reliable. The relationship in these trials between
the optimality of the approximate MLE error metric
and the standard deviation can be observed to be ap-
proximately linear. Interestingly there is no correlation
between the degree of the hypersurface and the opti-
mality of the estimate. The addition of another dimen-
sion in the case of surfaces results in a slightly improved
performance associated with a decrease in the gradient.

Also of interest is the quality of the estimate from
the point to the curve in the presence of a singularity on
the curve. A singular point on a planar curve f(x) =
' is defined as any point x = [zg, Z1, 2] upon
the domain of the curve where the partial derivatives
aafT(lx) and ({)afT();) both equal 0 (assuming that z¢ is the
homogenizing coefficient).

Singular points on plane curves (of degree > 2) can
appear as either cusps, inflexion points or a multiple
point of the curve. Figure 2 demonstrates the degener-
ation of the approximate MLE of a cubic plane curve
in the presence of a singular point (cuspoidal). We
can study the effect of a singular point on the approx-
imate MLE of the nuisance parameters by observing
the behaviour of the approximate MLE error metric
as J$ approaches the singular point. An example of
this type of analysis is presented in Figure 4, where
clearly the approximate MLE of the error metric in-
creases as the L2-norm of the gradient approaches 0
(ie. the singularity). This implies that some care can
be taken in practise to discount approximations of the
error from portions of the algebraic hypersurface where
the L2-norm of the gradient approaches 0, this strat-
egy results in more reliable determination of the error
metric.

(
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5 Discussion

We have presented the theory as well as an analy-
sis of the approximate MLE framework using Gaussian
noise models. We showed that the approximate MLE
framework can be applied in a generic fashion to a suite
a range of parameter estimation problem types and can
also be used as an error metric.

Figure 2. A cuspoidal section of a degree-3
curve with the true points (0) and the noisy
points (+) adjusted to lie closer to the curve
via a first-order approximation (*). The accu-
racy of the approximation decreases as the
cusp is approached.

In our analysis we focused upon the determination
of nuisance parameters and through a series of exper-
iments we show that optimality of this framework de-
creases linearly as a function of the Gaussian noise ap-
plied to the measurements. We also established that
there is very little correlation between the degree and
dimension of the hypersurface and optimality of the
estimator. The challenge posed by algebraic singular-
ities in the parameter space was also analyzed and a
simple scheme nominated to identify singularities in a
practical setting.
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Abstract

As new genome sequencing initiatives are completed,
one of the next great challenges of cell biology isthe atomic
resolution structure determination of the enormous num-
ber of proteins they encode. Single particle analysis is a
technique which produces 3D structures by computationally
aligning high resolution electron microscope images of in-
dividual, randomly oriented molecules. One of the limiting
factorsin producing a high resolution 3D reconstruction is
obtaining a large enough representative dataset (~100,000
particles). Traditionally particles have been picked manu-
ally but thisis a dow and labour intensive process.

This paper describes two automatic particle picking al-
gorithms, based on correlation and edge detection, which
have been shown to be capable of quickly selecting a large
number of particlesin micrographs. Currently circular and
rectangular particles are able to be picked.

1. Introduction

One of the next great challenges of cell biology is the
atomic resolution structure determination of the enormous
number of proteins encoded in genomes. To date, the Pro-
tein Information Resource contains ~1.9 million protein
sequences[10]. This number is increasing rapidly as new
genome sequencing initiatives are completed. The human
genome project alone identified ~30,000 genes encoding
both soluble and membrane proteins. In vivo these organ-
ise into macromolecular assemblies, further increasing the
level of structural complexity.

Membrane proteins, which are predicted to comprise 25—
40% of all encoded proteins[5], form the responsive in-
terface between the cellular and sub-cellular compartments
and the outside environment. Their structures are not only
of fundamental importance in developing our understand-
ing of molecular cell biology, but are also of immense value
in the development of new and highly specific medicines

Rosalba Rothnagel, Ben Hankamer
Institute for Molecular Biosciences
University of Queensland
Brisbane 4072, Australia.
{r.rothnagel, b.hankamer } @imb.uq.edu.au

with reduced side effects. In addition, the huge number of
macromolecular assemblies are only beginning to be char-
acterised structurally. Consequently, fast-tracking structure
determination of membrane proteins, soluble proteins and
macromolecular assemblies will underpin future develop-
ments in cell biology, structural biology, and proteomics.

Traditionally, protein structures have been solved using
crystallography techniques. However, particularly in the
case of membrane proteins, the production of well-ordered
crystals is a major bottleneck. Therefore, despite their im-
portance, only a small number (80-90) of complete mem-
brane protein structures have been resolved to atomic reso-
lution.

Recent advances in cryo-electron microscopy and sin-
gle particle analysis have developed to the point where
they could potentially provide an alternative methodology
for high resolution 3D structure determination[9]. Cryo-
electron microscopy involves suspending the purified pro-
tein molecules in a thin layer of vitreous ice. The suspended
particles are imaged in the electron microscope at tempera-
tures of —170°C with a low electron dose. Low dose imag-
ing results in very low contrast micrographs, but is nec-
essary to reduce beam damage. The technique of single
particle analysis produces 3D structures by computation-
ally aligning high resolution electron microscope images
of individual, randomly oriented molecules. Modern cryo-
electron microscopes are capable of recording structural in-
formation to a resolution higher than 2A(1A=10-1m). To
sample the 3D volume fully at the required resolution, and
overcome the low signal-to-noise ratio (SNR) of the images,
a large dataset (~100,000 particles) is required. Particles
have been picked manually but this is slow and labour in-
tensive (~1 week for 20,000 particles) and difficult due to
the low SNR of the images.

This paper describes two automatic particle picking al-
gorithms, based on correlation and edge detection. The
algorithms have been tested with both negatively stained
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Figure 1. Image pyramids for the (a) template

and (b) mask images, constructed from the
ferritin data set.

®
h
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(high contrast) and cryo (low contrast) micrographs.

2. A Correlation-Based Particle Picking Algo-
rithm

A real-space correlation-based particle picking algo-
rithm has been developed. This method was chosen since
it can use a normalised correlation function and local
masking[6].

A rotationally averaged particle sum and a binary mask
were constructed, using the IMAGIC software[4]. The
template was constructed by manually selecting a number
of particles, performing translational alignment, averaging,
and then rotationally averaging to obtain a circular, sym-
metric template. The constructed mask is the same size as
the template, and has the value 255 where the template data
is valid, and 0 otherwise.

2.1. Construction of I mage Pyramids

The micrographs are sampled finely (~0.9A per pixel),
consequently the digitised images are generally quite large,
for example, the test dataset images of the protein ferritin
are of size 8718 x 13071 pixels, with a template of size
216 x 216 pixels. The amount of computation can be dra-
matically reduced by performing particle picking using a
lower resolution image, template and mask. Therefore,
image pyramids are constructed, where each level is con-
structed by smoothing the previous level with a Gaussian
filter (to preventaliasing), and then sub-sampling by a factor
of two. In this manner, the micrograph image dimensions
are progressively halved until one of the image dimensions
is less than 1000 pixels.

(b)

Figure 2. example of pixel data and shape of
the correlation surface: (a) in the vicinity of a
particle (b) around a spurious maxima, from
the ferritin data set.

Image pyramids are also constructed for the template and
mask images, with the same number of levels as the micro-
graph pyramid. Figure 1 shows the image pyramids for the
template and mask for the ferritin data.

The original full-sized mask is a binary image consisting
only of the values 0 and 255. However, the construction
of the pyramid smooths the pixel values, resulting in pixel
values between 0 and 255, particularly around the edges of
the mask. Therefore, the mask images can be thought of as
weight values, which scale the contribution of each pixel to
the correlation computations.

2.2. Correlation

Computation begins with the lowest resolution (ie,
smallest) image, template and mask. The Normalised Cross
Correlation (NCC) score is computed at each image loca-
tion (z,y) using Equation (1), resulting in a 2-D array of
scores called a correlation image.

2.3. Selection of Maxima

Locations where the NCC is locally maximal are flagged
as potential particles. At this stage there are often a large
number of maxima which do not correspond to particles.

2.4. Filtering of Maxima

This step determines which of the local maxima corre-
spond to particles, by examining the shape of the correla-
tion surface in the vicinity of each maxima. It was observed
that for particles, the correlation surface consists of a peak
surrounded by a trough, while for spurious maxima, the cor-
relation values are more or less flat, as shown in Figure 2.

A recursive region-growing algorithm is used to iden-
tify valid particles. This algorithm starts with local max-
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ima at locations (z,y) as seed points and then grows out-
wards in an 8-connected manner[3]. For a particle to be
valid, the correlation values must drop a certain value be-
low the seed point, intensity_drop, within a given radius
range, min_radius to maz_radius. If the correlation func-
tion drops more than intensity_drop before min_radius
is reached, still hasn’t dropped by intensity drop when
max_radius is reached, for every point around the centre,
then the location is removed from the set of possible parti-
cles.

Once a set of valid particles has been identified, distance
between particle centres are computed, and clusters of over-
lapping particles removed.

2.5. Propagating ParticlestotheHighest Resolution

The previous steps identify a set of particles using the
lowest resolution level of the pyramid. These locations may
be propagated up through the image pyramid to the full res-
olution image. This is a two step process. First, the particle
coordinates are multiplied by two to scale them up to the
next higher resolution level of the pyramid.

Next, the accuracy of the scaled up particle locations is
improved by computing the NCC in a small neighbourhood
around each point, using the image, template and mask at
the current pyramid level. The coordinates of each parti-
cle are then adjusted to the coordinates of the nearest NCC
maxima. If no maxima is present within a close neighbour-
hood, the point is removed from the set of valid particles.

The process is repeated until the particle coordinates are
propagated up to the highest resolution image.

3. An Edge-Based Particle Picking Algorithm

Edge detection based particle picking algorithms first
perform edge detection on the micrographs, then locate par-
ticle shapes in the edge image.

3.1. Pyramid Generation

To reduce the amount of computation required, an im-
age pyramid is constructed for the micrograph image, in a
similar manner as for the correlation algorithm.

3.2. Edge Detection

Edge detection algorithms are applied to the lowest level
of the image pyramid. Both the Laplacian of Gaussian
(LOG) and Canny edge detectors have been implemented.
[2, 3]. The output of the edge detection stage consists of a

2D binary edge image, where “1” denotes the presence of
an edge. The Canny edge detector additionally outputs an
an edge direction image.

3.3. Particle Selection in Edge | mages

Next, the edge image needs to be interpreted to find edge
arrangements that correspond to particles.

3.3.1 Contour Following. The first technique implemented
involved following edge contours to determine if they are
roughly circular in shape. This is most suited to the unbro-
ken contours produced by the LOG algorithm.

A recursive region growing algorithm is used to follow
connected edge pixels. When an edge pixel is encountered,
the edge is followed by growing outwards in an 8-connected
manner. Once a pixel has been visited, it is flagged as al-
ready belonging to a contour, so that it is not processed
again. The edge following process determines the extent of
the contour, and estimates the centre of a particle it may rep-
resent by averaging the (z, y) coordinates of all edge pixels
it comprises. If a contour’s extent is greater than a valid
particle size, or if it touches an image border, it is removed
from further consideration.

Next, it is determined whether the contour is roughly cir-
cular. A simple test used is to estimate the minimum and
maximum radii, min_r and max _r, and to compute the ec-
centricity, e = min_r/max_r. A value of e close to 1.0
indicates a close to circular shape, while a small e indicates
a highly elliptical shape. If min_r, max_r and e all fall
within given limits, then the contour is accepted as repre-
senting a circular particle.

3.3.2 The Hough Transform. Hough transform based
techniques[3] are better suited to situations where edges de-
noting a particle shape may be fragmented into several con-
tours. A parameter space called the accumulator array is
used, where the number of dimensions equals the number
of parameters defining the particles. Every location in the
accumulator array is initialised to zero. Each edge pixel in-
crements locations in the accumulator array, corresponding
to sets of particle parameters, for all particles which this
edge pixel could possibly belong to. After all edge pixels
have been processed, local maxima in the accumulator array
indicate likely sets of parameters corresponding to particles.

Circle detection using the Hough transform requires a
three dimensional accumulator array, in which the dimen-
sions correspond to the radius, » and the centre (a,b) of
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Figure 3. Solid lines indicate possible rectan-
gle centre locations, for an edge pixel located
at the origin. Dashed lines indicate particle
extents.

circles. Given an edge pixel at location (z,y), all possible
(a, b, r) configurations are computed from the equation for
acircle, 72 = (z — a)? + (y — b)?, and these locations
in the accumulator array incremented. The size of the ac-
cumulator array and amount of computation required can
be reduced by considering only radii in the possible range
for particles. At the completion of the Hough transform
process, local maxima in the accumulator array indicate the
parameters (a, b, ) of detected circles, where (a, b) are the
particle coordinates.

Rectangle detection was based on a modified version
of the Hough transform[11]. A 4 dimensional accumula-
tor array was used, where the dimensions are centre loca-
tion (a,b), and rectangle width w and height h. As the
number of dimensions of the accumulator array increases,
the amount of computation required increases considerably.
However this can be kept to a minimum if the variations in
w and h are small.

Given an edge pixel (z,y), all possible centre locations
for this pixel, as shown in Figure 3, are incremented in the
accumulator array. The shape also needs to be rotated by
the edge orientation, which is obtained as an output of the
Canny edge detection process.

Combined circle and rectangle detection has been im-
plemented for images containing both circles and rectan-
gles. The first stage of the process detects circles. The
edge pixels comprising the circles then need not be consid-
ered for rectangle detection, thus saving processing time.
Furthermore, centres of rectangular particles cannot occur
within a distance of min_radius from the circle edges,
therefore these regions can also be removed from consid-
eration as possible rectangle locations.

3.4. Propagating Particlesto Highest Resolution

As with the correlation algorithm, the particle coordi-
nates may be propagated up to the highest resolution image

level of the pyramid. This is again a two step process. Par-
ticle coordinates are first of all multiplied by two to scale
them up to the next level of the pyramid. In the next higher
resolution image, edge detection and particle identification
only need be performed in a small neighbourhood around
each particle.

The process may be repeated until the particle coordi-
nates are propagated up to the highest image.

4. Particle Picking Results and Discussion

The algorithms were initially tested with a set of negative
stained ferritin images. Figure 4 shows a region from one
image, and particles picked using the correlation and edge
detection algorithms. Figure 5 shows results obtained with a
test cryo image of a virus. Cryo images tend to be more of a
challenge than negatively stained images due to the reduced
contrast.

Testing was also carried out using a test data set of
Keyhole Limpet Hemocyanin (KLH)[7]. The particles are
cylindrical in shape, resulting in circular and rectangular
views of the particle in the micrographs. Figure 6 shows
the results of particle picking using both correlation, and
edge detection followed by the combined Hough circle and
rectangle detection method.

The algorithms were shown to be capable of selecting
a large number of particles in micrographs, with few false
positives. For structural biologists to make use of these
algorithms, a suitable interface needs to be developed. A
Graphical User Interface (GUI) has been developed for the
correlation algorithm. The GUI has been implemented
in C++ using wxWindows, and assists with parameter se-
lection, display of results, and allows a small number of
missed/erroneous particles to be added/deleted. Using this
software with test data sets, it was possible to select a large
number of particles in a few hours, which would have for-
merly taken weeks of work.

The edge detection algorithm will also need to be incor-
porated into this user interface. Furthermore, particle detec-
tion algorithms will also need to be written to detect differ-
ently shaped and oriented particles. One method could be
to use the generic Hough transform which could potentially
detect a wide variety of particles based on a reference-table
for each particle shape silhouette[1], or it may be possible
to use techniques such as neural networks.

The particle coordinates are output in a form designed to
be input in to the IMAGIC package. The IMAGIC software
is then used to align particles, compute class sums, deter-
mine their orientation, and produce the final 3D model of
the protein molecule.

The presented algorithms locate particles in a low reso-
lution image and then propagate them to the highest resolu-
tion image. In many cases, the extra computation involved
in accurately propagating the particles to the high resolution
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Figure 4. Results obtained using negatively stained ferritin: (a) small section of micrograph (b)
correlation scores (c) correlation peaks (d) picked particles using the correlation algorithm (e) edge
detection using the LOG filter (f) contours corresponding to particles (g) picked particles using the

edge detection algorithm.

image may be unnecessary. This is because the IMAGIC
software, which is designed to work with particles picked
by a human, includes a particle alignment procedure.

5. Conclusions

Automatic particle detection in electron micrographs
will be an important component of a high-throughput
pipeline to fast track 3D structure determination of mem-
brane proteins and macromolecular assemblies.

Further work will include extending the user interface
to incorporate the edge detection algorithm, and extending
the particle picking algorithms to detect differently shaped
and oriented particles. Techniques for noise removal need
to be considered. One such technique is the bilateral fil-
ter. This non-linear filter can smooth noise while preserving
edge features[8].

At present, cryo electron micrographs of the test protein
ferritin are being imaged. Successful particle picking and
3D reconstruction from this data will prove the concept that
protein structures can be determined to atomic resolution
using cryo electron microscopy and single particle analysis.
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Figure 5. Results obtained using test cryo micrograph of a virus: (a) small region of virus image (b)
correlation scores (c) picked particles using the correlation algorithm (d) edge detection using the
Canny edge detector (e) contours corresponding to particles (f) picked particles using edge detection
followed by circle detection with the Hough transform.

Figure 6. Results obtained using Keyhole Limpet Hemocyanin dataset: (a) micrograph (b) correlation
scores (c) maxima in correlation array (d) picked particles using the correlation algorithm (e) edge
detection using Canny edge detector (f) picked particles using edge detection followed by combined
circle and rectangle detection with the Hough transform.
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Abstract

A novel scheme for developing, at low computational cost,
neural-fuzzy classifiers based on large-scale, model-based
exemplars is outlined. The new method extends the ap-
proach that Bezdek applied to train a neural net (NN) So-
bel edge classifier by training the NN on the complete
population of 3x3 binary image prototypes scored to fuzzy
values by a classical operator. We first show that, replac-
ing the fuzzy values of edgeness of the exemplaers, by
crisp defuzzified values vastly improved computational
speed. A complexity analysis proves however that for op-
erators based on larger windows, the use of complete bi-
nary exemplars sets will be computationally intractable. In
the new scheme the NN classifier is trained over a hybrid
set { selected binary image exemplars with crisp outputs |
sampled pixels within a realistic image, these pixels being
crisply scored by use of a classic operator.} We demon-
strate the scheme by deriving a 5x5 neural fuzzy Plessy
operator, far superior to the classic Plessy.

Keywords
Image processing, feature detectors, edge detector, corner,
interesting points, fuzzy, crisp, label, Bezdek.

1.0 INTRODUCTION

Feature operators assign to the pixels in an image a label
such as edgedness, (Plessy) cornerdness, or (Moravec)
Specialness [5]. Following normalisation, classical feature
detectors produce a value in some range which represents
the extent to which a pixel can be said to be a member of
the class under consideration. If this fuzzy value is thresh-
olded the pixel is labeled crisply. The threshold level must
be set so as to eliminate all but the clearly defined feature
points. The classic operators therefore work well on image
regions where there is a high contrast, such as a very sharp
edge transition. In fact, these operators work very well
within those regions of an image which may be converted
to a binary image by simple thresholding. The classic op-
erators perform poorly on low contrast features, such as an
edge, which represents only a small grey scale jump. And
classic operators are highly sensitive to image noise.

Our objective here is to develop a neural-fuzzy approach to
point pixel features which will offer useful insights into the
construction of more general feature detectors applicable
to the analysis of medical and biological images. For all
such notable features, whether point-pixel wise in machine
vision, or of grosser character in biological images, there
are always exemplars which can be readily scored; but how

should one go from the class of exemplars to the general
purpose operator? This paper extends an earlier attempt [1],

by developing further the capability of arbitrary scale.

Bezdek and collaborators, in several papers [3][4] showed
how a neural-fuzzy extension of the 3x3 Sobel operator
could be developed by training a neural net over a (equal-
weighted) population of all possible 3x3 binary windows,
each examplar being scored by the classical Sobel operator.
And most notably, Bezdek’s neural-fuzzy Sobel outper-
formed the classic operator in realistic images. We attrib-
ute the limited success of this approach to the use of (bi-
nary) exemplars on which the classic operator (here the
Sobel) gives ‘good’ values; but find there a definite defi-
ciencies that must be addressed to determine a methodol-
ogy applicable to features that relate to pixel values over
larger (>3x3) windows.

We extend the Bezdek method through the use of a train-
ing set comprising: (a) a set of binary image exemplars
with crisp outputs; (b) a set of pixels taken from a window
within a realistic image, these pixels being crisply scored
by use of a classic operator. Our method, which leads to
relatively fast training, has the notable feature of being
extensible over large windows and for any general window
based feature detector.

1.1 THE SOBEL EDGE DETECTOR

In this section, we discuss NN counterparts of the classic
Sobel edge detector, beginning with a discussion of the
classic Sobel edge detector. The classic Sobel Edge detec-
tor [5][7] utilizes the two smoothed gradient operators:

-1 0 1 12 1
D-|-2 0 2|D,=| 0 0 0
-1 0 1 -1 -2 -1

in conjunction with a threshold T, so that an edge pixel is one for
which:

E=(1/6){ | DX(ij) | +|DY(@) [} > T
Here we assume normalized pixel values in the range
[0 .. 1.0]. The scaling factor of (1/6) is chosen so that the
output of the Sobel operator is also in the range [0 .. 1.0].

For later reference, we call E "edgednesss". Applied to a
binary image with pixel values of 0 and 1, the 3x3 Sobel



operator returns one of 4 possible values 0, 1/3, 2/3 and 1.
Standard texts give examples where the classic Sobel per-
forms well.

In Fig 2, we give an example of failure of Sobel, applied to
the Kosh image in Fig 1. Visually, the edges of the original
Kosh image are quite apparent.
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Figure 1. 316x500 Kosh image
2.0 NEURAL NET FEATURE DETECTORS

In general, a feature detector can be defined as a computa-
tional process which assigns a numeric label to each pixel
in a colour or gray-scale image. The label specifies the
presence or absence of a feature characteristic such as
‘edgeness’, ‘cornerness’, ‘interesting’ etc. We deal solely
with window based techniques, where the pixel is classified
based on the pixels in a small surrounding region. Each
pixel in the image is thus classified with this ‘sliding win-
dow’ approach. Results are presented below for the Sobel
operator.

The simplest NN edge detector was that proposed by
Weller [2] who intuitively scored a mere 20 examples of
edge-situations in a 3x3 window, these 20 examples serv-
ing as the total training set for a feed-forward / back-
propagation (FF/BP) neural network. The approach of
Weller ignores altogether the capabilities of the classic
operators.

A more contemporary approach was proposed by Bezdek
and co-workers over several papers [3][4]. Bezdek’s ap-
proach combines the training of a FF/BP neural network
with a labeling scheme based on fuzzy membership values.
The key feature of the Bezdek approach is the use of a
training set based on a square window in a binary image.

i ]

x500 K
applied on luminance The original image has well de-
fined edges involving small changes in grayscale.

2.1 BEZDEK'S NN COUNTERPART OF SOBEL

The Sobel operator, applied to a binary window and with a
suitable scaling factor, has four possible output values : 0,
1/3, 2/3, 1. Bezdek took as a training set all possible 3x3
binary windows, with the desired output for each example
being scored by the Sobel operator. This led to a training
set of 256 examples with four possible output values,
which was used to train a FF/BP network.! In Bezdek's
scheme the edgeness, E, is considered as a fuzzy member-
ship value of the set of edge points. The neural net is then

' The neural networks used in the experiments described
here were feed forward networks, trained by back-
propagation of errors, configured as follows::

9:7:2:1

25:10:2:1

3x3 windows:

5x5 windows:



trained to give the appropriate value of E for each window.
The neural network, although trained on binary windows,
is actually applied to a normalized grayscale image, with
pixel values scaled so as to range from 0 to 1.0. The output
of the trained NN ranges from 0.0 to 1.0 at any pixel, due
to the sigmoid activation function ( Sigmoid function 1/(1
+ €")) of the output unit. Since the NN is applied to a gray-
scale image the output is not restricted to the four values of
the binary case. A process of defuzzification, equivalent to
the choice of a threshold for the classical Sobel, is then
applied to the (single) output of the NN.

Figure5. 316x500 Kosh: Output of NN edge detector
trained on Sobel edgedness, after defuzzification.

2.2 Problems with Bezdek's methodology”

Bezdek's approach is noteworthy in that it does in fact suc-
ceed in producing an excellent edge detector. The fully
trained NN agrees with the Sobel operator on binary im-
ages, but has much greater power than Sobel in the detec-
tion of low contrast grayscale edges (See Figs 2 and 6).
Bezdek et al also examined a related approach, using the
Takagi-Sugeno fuzzy reasoning paradigm. There are, how-

% This analysis extends the discussion presented in [1]

ever, two basic problems with this approach which prevent
the training of general feature point detectors.

Bezdek’s method is not readily extensible to larger scales.
For a 3x3 window the training set consists of 29 = 512
proto-types, and training is readily achieved in a matter of
minutes. If we extend the scale to a mere 5x5 window then
using this method we have a training set of 225 = 33.55 x
10° binary proto-types. Assuming training times are linear
in the number of inputs we compute as follows: Training
times for the 3x3 NN based operators take of the order of
minutes, whereas for 4x4 the corresponding time would be
of order of 2”7 = 128 minutes. But for a 5x5 operator train-
ing times would take of the order of 216 = 64K minutes =
45 days. In fact the linearity is not reasonable, and combi-
natorial explosion would be far worse.

The second problem arises when we attempt to train a NN
on a finely partitioned output space. Bezdek’s approach to
training a neural net for edge detection involved partition-
ing the output space of the training set into 4 levels - 0,
0.33, 0.67, 1. The reason for this approach is to ensure that
the neural networks output corresponds to a fuzzy member-
ship value between 0 and 1. Once again, this approach is
not readily extensible to different scales or even to some
different small scale feature detectors. In the case of the
Sobel operator we have four discrete levels, but for a gen-
eral feature detector we may have many more. This training
approach has three detrimental effects: a) Increased train-
ing times. b) Decreased sensitivity of final network. and c)
More points returned with no increase in descriptive power.

In section three we demonstrate these effects by compari-
son with a NN trained on crisp values. Training to fuzzy
values ignores the fact that the final system will be applied
not to a binary image, but to a gray scale image. The out-
put level results from applying a sigmoid function to the
weighted sum of inputs at the output unit. Clearly, any
large inhibitory (negative) input will be mapped to zero,
and any large positive value will be mapped to one. The
intermediate values between 0 and 1 occur only when there
is a degree of uncertainty as to the correct output, i.e. if the
net input does not swing either to large negative or positive
values. Training a network so that it must hover around
these intermediate values results in more uncertainty during
classification of gray level images.

Training a network to output either a 0 or 1 when training
on binary data allows the weight vectors to stabilize and
saturate the sigmoids to clearly defined levels. When such a
network is applied to a gray scale image, however, ambi-
guities in classification will result in the sigmoids entering
this uncertain region once again. This is in fact the desired
response. If we wish the network to output fuzzy member-
ship values, then these values should come as close as pos-
sible to 0 or 1 when we are completely certain that a pixel
either does or does not belong to the fuzzy set. Membership
values should stray into the gray area only when member-
ship level is uncertain.



3.0 A NEW 3X3 NN SOBEL

This section discusses a solution to the second problem
outlined in Bezdek’s method. The strategy we propose in-
volves training to crisp values. Two methods are presented.
In the first method we use all possible binary exemplars, so
that non-crisp values have to be "defuzzified", assigned to
values 0 or 1, using a threshold T = 0.5. The results for the
Lena image in Fig’s 7, 8 and 9 are striking: Training on
binary prototypes with crisp outputs has resulted in a
reduction in the number of pixels required to represent the
edge image. But the new NN operator has detected fea-
tures, such as the reflection of the top half of Lena's hat,
which are missing in Fig 7.
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Figure 6. 256x256x8-bit Lena: Output of NN edge detec-
tor trained to duplicate "fuzzy" Sobel edgedness on 256
binary proto-types. Number of edge pixels = 7770.

Retaining only those exemplars in the training set for
which a crisp decision is available results in greater sensi-
tivity and swifter training times. Figure 9 shows the results
of applying a NN trained with this method to Lena. The top
half of Lena’s hat is also picked up with this method, and
the other edges show greater definition.

= Iy

Figure 7. 256x256x8-bit lena: output of nn edge detector

trained to duplicate "de-fuzzified" sobel edgeness on
256 binary proto-types. Number of edge pixels = 5895

The improvement of the new approach is even more patent
in comparing training times. To train over the 256 proto-
types, for fuzzy edgedness values, as used by Bezdek et al,
30,000 passes through the data were required. But for the
"defuzzified" Sobel outputs, training required only 2000
passes. Training on data for which a “crisp” decision was
available further reduced the training time to a mere 500
passes. It is important to note that the output values in each
case have a similar distribution across the range [0.0 .. 1.0].
Effectively, this means that we can train a NN on crisp
exemplars and still validly interpret the output as a fuzzy
membership function of the feature class. Figure 10 shows
the distribution of output values for figures 7 and 8.

Figure 8. 25 t of NN edge detec-
tor trained to duplicate Sobel edgeness on 40 “crisp”
proto-types. Number of edge pixels = 6852

4.0 INCREASING THE SCALE

As we discussed above, it would not be possible on a con-
ventional workstation to train by the Bezdek method an
operator based on large window sizes. The following pres-
ents a method of training an arbitrary feature detector at an
arbitrary scale. We present as an example a Fuzzy-NN ana-
logue of the Plessey Operator for a 5x5 window.

4.1 The Plessey Corner Finder

Corner points are more difficult to define than edge points.
Corner point techniques tend to find L-structures and
points of high curvature, i.e. when an edge changes direc-
tion sharply that is a corner. Ideally a corner point detector
should ignore isolated points and return only corners, but
noisy images can be a problem with this class of tech-
niques. Corner detection attempts to locate points of high
curvature in an image, returning strong results for L-
structures. Many different approaches have been taken to
corner detection, ranging from heuristic techniques to tem-
plate based techniques to methods based on derivatives. [5]
This paper presents NN counterparts to the Plessy corner
finder. In this section we discuss the classic Plessey corner



finder.The algorithm is given by Noble [5] a, using a (n*n)
window slid over the entire image is as follows::
1>Find I, and I, using (n * n) first-difference approximations
to the partial derivative.
2> Using a Gaussian smoothing kernel of standard
deviation O, compute the weighted average means
<P’,>, <%, >and <L, >

3> Evaluate the eigenvalues /£ ; and 4/, of the matrix
2
< Ix >

<LI, >

< Iny >

< Ii >
4> compute the ‘cornerness’ C, as the ratio:

C, = Trace( A)/Det( A)
=(<P >+ <12y> W(<I%, ><12y> - <L, >2)

4> If both C, is small. £ and [, are both ‘large’ declare a
corner.
Noble [5] has shown that the Plessey operator is suitable
only for L corners, as its behavior is unpredictable for
higher order structures. Fig 10 shows the result of applying

the Plessey operator to the Barb image ( Fig 9.) that con-
tains both sharp corners and smoothly varying curves.
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Figure 9. 512x512x8-bit Barb

The Plessey operator clearly misses some important fea-
tures, such as the mouth, the hairline and the right arm.
Another problem of the Plessey operator is the number of
pixels returned. Where a feature such as a corner can be
represented by a single pixel, often the Plessey operator
returns multiple pixels to represent a feature. That is to say
that pixels neighboring a feature point are often returned as
a feature point, leading to many small ‘clumps’. This is
undesirable both in terms of efficiency of representation
and accurate location of feature points.

4.2 Fuzzy Plessey Operator

The key problem is the construction of an appropriate train-
ing set. The approach chosen was to develop a hybrid train-
ing set consisting of data from two sources. The majority of
the data was sampled from an image and scored by a fea-
ture detector. For the example presented here this consisted
of a set of 5x5 windows at 1000 pixel locations (on a regu-
lar grid) within a 256x256x8-bit grayscale Lena image.
Each of the windows within the set was scored using a
normalized Plessey operator, and then thresholded to pro-
duce a “crisp” decision.

For certain feature types, such as corners, the frequency of
occurrence in an image is extremely low. Consequently, the
data set produced by image sampling contains an over-
whelming majority of negative examples. If this were the
whole of the training set then
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Figure 10. 512x512 Barb:
Output of 5x5 Plessey Operator.

Figure 11 . The 16 binary ‘corner’ exemplars used in

the hybrid training of a neural Plessey operator com-

prised the four rotational variants of these four 5x5 re-
gions.



the NN thus trained would simply classify every pixel as
not a corner. The solution adopted was to include a selec-
tion of “hand-ranked” positive examples to balance the
training set. The solution adopted was to include a selec-
tion of “hand-ranked” positive examples to balance the
training set. (It is in this regard that the new method sup-
sedes the approach of [1].

In our example, 16 positive examples of corners were in-
cluded in the training set. The resulting “hybrid” training
set was then used to train a FF/BP NN. The results of ap-
plying this network to the barb image are shown in Fig 12.

For the Barb image, the NN corner point detector offers a
far more effective abstraction of the original Barb than the
Plessey operator (Fig 10). . The Hybrid trained NN picks
up many features which are simply missed by the Plessey
operator, such as the books in the top left corner.

The other noteworthy difference is the reduction or elimi-
nation of pixel “clumping”. In Figure 10, most interesting
points are marked by more than one pixel, often three or
four. The resulting representation is far from efficient. In
figure 12, we can see that the NN interesting point detector
does not suffer from this problem.

Figure 12.: 512x512x8-bit Barb : Output of NN corner-
point detector trained with hybrid training set consist-
ing of hand-ranked exemplars and Plessey scored

samples from a realistic image.

4.0 CONCLUSIONS

The ability to generalise from supplied knowledge, and in
some cases even modify an approach, is one of the often
claimed strengths of neural networks. [6] Certainly, in this
study, the fuzzy NN edge detector we developed from the
Sobel is clearly superior to the classic Sobel edge detector.

We derived our approach from that of Bezdek,[3][4] where
neural networks are trained to replicate fuzzy valued out-
puts. In [1] two new ideas were developed for training to
crisp outputs. The first involved de-fuzzifying the exem-
plars, resulting in far more rapid training times, increased

sensitivity and a more powerful representation with fewer
pixels required. The second idea involved retaining only
those examples in the training set for which a crisp decision
was clearly available and discarding the other examples.
This approach resulted in even more rapid training times,
with comparable representational power to the de-fuzzified
approach.

We found that the distribution of output values, in the
range [0.0 .. 1.0], were similar for training both on fuzzy
output values and on crisp values. Essentially, this means
that an interpretation of the output as a fuzzy membership
value of the feature set is equally valid in both cases. When
we consider this in conjunction with the highlighted advan-
tages of training to crisp outputs, we believe there is a
strong argument in favor of crisp valued training sets.

In this paper, extending well beyond the discussion in [1]
we presented a method of generalizing to arbitrary scales
and feature detectors. The example given was a hybrid neu-
ral-Plessey operator for the detection of corner points. The
training set was composed of two parts. The first part was
1000 5x5 windows taken from a realistic image (Lena),
scored with the Plessey operator and thresholded. The sec-
ond part balanced the low frequency of corner points in an
image and consisted of 25 hand-ranked corner templates.

The superiority of this approach over the classical Plessey
was clearly apparent (see Fig. 10 & 12), where the neural
net analog of Plessey detected many critical features
missed by the (classic) Plessey corner operator and did so
with fewer pixels per feature.
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Abstract

Mixture models implemented via the expectation-
maximization (EM) algorithm are being increasingly used
in a wide range of problems in statistical pattern recogni-
tion. For many applied problemsin medical and health re-
search, the data collected may exhibit a hierarchical struc-
ture. The independence assumption in the maximum likeli-
hood (ML) learning of mixture models is no longer valid.
Ignoring the correlation between hierarchically structured
data can lead to midleading pattern recognition. In this
paper, we consider the extension of Gaussian mixtures to
incorporate data hierarchies via the linear mixed-effects
model (LMM). Clustered and longitudinal data hierarchy
settingsin medical and biological research are considered.

1. Introduction

Finite mixture models have been widely applied in the
field of unsupervised statistical pattern recognition, where a
pattern is considered as a single entity and is represented by
a finite dimensional vector of features of the pattern [6, 12].
Important applications include a variety of disciplines such
as medicine, computer vision, image analysis, and machine
learning; see for example [13, 15]. A common assumption
in practice is to take the component densities to be Gaussian
given its computational tractability. As detailed in Chapters
2 and 3 of [15], the maximum likelihood (ML) learning of
Gaussian mixtures can be implemented via the expectation-
maximization (EM) algorithm of [2] under the assumption
of independent data.

However, for many applied problems in the context of
medical, health, and biological sciences, the data collected
could exhibit a hierarchical or clustered structure. Such

data hierarchies may be present naturally or may be due to
the experimental design. For example, in medical research,
data on patients are often collected from several participat-
ing hospitals [17]. Data collected from the same hospital
are often interdependent and tend to be more alike in char-
acteristics than data chosen at random from the population
as a whole. Similarly, in biological research, gene expres-
sion ratios are obtained from different tissues (patients) or
there are repeated measurements of gene expression on each
tissue [19, 26]. The latter is an example of longitudinal
designs, where longitudinal data are obtained by a series
of repeated measurements nested within individual subjects
(patients). With these applications, data collected from the
same unit (subject) are correlated and the independence as-
sumption in the ML learning of Gaussian mixtures is no
longer valid. Ignoring the dependence of clustered or lon-
gitudinal data can result in overlooking the importance of
certain cluster or subject effects and lead to spurious or mis-
leading pattern recognition [3].

In this paper, we consider the extension of Gaussian mix-
ture models to incorporate data hierarchies via the linear
mixed-effects model (LMM). With the LMM, cluster or
subject effects are assumed to be random (random effects)
and shared among data collected from the same unit (sub-
ject) [10]. Our contribution is to create a wider applicabil-
ity of mixture model-based pattern recognition for medical
applications with hierarchically structured data. As an il-
lustration for the method, we consider two common data
hierarchy settings in medical and biological research. In
Section 3, we illustrate the analysis of clustered data with a
multi-center clinical trial setting and in Section 4, the clus-
tering of genes with repeated measurements (longitudinal
data) is considered. We also show that efficient learning of
the proposed mixture of LMM can still be achieved by the
ML approach via the EM algorithm.



2. Gaussian Mixtures and Linear Mixed M od-
es

With a Gaussian mixture model, the observed p-
dimensional data y,,...,y, are assumed to have come
from a mixture of an initially specified number g of mul-
tivariate Gaussian densities in some unknown proportions
m1,...,Tg, Which sum to one. That is, each feature vector
is taken to be a realization of the mixture probability density
function,

g
F@;®) =Y T (y; wa, =), (1)

h=1

where ¢(z; v, Xp) denotes the p-dimensional multivari-
ate Gaussian distribution with mean g, and covariance ma-
trix 35. Here the vector ¥ of unknown parameters con-
sists of the mixing proportions 7y, ..., m,_1, the elements
of the component means p,,, and the distinct elements of
the component-covariance matrices X5, (h =1,...,9).

The EM algorithm is a popular tool for iterative ML esti-
mation of mixture models [15]. It has a number of desirable
properties including its simplicity of implementation and
reliable global convergence [14, 16]. Within the EM frame-
work, each y; is conceptualized to have arisen from one of
the g components. We let z4, .. ., zx denote the unobserv-
able component-indicator vectors, where the h-th element
zp; of z; is taken to be one or zero according as the j-th
feature vector y ; does or does not come from the h-th com-
ponent. We put 27 = (27, ..., 2%) where the superscript
T denotes vector transpose. The complete data is then given
by (y, z). On each iteration of the EM algorithm, there are
two steps called the expectation (E) step and the maximiza-
tion (M) step. The E-step involves the computation of the
so-called @-function, which is the conditional expectation
of the complete-data log likelihood, given the observed data
y and the current estimate for ¥. The M-step updates the
estimates that maximize the @)-function with respect to ¥.
With Gaussian mixtures, the update of ¥ in the M-step ex-
ists in closed form [15], Chapter 3. The E- and M-steps
are alternated repeatedly until convergence. A nice prop-
erty of the EM algorithm is its monotonic increasing of the
log likelihood at each iteration. Starting from an arbitrary
initial estimate for ¥ in the parameter space, convergence
is nearly always to a local maximizer, barring very bad luck
in the choice of the initial starting values [14], Section 1.7.
An outright or hard clustering of the data is obtained by
assigning each y; to the component of the mixture (1) to
which it has the highest posterior probability of belonging,
E(zn; = 1ly).

With LMM, cluster or subject effects are assumed to be
random and shared among data collected from the same unit
(subject). Let the vector b denote the random effects that

occur in the data vector y. The LMM specifies the mean of
y conditional on the realized b as

E(y|b)=XB+Ub, )

where elements of 3 are fixed effects (unknown constants)
modeling the mean of y, and b represents the unobserv-
able random effects which have zero mean (E(b) = 0) and
govern the variance-covariance structure of y; see for ex-
ample [10]. In (2), X and U are known design matrices of
the fixed effects and random effects parts, respectively. The
learning of single component LMM via the EM algorithm
has been described in [14], Section 5.9, where the unob-
servable random effects b are treated as missing data in the
framework of the EM algorithm. This approach can be ex-
tended to the present context where a Gaussian mixture of
LMM is to be learned.

With the use of the EM algorithm to learn mixtures of
LMM, the unobservable component indicator variables z
and the random effects b are both treated as missing data in
the EM framework. By assuming that the random effects
are normally distributed, it follows from the normal theory
that the joint distribution of the complete data (y, z, b) is
also a Gaussian mixture. This facilitates the implementa-
tion of the EM algorithm for the learning of mixtures of
LMM, for otherwise the complete-data log likelihood can-
not be evaluated in closed form; see Section 5. In this paper,
we consider both clustered and longitudinal data hierarchy
settings in medical and biological research as follows.

3. Clustered data: A multi-center clinical trial

With a multicenter clinical trial data structure, it is as-
sumed that there are M participating hospitals, and within
each hospital there are n; patients (¢ = 1,..., M) involved
in the study. The total number of observations is, there-
fore, N = Efil n;. The objectives are to cluster the
patients into subgroups based on the observations of pa-
tient’s outcome y;; along with the patient’s characteristics
xzi; ( = 1,...,n;) and to identify risk factors on the out-
come measure. For example, this clinical trial setting can be
adopted to cluster patients into subgroups with different pat-
terns of hospital length of stay [9, 18] or hospital cost [22]
and to assess diagnostic criteria of some diseases [24].

For the analysis of clustered data where patients are
nested within hospitals, it is assumed that the hospital (clus-
ter) effects are random and shared among data collected
from the same hospital through the corresponding linear
predictors. With reference to (2), conditional on its mem-
bership of the h-th component of the Gaussian mixture, the
conditional mean of y;; can be expressed as

fihij = @358y, + b ©))



fori=1,...,Mandj =1,...,n;, where 3, is the vector
of coefficients (fixed effects) and by; represents the unob-
servable random effect of the i-th hospital on the h-th com-
ponent mean. With (3), the first element of x;; is one to
account for the bias term, and the random effects by; are
taken to be i.i.d. N(0,85). A positive estimated random ef-
fect by; thus indicates a larger mean for the h-th component
in the ¢-th hospital. Under this formulation, the vector of
unknown parameters ¥ now consists of 71,...,mg—1, B,
o2,and@y (h=1,...,g), where o} is the h-th component-
variance.

3.1. Learning via the EM algorithm

Let b! = (bpy,...,bnar). The complete-data log likeli-
hood is given, apart from an additive constant, by
M n;
lOg L Z Z Z Zhij 10g 7Th¢hl]
i=1 j=1 h=1

g
_ hz;l L [M log 85, + eglb{bh] ,
where

bni)*}

and zp;; = 1ify;; belongs to the h-th componentor z4;; =
0 if otherwise.

On the (k + 1)-th iteration, the E-step computes the Q-
function which involves the calculation of the following
conditional expectations

Ego (brly), Ega (b baly).

The conditional expectations in (4) are directly obtainable
as follows:

log pnij = —3{log o} + o, > (yij — wz’Tjﬂh -

Egw (2hij|y)s
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which is the current estimated posterior probability that y;;
belongs to the h-th component,
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The M-step provides the updated estimate ¥ *+1) that
maximizes the @Q-function with respect to . It follows that

7T’(1lc+1) — Z Z Tf(l.l’li]) /N, (8)
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3.2. A simulation study

For illustrative purposes, we here simulate some data
sets of clustered data with a multicenter clinical trial data
structure. It is assumed that there are A = 10 hospi-
tals and within each hospital there are n; = 100 patients
(j=1,...,M). Eacha; (i =1,...,10; j = 1,...,100)
is a three-dimensional vector where the first element is
one. A continuous bivariate vector is generated indepen-
dently from the N (0, I,) distribution to form the elements
of x;;, where I, denotes a two dimensional identity ma-
trix. Realizations of Z are generated in which an out-
come y;; has a probability of 7, of belonging to the h-th
component (h = 1,...,g). Suppose that the h-th compo-
nent is determined, an outcome y;; is then generated from
a Gaussian ¢(yi;, pnij, o3), With by; generated indepen-
dently from the N (0, 8;) distribution. In the simulation ex-
periment, we consider a two-component (g = 2) Gaussian
mixture and assume m; = m = 0.5, 81 = (1.0,0.5,0.5),
and B = (—1.0,—0.5,0.5). Two different sets of param-
eter values of (0%, 03,6;,62) are considered in the study.
We repeat 10 independent simulation experiments for each



set to assess the generalization performance of the proposed
method. The results are presented in Table 1. For compar-
ison, we also include the results obtained from a Gaussian
mixture model with the independence assumption. It can
be seen from Table 1 that the proposed mixture of LMM
shows improvement in clustering the data. In addition, it is
observed that the biases in the estimators of o7 and o2 are
large when the dependence of clustered data is ignored in
the Gaussian mixture (independent data) model.

Table 1. Simulated results for the clustered
data structure.

parameters method error rate

0?2 =03=1.0 mixture of LMM 19.6%

0, =60,=1.0 Gaussian mixture 26.0%
(independent data)

0?2 =0%2=05 mixture of LMM 14.7%

6, =6,=1.0 Gaussian mixture 21.9%

(independent data)

4. Clustering of Geneswith Repeated M easure-
ments

In this section, we consider the clustering of genes on the
basis of the genes expression-profile vector of tissue sam-
ples. As detailed in Chapter 5 of [13], the clustering of
genes can be usefully employed to form a smaller number of
subgroups of genes. Each subgroup of genes is represented
by a single vector (a “metagene”) for the subsequent clus-
tering of the tissue samples. Another aim of clustering the
genes might be to find clusters of genes that are potentially
coregulated in order to search for common motifs in up-
stream regions of the genes in each cluster [23] and that are
powerful predictor of disease outcome [7]. In recent time,
gene expression microarray experiments are being carried
out with replication for capturing either biological (biolog-
ical replicates) or technical (technical replicates) variabil-
ity in expression levels to improve the quality of inferences
made from experimental studies [19, 21]. The importance
of replication has been demonstrated by Lee et al. [8].

For a gene expression microarray experiment with re-
peated measurements, we are given, say for each i-th gene
(i = 1,...,M), a feature vector y, = (y7,...,y5)7,
where v is the number of distinct tissues (patients) and

G=1,...,v)

contains the n;; replications on the i-th gene from the j-th
tissue. With reference to (2), it is assumed that the random
effects are shared among the repeated measurements of ex-
pression on the same gene from the same biological source.

Yij = Wigts > Yijniy)

Conditional on its membership of the h-th component of the
Gaussian mixture, the conditional mean of y;;, is expressed
as

Hhijr = Brj + baij (12)

fori=1,...,M,j=1,...,v,andr =1,...,n;;, where
bri; represents the unobservable random effect of the i-th
gene from the j-th tissue on the A-th component mean and is
taken to be i.i.d. N (0, 65;). Under this formulation, the vec-
tor of unknown parameters ¥ now consists of 7y, ..., my_1,
ﬂhj,o,zlj,andﬁhj (h=1,...,9;5=1,...,0).

4.1. The E- and M-steps

Apart from an additive constant, the complete-data log
likelihood is given by

M
log L.( Z

i=

v

9
Z zpi{log mndnij

1 j=1h=1
—3[log bn; + 0, b3,:,1},

where zp,; = 1 if y, belongs to the h-th componentor zp; =
0 if otherwise. Here, log ¢p; is given by

log ¢nij = —5{ni;jlogop; + Shij},

where

5. = [Yij — Lni; (Bri + bris)] " [Wi — Lni; (Brs + bhij)]
hij — 02 )
hj

and where 1, is a n;;-dimensional vector of ones. On the
(k 4 1)-th iteration, the E-step computes

(k)
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where V;; is an n;; X m;; component-covariance matrix
given by

2
Vhij = OhjlIni; + OnjJni;

where .J,,,; is an n;; x n;; matrix of ones,
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The M-step updates the estimate as follows,

M
et =37, (16)
=1
M nij
<W>zzwmwmwz%w,m
i=1 r=1
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4.2. A real example: Yeast galactose data

The data set has been used to study an integrated ge-
nomic and proteomic analyses of a systemically perturbed
metabolic network [5] and is available from the online ver-
sion of [26]. With the data, there are four replicate hy-
bridizations for each cDNA array experiment. However,
there are about 8% of missing data. A k-nearest neighbour
(k = 12) method has been adopted to impute all the miss-
ing values [26]. In our study, we work on the data set with
missing values and allow the number of replicates n;; to be
different for each gene on each tissue sample. There are
194 genes and 20 tissues. The average number of repli-
cates is 3.7. Our aim here is to cluster the genes based on
the expression profile vector of tissue samples. The clus-
ters so formed are then compared to the four functional cat-
egories available in the Gene Ontology (GO) listings [1].
The adjusted Rand index [4] is adopted to assess the degree
of agreement between our partition and the four functional
categories. The index is defined as

adjusted Rand index = (ncorrect —¢*)/(Ntotar—c*), (20)

where norrect 1S the number of correct pairwise classifica-
tions and ny.q; is the total number of clustered pairs. In
(20), c¢* is a correction factor that adjusts the index so that
its expected value in the case of random partition is zero [4].
It can be seen from (20) that a larger adjusted Rand index
indicates a higher level of agreement. The results are pre-
sented in Table 2. For comparison, we also cluster the genes
on the basis of the mean expression for each tissue. As the

repeated measurements are averaged to form the mean ex-
pression profile, the information on the variability between
replicates is discarded and only the information about the
mean expression level utilized. It is shown in Table 2 that
this approach assumes the independence of data and pro-
duces the clustering of genes that has lower adjusted Rand
index.

Table 2. Adjusted Rand index (yeast galactose
data).

method adjusted Rand index
mixture of LMM 0.759
Gaussian mixture
(independent data) 0.698
5. Discussion

We have described the extension of Gaussian mixture
models to incorporate data hierarchies via the LMM. The
applicability of the proposed method has been demonstrated
in Sections 3 and 4 for the analyses of clustered and lon-
gitudinal data in medical and biological research, respec-
tively. By assuming that the random effects are normally
distributed, the EM algorithm can be adopted to perform
the ML learning of mixture of LMM. Within the EM frame-
work, the unobservable component indicator variables and
the random effects are both treated as missing data. How-
ever, the EM algorithm may converge slowly where there is
too much “missing information” [16], for example, when
the dimension of the random effects is relatively large.
In this case, some variants of the EM algorithm may be
adopted to speed up the convergence; see for example [14],
Section 5.9.

The EM framework developed in Sections 3 and 4 can
be readily applied to calculate the residual maximum like-
lihood (REML) estimate. The REML method can be re-
garded as a method of estimation of the variance compo-
nent 6 by maximizing the restricted log likelihood function,
which is the log likelihood obtained from a specified set of
linearly independent error contrasts [20]. A discussion on
the comparison between ML and REML methods for learn-
ing LMM is given in [10]. In some cases, it is shown that
the REML method provides a less biased estimator for the
variance component, compared to the ML estimation ap-
proach [11].

In the context of pattern recognition, it is typical to
proceed on the basis that any nonnormal features in the
data are due to some underlying group structure. A con-
venient choice for the component-densities is a Gaussian



distribution given its computational tractability. In partic-
ular, the joint distribution of the complete-data also has
the component-densities of a Gaussian. This facilitates the
use of the EM algorithm for learning mixtures of LMM.
The generalization of LMM to the generalized linear mixed
model (GLMM) is essential for the analysis of nhon-normal
data, for example discrete data. With the GLMM, the den-
sity is not necessarily assumed to be a Gaussian distribution
and the mean is not necessarily taken as a linear combi-
nation of parameters as in (3) and (12). However, in this
case, the complete-data log likelihood within the EM frame-
work cannot be evaluated in closed form and has an integral
with dimension equal to the number of levels of the ran-
dom effects. Several procedures have been proposed in the
literature, which include the methods using analytical ap-
proximation to the likelihood [11, 25] and the Monte Carlo
EM algorithm, among others; see [16]. An example of
EM-based approaches for the analysis of non-normal data
is given in [17], where a two-component survival mixture
model is adjusted for random hospital effects based on the
GLMM method and the REML estimators for the variance
component.
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Abstract bursts of activity or irregular random activity. The fre-
guency content of most newborn EEG signals is between
This paper presents a new method of simulating elec-0.4-7.5Hz, [2]. A seizure is defined as an excessive syn-
troencephalogram (EEG) signals induced by a particular chronous discharge of neurons within the brain and can last
form of newborn seizure. The technique utilises time—from 10 seconds to upwards of 20 minutes [3, pp. 664].

frequency signal synthesis. The simulation is based on A class of newborn EEG seizure has been defined, us-
a nonstationary multicomponent waveform with piecewise ing engineering terminology, as containing linear freqryen
linear frequency modulation (LFM). The time—dependent modulated (LFM) or piecewise LFM signal structures [4].
SpeCtraI magnitude of the pieceWise LFM multicomponent Seizure may take other forms such as periodic “Spiky" be-
signal is assigned a slowly oscillating envelope and used haviour, or repetitive bursts of EEG activity which result i

to construct a time—frequency image. The time—frequencya spectral whitening in the time—frequency domain. How-

image is used to synthesise a time-domain signal using thesyer, the goal of this paper is to simulate seizure that ex-
modified short—time Fourier transform (MSTFT) magnitude hibits piecewise LFM signal behaviour.

method. The simulated seizures are varied according to sev-

| t tined in the literature t deal The need for accurate, 24 hour monitoring of newborn
eral parameters outlined in the fiterature o provide a1arg = pp g pag encouraged the development of automated sys-
database of EEG seizures. A comparison of the spectro-,

; . ) tems to highlight possible periods of interest. Several sig
grams of simulated and real seizure results in an average,

; di ional lai ficient of 0.8 (N=5 nals processing techniques, such as correlation, spectral
wo—dimensional correlation coefficient of 0.8 (N=5). analysis, wavelet transform, matching pursuits and time—

frequency distribution based singular value decompasitio
have been developed to detect seizure in the newborn,
1. Introduction [2, 5, 6, 7, 8]. However, limitations in the training and
evaluation data sets have meant that the confidence in the
Electroencephalography (EEG) is the study of the elec- analysis results is reduced and comparisons between tech-
trical activity of the brain using measurements taken from Niques are nonexistent. Specific problems with neurologist
scalp electrodes. It is an important tool in the study of cen- marked EEG data sets include; a defined level of accuracy,
tral nervous system (CNS) function, particularly in the new the lack of a publicly available signal database, and the pre
born. Unlike adult EEG, the signal structure of newborn Cise localisation of seizure events. A realistic simulat
EEG has high prognostic and diagnostic capability, [1]. In Seizure would permit the comparison of current techniques
the newborn, EEG is primarily used to identify the exis- and provide additional insight into EEG seizure for the next
tence of seizure. In this instance, the EEG plays a critical 9eneration of detection techniques [9].
role as clinical signs of seizure detection such as muscle Currently, two models are available to simulate newborn
spasms, are not clearly present in the newborn as a result oEEG seizure. The first technique developed by Roessgen in
ventilation restraints and anti—convulsive medicatiomeT  [10] is based on some physiological parameters of the brain
presence of seizure in newborn EEG indicates neural ab-and utilises a stationary sawtooth waveform. This techmiqu
normality which may lead to permanent damage or death. was recently extended by Boashash and Mesbah in [4] to
Normal or background EEG consists of low frequency incorporate a single LFM signal. Celka and Colditz have
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also developed a piecewise LFM model of seizure based

. . . . . . SEIZURE LENGTH
on a Weiner filter with sawtooth inputs and nonlinear gain,

[9]. The authors outlined a technique to validate their nhode l
Fge]lsed on Kullback-Leibler divergence and Renyi entropies, SELECT

. SIGNAL

. . < BETA(a,b)

The Roessgen model lacks the incorporation of non- PARAMETERS
stationarity, while Boashash'’s and Mesbah’s addition only l
handles single LFM behaviour, not the piecewise LFM of-
ten seen in seizure. Celka’s and Colditz's method provides GENERATE IFLAW SAWTOOTH
a quality simulation of seizure but lacks time dependent sig l
nal shape or time—dependent harmonic magnitude variation.

GENERATE MODIFY

Another difficulty is its inability to simulate the transign

spiky”. activities TIME-FREQUENCY/« COMPONENT

' ' IMAGE AMPLITUDES
This paper uses the generic piecewise LFM seizure pat- l

tern outlined in the work of Boashash and Mesbah, [4], to

generate a time—frequency template image which is then SMOOTH HAMMING

synthesised into a time domain signal using the modified IMAGE

short—time Fourier transform (MSTFT) magnitude method, l

[11]. o _ SYNTHESISE MODIFIED
The advantage of using direct signal synthesis over other SIGNAL < STFT

techniques is its relative simplicity, its ability to hagdl MAGNITUDE

spectral distortion and the discontinuities of the piecewi l

instantaneous frequency (IF) law. In addition, this tech-
nigue can provide a larger variety of seizure waveforms,
within BT product limits (signal richness), [3, pp. 18],
depending on the fundamental time—frequency template or
templates chosen. This modularity has an advantage over
a method such as Celka’s which would require additional

seizure(t)

Figure 1. Block diagram of seizure simulation.

complexity to incorporate other forms of seizure. Table 1. Parameter ranges and distribution

The seizures are randomised by selecting parameter parameter range distribution
ranges within the limits defined in [4]. Each parame- ~LFM slope (Hz/sec) -0.07:0.07  Beta(2,4)
ter was assigned according to several user defined beta—|LFM number 1:4 Beta(3,3)
distributions. This artifact free seizure simulator can be |FM envelope amplitude -0.25:0.25 Beta(1,1)
combined with a background EEG generator to provide a SNR (dB) 3:20 Beta(1,1)
complete newborn EEG simulator. SBR (db) 10:20 Beta(1,1)

seizure start frequency (Hz) 0.5:3.5 Beta(2,4)

2. Seizure Simulation
eters according to,

The seizure simulation protocol is outlined is Figure 1. N

Initially, the desired seizure length is determined. The (1) = Z aiti + ¢i, @
parameters for the seizure are chosen from their specific =t
sampling distribution. These parameters include the num-where,
ber of LFMs in the IF law, the slope of the LFMs, the seizure

. 0 for ¢t < tf,
start frequency, the envelope of each harmonic component PR B for £ <1< i @)
(relative amplitude and frequency), the signal to noisie rat ! 0 for t10>_ti — hiv
hi»

(SNR) and seizure to background ratio (SBR). The parame-

ter range and parameter sampling distribution are specifieol,vherefi(t) is the IF law,a; is the slope of the'™ LFM

in Table 1. Note, the beta distribution ranges fromOto 1l monocomponentg; is a constant to Correcﬂy a|ign the

so the range is used to correctly scale the sampling distribu pieces of the IF law}V is the number pieces in the piece-

tion. wise LFM andt} andt; . are random variables wittj, con-
The initial IF law is generated from the selected param- ditioned ont{, such that}, > ¢}, .
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The time—frequency image is initially constructed, us-

ing the IF law, with the harmonic relationship of a saw-

tooth waveform { at fundamentall/2 at first harmonic ,
and1/+/8 at second harmonic, etc). The magnitude of each

harmonic component is multiplied by a specific, oscillat- I
ing, random amplitude envelope that is estimated using cu-

bic spline interpolation fonveiope(t) << f(¢)). The time— '
frequency image is smoothed, along the frequency axis, us- s

ing a one—dimensional Hamming window that is scaled ac-
cording to the seizure length. The two—dimensional, time— % 5
frequency image is then synthesised into a one-dimensional Feency
time domain signal using the MSTFT magnitude method as-
suming a sampling frequency of 10Hz.

The MSTFT magnitude method uses an iterative tech-
nigue developed by Griffin and Lim, [11], to estimate the

N
S

time (secs)
&

-
S

(a) generate IF law

S

discrete time—domain signaln]. The difference between = ————
the desired STFT and the update STFT is minimised in this = ———————
procedure. The update equation is as follows, alsﬁﬂA
e —
S uln —m] 7 Xiln, e ™ df t
Ti+1 [n] = ) 2 ,%
Zmzfoo w [n - m] 7
3 =\
where, =—
N )(Z [n7 f) % 1 2 3 2 5
Xiln, f) =Yn, )l 157 4 freauency (2
Y([n, f) is the desired STFTX[n, f) is the i update (b) create time—frequency image

STFT,z;[n] is thei*® update synthesised signaljn — m]
is the STFT window,n is discrete time,f is continuous :
frequency andn is the discrete time lag. The signal is syn-
thesised with an initiak:[n] of white Gaussian noise. In this
case the stopping criteria of the MSTFT magnitude method
is the iteration numbeli (., = 200). Further details on the
convergence of the algorithm can be found in [11].

This method of signal synthesis was chosen over other
available techniques as the signal synthesis is performed o
a much simpler image than other technigues, which require
the incorporation of cross—terms in the original image, and
no knowledge of the phase is required.

Once the signal is synthesised white Gaussian noise
(sensor error) and residual background EEG can be added
to the signal.

I I I ) I I ) I ) )

05 1 15 2 25 3 35 4 45 5
time (secs)

3. Results and Discussion

(c) synthesised seizure
The data used in the following results were collected

from the Royal Women’s Hospital Perinatal Intensive Care
Unit in Brisbane, Australia. The data were recorded, using
a sampling frequency of 256Hz and local electrode refer-
encing, by a Medelec machine. The signals were then down
sampled to 10 Hz for further processing. IF laws are shown in 2a), the simulated EEG seizure time—
A typical output of the piecewise LFM, EEG seizure frequencyimage is shown in 2b) and the synthesised seizure
simulation algorithm is shown in Figure 2. The component signal with this time—frequency characteristic is shown in

Figure 2. The seizure synthesis procedure.
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2c). It can be seen that the simulated EEG seizure exhibits
similar traits of real EEG seizure data as shown in Figure 3.

1

0.5 1 15 2

Figure 3. A newborn EEG seizure epoch.

25 3
time (secs)

35

4

4.5

5

For a more quantitative analysis, select segments of real
EEG seizure were analyzed with the intention of extracting
an approximation to the piecewise LFM law and the compo-
nent envelope. These values were then fed into the seizure
simulation algorithm and the time—frequency images were
then correlated to assess the similarity between simulated

and real seizure. The results of this experiment, conducted = 10

on five seizure epochs, are shown in Table 2.

Table 2. The results of the seizure simulation
technique, p = 0.8, 02 = 0.03.

trial  correlation
1 0.861
2 0.920
3 0.943
4 0.486
5 0.789

An example of the time—frequency output of the exper-
iment is shown in Figure 4. The synthesised seizure is shown in the high two—dimensional correlation coefficients
plotted above the real seizure in Figure 5. The generalbetween real and simulated signals. However, not all forms
shape of the simulated time—frequency image conforms toof seizure fit into this general piecewise LFM pattern of be-
the seizure epoch with a correlation coefficient of 0.94. In haviour. This can be seen by the low coefficients in trial 4.
the time domain the signal has the general characteristicsThis particular form of seizure has a higher relative noise
component, a non—piecewise LFM IF law, more transient
frequency content, moderate “spiky” behaviour, asymmet- events and contains severe “spiky” behaviour compared to
other seizures. These phenomenon contribute to an effectiv

The simulated EEG is not exact, but it provides the es- whitening of the spectrum which interferes with the simu-
sential signal structures seen in EEG seizure, partigularl lative capacity of a piecewise LFM model. Nonetheless,
in the time—frequency domain, as outlined in [4]. This is the synthesised seizure still has sections that provided go

required of a simulated signal, [4, 9], notably, nonstadign

ric oscillation and envelope amplitude variation.
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Figure 4. Time—frequency domain compari-
son of real and simulated seizure, p=0.94.
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Figure 5. Time—domain comparison of real and simulated seiz ure.

approximation, in addition to poor approximation sections
This can be seen in Figure 6.

These forms of error can be overcome by using addi-
tional time—frequency templates to cater for transientét
dependent spectral whitening), and low SNR and SBR (a
spectral whitening or colouration, of the time—frequency
domain, respectively) effects.

The incorporation of a background model such as that
outlined in [12] and a suitable artifact simulator into this
seizure model can provide a EEG signal simulator that is
capable of providing realistic EEG signals. In the case of
multichannel EEG, where a seizure is not sensed equally at

each electrode, this technique can be expanded by adding a | ¢jear

interfqrence ‘

T T

— real
- - simulated | .. ]

channel model (stationary or nonstationary), variable am-
plitude background signals, and channel delays. A fully
operational newborn EEG simulator will permit the evalua-
tion of the myriad of signal processing techniques curyentl
available to the problem of automatic seizure detection in
newborn EEG. Such a system is outlined in Figure 7.
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Figure 7. Complete newborn EEG simulator.

4. Conclusion

A method of neonatal EEG simulation using time—

frequency signal synthesis has been developed. The tech-

nigue uses the randomised selection of the piecewise LFM
signal model proposed by Boashash and Mesbah in [4].
Examples of the simulation routine have shown high cor-
relation with select seizure periods = 0.8, N = 5).
The simulation can also provide approximation of seizures
with moderate “spiky” behaviour. It cannot provide qual-
ity simulation for seizure epochs with low SNR/SBR or
high power transients (non—piecewise LFM data). The ran-
domisation permits the simulation of a large set of possible
seizure. Such a simulation method allows for a consistent

data set to compare several currently available seizure de-

tection techniques.
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Person Location Service on the Planetary Sensor Network
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Abstract

This paper gives a prototype application which can provide
person location service on the IrisNet. Two crucial tech-
nologies — face detection and face recognition underpin-
ning such image and video data mining service are ex-
plained. For the face detection, authors use 4 types of sim-
ple rectangles as features, Adaboost as the learning algo-
rithm to select the important features for classification, and
finally generate a cascade of classifiers which is extremely
fast on the face detection task. As for the face recognition,
the authors develop Adaptive Principle Components Analy-
sis (APCA) to improve the robustness of Principle Compo-
nents Analysis (PCA) to nuisance factors such as lighting
and expression. APCA also can recognize faces from single
face which is suitable in a data mining situation

Keywords
Face Detection, Face Recognition, Adaboost, PCA, APCA.

1 INTRODUCTION

Multimedia data, such as speech, music, images and video
are becoming increasingly prevalent on the internet and
intranets as bandwidth rapidly increases due to continuing
advances in computing hardware and consumer demand.
An emerging major problem is the lack of accurate and
efficient tools to query these multimedia data directly, so
we are usually forced to rely on available metadata such as
manual labeling. This is aready uneconomic or, in an in-
creasing number of application areas, quite impossible be-
cause these data are being collected much faster than any
group of humans could meaningfully label it. Some driver
applications are emerging from heightened security de-
mands in the 21% century, postproduction of digital interac-
tive television, and the recent deployment of a planetary
sensor network overlaid on the internet backbone.

2 FAST FACE DETECTION

2.1 Face Detection

Brian C. Lovell
Intelligent Real-Time Imaging and
Sensing Group, EMI, School of
ITEE, University of Queendand
Brisbane, QLD, Australia
lovell @itee.ug.edu.au
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Face detection is a challenging and valuable work and has
attracted much attention in recent years. Face detection is a
necessary first-step in face recognition system, with the
purpose locating the face from the cluttered background. It
also can be used in wide areas such as human-computer
interaction, content-based image retrieval, and intelligent
surveillance. The survey paper [2] by E. Hjelmas and B. K.
Low classify the previous work on face detection into two
categories. feature-based approaches and image-based ap-
proaches.

Feature-based approaches such as using edges [3, 4], skin
color [5], motion [6] etc, are applicable for real-time sys-
tems due to their fast feature extraction but suffer from their
low detection rate. Image-based such as PCA [7], Neura
Networks [8], support vector machine [9] generally achieve
a good performance, but most of them are computationally
expensive and not suitable for real-time applications. In
recent years, Viola and Jones[10] proposed a real-time face
detection system. The main idea of the method is to com-
bine weak classifiers based on simple features which can be
computed extremely fast. In their work, smple rectangle
Haar-like features are extracted; face and non-face classifi-
cation is done by using a cascade of successively more
complex classifiers which are trained by AdaBoost learning
algorithm. Our face detection system is based on their work.

2.2 Feature

Each weak classifier is constructed based on a ssimple rec-
tangle feature. Four types of rectangle features are used, as

|

L]
. Il

showninFig. 1

©

(A) (B) (D)
Fig. 1. The four types of rectangle features defined in a
sub-window: the sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels

in the grey rectangles.



Given the base resolution of the sub-window is 24*24, the
exhaustive set of rectangle featuresis 116,300 (86,400 for 2
rectangle features, 27,600 for 3 rectangle features, and
2,300 for 4 rectangle features), which is overcomplete.

Rectangle features can be computed very fast using integral
image. The integral image at location X, y contains the sum
of pixels above and to the left of X, y, inclusive:

Hxy)= > H(X.y)
XX, y<y'
where l1(X, y) istheintegral image and I(X’, y’) isthe origi-
nal image.

Using the integral image any rectangular sum can be com-
puted in four array references (Fig. 2). More clearly, two-
rectangle features can be computed in six references, eight
for the three-rectangle features and nine for four-rectangle
features.

2.3 Learning Algorithm — Adaboost

Adaboost algorithm was mainly developed by Freund and
Schapire [11]. They proved that the training error of the
strong classifier approaches zero exponentialy in the num-
ber of rounds.

The weak classifier is designed to select the single rectangle
feature which can best separate the positive and negative

examples. A weak classifier 1) contains a feature f; a
threshold & and adirection o,

[Lif pfi(<p8
h_ 0 otherwise
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Fig. 2 AdaBoost algorithm for classifier learning.

In our system, each classifier is trained with the 4916 train-
ing faces samples and 7872 non-face samples (both of them
have the size 24*24 pixels) using the Adaboost learning
algorithm.

2.4 Cascade Classifier

The goal of a cascade of classifiersis to enhance the classi-
fication rate which reduces the computing time. A positive
result from the first classifier will trigger the second classi-
fier which is more complex than the first one, a positive
result from the second classifier will trigger a third classi-
fier, and so on. A negative result at any stage will lead to
the immediate rejection to the sub-window. In this way, the
detection processis extremely fast.

3 NEED FOR FACE RECOGNITION FROM
SINGLE FACE

3.1 Robust Face Recognition

Robust face recognition is a challenging goal because of the
gross similarity of al human faces compared to large dif-
ferences between face images of the same person due to
variations in lighting conditions, view point, pose, age,
health, and facial expression. Most systems work well only
with images taken under constrained or laboratory condi-
tions where lighting, pose, and camera parameters are
strictly controlled.



Recent research has been focused on diminishing the im-
pact of nuisance factors on face recognition. Many ap-
proaches have been proposed for illumination invariant
recognition [12][13] and expression invariant recognition
[14][15]. But these methods suffer from the need to have
large numbers of example images for training, which is of-
ten impossible in many data mining situations when only
few sample images are available such as in recognizing
people from surveillance videos from a planetary sensor
web or searching historic film archives.

Table 1. Data mining applications for face recognition

Person recognition and location services on a
planetary wide sensor net

Recognizing faces in a crowd from video surveil-
lance

Searching for video or images of selected persons
in multimedia databases

Forensic examination of multiple video streams to
detect movements of certain persons

Automatic annotation and labeling of video
streams to provide added value for digital interac-
tive television

3.2 Principle Component Analysis

Principal Components Analysis (PCA), also known as "ei-
genfaces,” is originally popularized by Turk and Pentland
[16]. PCA is a second-order method for finding a linear
representation of faces using only the covariance of the
data. It determines the set of orthogonal components (fea-
ture vectors) which minimizes the reconstruction error for a
given number of feature vectors. Consider the face image

st | =[l,1,,---,1,], where |, isa pxq pixel im-
age, i J[1---n], p,g,n0Z", the average face of the
image set is defined by the matrix:
1 n
== @
| vy

Normalizing each image by subtracting the average face,
we have the normalized difference image matrix:

D=I-¥. (@

Unpacking D,

; row-wise, we form the N (N = pxQ)
dimensional column vector d,. We define the covariance
matrix C  of the normalized image @ set
D =[d,,d,,---d,] corresponding to the origina face

image set | by:

C=>.dd' =DD". (3
i=1

An eigen decomposition of C yields eigenvalues /1i and

eigenvectors U, which satisfy:

Cu; =Au, @

C=DD" =) Auu/, ()
i=1

where 1 [J[1:-- N].

The eigenvectors of C are often called the eigenfaces and
are shown as images in Figure 3. Generally, we select a
small subset of M <N eigenfaces to define a reduced di-
mensionality facespace that yields highest recognition per-
formance on unseen examples of faces. For good recogni-
tion performance the required number of eigenfaces, M, is
typically chosen to be of the order of 6 to 10.

. ” .»i ..
Fig.3 Typical set of eigenfaces as used for face recog-
nition. Leftmost image is average face.

3.3 Robust PCA Recognition

The authors have developed Adaptive Principal Component
Analysis (APCA) to improve the robustness of PCA to nui-
sance factors such as lighting and expression [17][18]. In
the APCA method, we first apply PCA. Then we rotate and
warp the facespace by whitening and filtering the eigen-
faces according to overall covariance, between-class, and
within-class covariance to find an improved set of eigenfea-
tures. Figure 4 shows the large improvement in robustness
to lighting angle. The proposed APCA method allows us to
recognize faces with high confidence even if they are half in
shadow. Figure 5 shows significant recognition perform-
ance gains over standard PCA when both changes in light-
ing and expression are present.
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Fig.4 Contours of 95% recognition performance for the
original PCA and the proposed APCA method against
lighting elevation and azimuth.

i AP CA for Nlumination changes
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=—J— AP CA for llumination and exprassion changes
PCA for llumination changes
PCA for Expression Changes
—— PCA for lllumination and Expression Changes

Recognition Rate
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Number of features

Fig.5 Recognition rates for APCA and PCA versus
number of eigenfaces with variations in lighting and
expression from Chen and Lovell (2003).

4  EXPERIMENTAL RESULTS

We present some experimental results here. There are 15
people (each person has one orientated face image) in our
face database. The demo video shows the progress of de-
tecting and recognizing of multiple persons from “un-
known” to “confident”. Some selected frames are shown on
Fig.6

. E;
£ video_timer
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Fig.6 Selected frames from application demo video
Red rectangle: Unknown person

Yellow rectangle: Not confident enough to recognize,
person’snameisunder therectanglewith a“?”



Green rectangle: Very confident to recognize, person’s
nameisunder therectangle

5 CONCLUSION AND FUTURE WORK

It has been argued that by the end of the 20™ century com-
puters were very capable of handling text and numbers and
that in the 21% century computers will have to able to cope
with raw data such as images and speech with much the
same facility. The explosion of multimedia data on the
internet and the conversion of al information to digital
formats (music, speech, television) is driving the demand
for advanced multimedia search capabilities, but the pattern
recognition technology is mostly unreliable and slow. Yet,
the emergence of handheld computers with built-in speech
and handwriting recognition ability, however primitive, isa
sign of the changing times. The challenge for researchersis
to produce pattern recognition algorithms, such as face de-
tection and recognition, reliable and fast enough for de-
ployment on data spaces of a planetary scale.

In our application, currently face detection module can de-
tect faces with rotated angles very well, but APCA can't
recognize well on the rotated faces. Our future work will be
focused on dealing with this problem. Some potential solu-
tions include detect the positions of eyes or nose, and rotate
the face back to orientation position depends on the face
component geometry.
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Abstract—Optical Flow, the extraction of motion from a bronchoscope within the airway, an estimation of the size of
sequence of images or a video stream, has been extensivelyhe trachea or bronchi, and a rotation guide to help with the
researched since the late 1970s, but has been applied to the,sgitioning and operation of the bronchoscope itself.
solution of fe\_/v pra(_:tlcal problems. To _date, th(_a main appllcat_lons_, Th . t princiole behind th fority of
have been within fields such as robotics, motion compensation in € primary measurement principie behind the majority o
video, and 3D reconstruction. this system is known as Optical Flow, which is one of several

In this paper we present the initial stages of a project to extract method for extracting the apparent motion in a sequence of
valuable information on the size and structure of the lungs using images. There are in turn many different implementations
only the visual information provided by a bronchoscope during  of gptical flow, with different strengths and trade-offs. The
a typlcal_ pro_cedure. The |n_|t|aI implementation provides a real- flow field is then provided to a second algorithm, which is
time estimation of the motion of the bronchoscope through the g X g - '
patients airway, as well as a simple means for the estimation of Used to estimate the three-dimensional motion of the camera
the cross sectional area of the airway. relative to the scene, known as Egomotion. The output of
this algorithm provides not only a measure of how far the
bronchoscope has traveled, but also provides the 3D rotation
of the bronchoscope’s camera relative to a specified starting

HE ability to produce accurate, repeatable measuremeldsation. Estimating the area of the airway is a relatively
of the human body is becoming increasingly importardsimple procedure involving basic ellipse fitting, but more
in many fields. Some systems, such as modern Magnedidvanced methods can give far more accurate results without
Resonance Imaging (MRI) and Computed Tomography (CTHignificant overhead.
can provide this information to the operator, without any Many of these principles and algorithms have already been
additional requirements. presented by a humber of authors, particularly in the field of

However, for a number of other imaging systems, andbotics, where the recovery of motion from video data can
particularly those that rely on direct visualization by amproduce results that are far more accurate than more traditional
operator, such as endoscopy (e.g., bronchoscopy, gastroscothods such as wheel odometers, due to factors such as
colonoscopy, laproscopy), obtaining even rough measuremeitteel slippage from loose or slippery terrain. However, many
estimates can be a lengthy or complicated process. Makingfathese practical applications optimize these techniques and
rough guess of the extent of an injury or a patient’'s progrealyorithms used to suit the typical conditions that the robot
over time may in fact be of little use, due to inter- andnay face. Because of this, much of the findings of other
intra-observer variations. And, even if a procedure is archiveelsearchers may not be directly applicable to this particular
by some means for future reference, there is often no otlaplication.
way to accurately compare two procedures over time orThe tools this system provides can all be accomplished
between patients than by eye. Simple image manipulation amging the tremendous processing power available in today’s
comparison tools may give a numerical answer, but the vamrsonal computers. By harnessing existing media frameworks
number of variables in procedures such as these could makel signal processing libraries provided by the operating
any results obtained using such methods invalid. system of choice and third party developers, such as Microsoft

Our objective in this work is to develop a system that takd3irectShow and Intel's OpenCV, and the advanced processing
the guesswork out of obtaining measurements from any fefatures of modern CPUs or video hardware, an efficient and
the endoscopy procedures, and providing a fast, accurate andurate algorithm can be implemented to provide relevant
repeatable method to obtain and compare this information. Tinéormation in real-time, in an easily understandable format,
initial focus with this work is bronchoscopy, the visualizationithout compromising the safety of the patient, and still
of the larger regions of the lower respiratory tract. The goglovide the original image data for the operator.
of this work is to provide real-time information during a The remainder of this paper is organized as follows: The
procedure to physicians, giving the distance traveled by thkallenges this project must overcome are discussed in section

I. INTRODUCTION
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2. Section 3 describes the principle of optical flow, and hofirst defined by Horn and Schunck [5] as the distribution of
the current algorithm is implemented. Section 4 shows tla@parent velocities of movement of brightness patterns within
robust motion recovery used to extract the distance travelad image, based upon the apparent motion of regions of similar
and rotation of the bronchoscope’s head as it travels throuigitensity over an image sequence. In its simplest form, this can
the body. Section 5 details the method used for the estimatio® expressed as

of the cross_—sectlonallarea of the currently visible secnon of Al 0l dz dIdy oI

airway. Section 6 details some of the future work to be derived
from this, and section 7 concludes.

dt " owdt oydt ot
To recover the optical flow from a sequence of images,
Il. CHALLENGES the vector field of this motion;o’(x,y) must be recovered

from the intensity field/(z, y, t). Since the equation has only

Most procedures today make use of the flexible bronchg- : . :
scope, developed in the 1960's by Professor Shigeto Ikegjne constraint, a second constraint must be used to obtain a

[1], a Japanese bronchologist. Most modern systems now uiuuon. Th|s' 's typically ong Of_' . .
videobronchoscopes, which incorporate a CCD sensor at thé l_Jse a hlgher-order_ derivative using additional assump-
distal tip of the bronchoscope, replacing the fragile fibreoptic tions about the motion _ .
system used in earlier devices. A video processing unit pro-° Impose a global smoothness constraint to the velocity
vides high resolution colour images for the physician and other field, or . S
staff through a monitor, which can also be archived to tape® Impose a parametric model to the local velocity field,

with a VCR or video camera. A typical videobronchoscope is such as constant or linear variation.
shown in figure 1. The latter two approaches are the most common. The smooth-

ness constraint assumes that neighboring groups of pixels will
all have the same motion, except when one region within an
image is occluded by another object in the scene, causing
a discontinuity within the flow field. Applying a velocity
constraint is used to simplify the calculation, by reducing the
search space to the motion range specified by the model.
Three classes of algorithms have been developed, depending
on the method used to recover the optical flow from an image
sequence. Block matching methods divide the images into a
grid of smaller blocks, then attempt to compare these blocks in
two frames using some form of matching metric, such as cross-
correlation. While this is the simplest approach, it can break
Fig. 1. An Olympus flexible videobronchoscope [2]. down in low-contrast and smooth images. Phase Correlation
methods make use of the 2D spatial Fourier domain to directly
The respiratory system is not easily accessible due to #§timate pixel motion, and it is used in a number of video
anatomy, and that of the surrounding structures. The trachg@oding systems. Gradient methods use a multidimensional
and bronchi require the use of a narrow, flexible bronchosco%age gradient operator to generate image gradient maps,
which limits the size of the CCD image sensor, and hence tfich are used to directly evaluate the optical flow. However,
image quality and light sensitivity. Motion of the bronchoscopgis method works for small displacements in the image.
is further hindered by the upper respiratory system such asrpne method chosen initially was the Pyramidal Lucas-
the pharynx, which contains structures designed to protect {h§nade method [6], an extension of the gradient approach,
lungs from damage. which uses a multi-resolution approach to give a sparse
Since the final goal of this application is to be of use duringptical flow for a series of feature points detected within the
clinical procedures, it would be beneficial to use systems thaiage, and effectively overcomes the displacement issues with
can be easily used by a respiratory physician or assistgfgitional gradient approach. A series of images of different
during a procedure. To keep costs low, it should be able fgsojutions is generated from the original image, each time
run on commodity hardware, so that upgrades and replacemggéreasing the resolution in both theandy coordinates by

parts are easily available. a factor of two. This process effectively anti-aliases the image
using a filter kernel ob x 5 pixels.
lIl. OPTICAL FLOW The next phase of the algorithm is to track the motion

Optical Flow is one of a number of methods which havbetween consecutive frames within the imageand J. The
been proposed to extract the apparent motion within an imagsults of the optical flow calculations of the lowest resolution
sequence, but is one of the most extensively studied. Recowages,/,,, and J,,,, are used as estimates for the calculation
ering image motion has many other important applicationsf the optical flow within the next images in the pyramid,
in fields such as video compression, where it is an essentigl_; and J,,_;. This process continues until the optical
component of the MPEG encoding process [3]. flow has been calculated for the original image sequences.

The origins of optical flow have been attributed to th&his algorithm is greatly beneficial in many applications,
work of Fennema and Thompson [4], though the term waince it allows large feature movements to be tracked through
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the image sequence, but still retains sub-pixel accuracy fair each stage. However, this will only hold truedGf is an
each feature’s coordinates. By using a pyramid depth of iyertible matrix, which occurs only when the image has
the maximum length of a motion vector can be 31 timeggradients in both the: andy directions.

larger than is possible to detect with a standard Lucas-Kanadé©nce #* has been calculated, the new pixel displacement
implementation. Unfortunately, due to the filtering of thguess is given by

image, smaller or less prominent features may not be easily A b1k

detected, since the lowest resolution image, used for the initial d"=d" " +7

feature detection, may simply not include enough detail of the This process will continue until eithef* is less than a

original image. specified threshold, or the maximum number of iterations has

The optical flow algorithm used here utilizes the originghken place. The final solution for the optical flow vector is
Lucas and Kanade method [7], which was originally defingfen given as

as the image matching error function

K

e= Y (Fl@A+h) - aG(2) + B)° at=> 7
zeR k=1

coordinates(z,y), F' and G correspond to the functions ofSystem, and the speed, accuracy and robustness of a chosen

the two imagesl(z,y) and J(z,y), the parametersi and @lgorithm can greatly affect the final results. Since feature

h give the linear transformations of the first image, such &tection and tracking has been implemented as part of the

for contrast and brightness adjustment. This can be simplifiglect feature points as well. . .

by simply constrainingy and 3. The G matrix is first calculated for each pixel within the

To further enhance the algorithm, the standard Lucat@ge, and the smallest eigenvalug for each pixel is stored.

Kanade method has been implemented iteratively, which j§€ maximum eigenvalug, . is found, and all\,,, within

used to obtain successive approximations of the pixel displagefhreshold (normally 5 or 10%) ok, are retained. Of

ment d, with each approximation effectively translating thdhis subset of pixels, those which are the local maximum of a

second imagé by the initial guess determined in the previoug X 3 Window are said to be “good to track”, and form the set

stage of the algorithm, such that of features detected by the algorithm. Unlike the optical flow
algorithm, which must track specific points through the image,
Je(z,y) = J(@+di " y+dih) a 3 x 3 window is sufficient for the initial location of good

features. Once the initial features have been located, a sub-

. . . etk kY .
The residual pixel motion vectoy* = [i;, ;] is then given pixel corner detector is used to further refine these coordinates.

by The algorithm presented here produces a real-time esti-
. Patwe Pyt - 1 mation of the optical flow occurring in images, and on its
Fm =Y > (I(z,y)—Je(z+dE ", y+di™")  own, runs with only minimal delay on a reasonably modern

L=y —Wa Y=Py —Wy machine. The implementation has not been hand-optimized,

This can also be presented in the matrix form but compiler optimizations do make some use of available

vector processing units on the underlying hardware. Further

ﬁk = G 1pk (1) use of this hardware, as well as additional code optimizations,

will no doubt improve the performance of this algorithm.
r]—lowever, the validity of using point features within this
specific application remains questionable, and the low-contrast
environment of the airway further compounds the problem,
which can be seen in figure 2.

whereb” is a2 x 1 vector known as the image mismatc
vector, which is defined as

Potwy Dy t+wy |:

Tk 61]@(1'73/)]:6(172/)
b= 72 72; oli(2,y) Iy (2, y) ]
T=Pg— Wz Y=Py — Wy
the matrixG is given by IV. MOTION RECOVERY
Once the optical flow has been recovered from a pair of
images, we would like to know how the camera has moved
relative to the scene. Just as with optical flow, there are nu-
) ) o _ merous methods for this given a set of point correspondences,
with I, and I, as the image derivatives in the andy \jth different benefits and weaknesses. Optical flow gives a
directions, and thé'"image derivativeSI, is defined for all 2 motion field, so some method must be used to determine
points within the search window surrounding a pixes what kind of motion the vector field represents, in order to
5oz, y) = I(z,y) — Ju(w, ) extract the 3D motion and rotation of the camera relative to
’ ’ ’ the scene [8].
Since the two image derivatives can be precalculated atThe use of projective geometry, which considers 2D points
the start of each iteration, the matrix G remains constaa$ a tripletx = (x1,72,23) and a 3D point asx =
throughout the entire operation, and obtyneed be calculated (1, z2, 23, 24), the so-called homogeneous coordinates [9],

Py t+Wa Dy twy :|

2 LI
G= Z Z L1 Iy
Y Y

T=Pyp—Wz Y=Py—Wy
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these break down in the presence of gross outliers, as is
the case in all real-world situations, and if outliers can be

identified before being incorporated into the model, they can

be discarded or compensated for in order to obtain a more
accurate answer.

Least-squares optimization is the most commonly used due
to it's speed and stability, but outliers can cause distortion in
the final outcome so much that it becomes an arbitrary fit of
the data. In order to discard outliers from their calculations,
an algorithm must first identify these outliers. One of the
most common algorithms used for this process is known
as RANSAC, the Random Sample Consensus [11]. Unlike
other methods, which use all available data points to try and
determine outliers within the data, RANSAC uses the smallest
possible set of data needed to solve the given hypothesis,
using points chosen at random. This estimation is repeated
on a variety of sets of data, until the probability that one of
these sets contains data with only inliers. The best solution
to the problem is then the estimation that maximizes the
number of points whose residuals are below a given threshold.
RANSAC then assigns a penalty to outliers, and no change
to inliers. Other algorithms, such as Torr's MLESAC and
MAPSAC [12] overcome some of the issues associated with
this scoring system. Despite this, RANSAC was chosen for this
Fig. 2. A sample frame showing matches and displacement vectors betwd&plementation due to its relative simplicity and widespread
consecutive frames from a Bronchoscopy procedure. The poor contrast withige in other vision applications, and it can easily be replaced
the image highlights the difficulties with tracking features in this environmer\yvith another method at a later stage, if required.

RANSAC is a general purpose algorithm, which can be
used on a number of problems. In order to use it for a
helps to simplify much of the mathematics for this proced#articular application, a specific hypothesis test algorithm must
into matrix forms. An image is then considered as a 2Pe chosen. For egomotion estimation, a range of equations
projection of the 3D scene. Transforming between image afdist which solve this “relative pose” problem, which can
world coordinates is performed using a camera’s projecti@gtimate the position of the camera from as few as 3 point
matrix P, which contains information on the camera’s intrincorrespondances, though they typically use between 5 and 9
sic parameters (focal length, aspect ratio and principal afgints for more accuracy [13]. These algorithms require the
projection point) and its extrinsic parameters (orientation af@nstruction of al x 9 constraint matrixg, such that

location in world coordinates). A point in spacé can then - / Y Y I T Y
be transformed to image coordinatedy 7= [nd) 2241 3¢ 1195 9295 4393 4391 439> 4393]

where ¢ and ¢’ represent the homogeneous coordinates
r=PX (¢1,92,q3) from of a single feature in both images. The

The goal of motion recovery is to estimate the Essentigpnstraint matrices f_or each point are concatenate_d together

Matrix, £, which encapsulates all of the geometric informatiol® form ann x 9 matrix g, such thag™ E' = 0. From this, the

about the camera’s position and orientation between twi'dle value decomposition is used to extract the fundamental

frames of the image sequence. By using a camera’s calibrat[JAtix from the column of the right singular matrix that

matrix C' (a component of the projection matrig), it is CcOrresponds to the smallest singular value

possible to obtain the Fundamental Mati#k which should

yield accurate measurements in the units specified for the [U,D,V] = svd(q)

calibration, and can be determined by

F = V[0
F=CcTgEc™! Once the estimate has been obtained, a second single value
, i e decomposition is taken of the estimate to ensure the result has
Motion recovery algorithms are classified into two genergl rank of 2
categories [10], robust and non-robust, based on the treatment
of data which does not fit the model. In non-robust methods,
these incorrect correspondences, known as outliers, the error is [U,D,V] = svd(F)
assumed to be small enough to be averaged over the entire data Dy 0 0
set. These algorithms deal well with synthetic data with no F = U 0 Dy 0 |VT
outliers, and can produce fast and accurate results. However, 0 0 0
4
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The resulting matrixF' is then the resultant Fundamentabre counted. However, differences in lighting and other factors
Matrix, and contains both the translation and rotation infocan cause this operation to fail, requiring additional tweaking
mation for the camera motion between the two frames. Vife order to obtain a suitable answer. Additionally, the region

can extract the translation vectbias of interest must lie within the center of the bronchoscope’s
T field of view, otherwise the substantial non-linear distortion

t~ty=[ws ums uzs ] will interfere with the simple scaling factor used to translate

and the rotation matrix? by either pixel count into an approximate area. In all, the process of

selecting, segmenting and measuring the size of the airway can
" take over an hour per image, and cannot guarantee accurate
R, upv or repeatable results.
R, = UD'VT All these tasks can be completed in real-time by a computer,
with no impact on performance of the visual odometer whatso-
ever. As with the manual method, a simple binary threshold is
0 1 0 used to obtain an approximation for the airway directly ahead
D=| -1 0 0 of the CCD sensor on the bronchoscope. However, rather than
0 0 1 attempting to count the number of pixels directly, each region
Since any combination of andt are a solution for the isolated by the 'thre.shold is fit to an ell!pse, which shoulq give
. . " .atsgood approximation for a healthy airway. Then, by simply
problem, due to the epipolar constraints, additional constrain . : o . .
) Sélecting the largest ellipse within the image and calculating
are needed in order to produce the correct result. If we assullle . = the result can be achieved in real time during a
that the first camera projection matt is [I]0], and that is ’ 9

. . . . r[%rocedure. This can easily be extended to use an alternative
of unit length, then only four possible solutions to this proble . . .
exist method the segmentation of the airway, and multiple areas

could be calculated simultaneously, for cases such as when
P, = [Raltu], Py = [Ra| — tu], P. = [Ry|tu], Pq = [Rp| — tu] bpth the trachea and one or more bronchi are visible in a
o single image.

Only one of these combinations represents the true camerg, tests with just a standard digital video camera and
motion between the two consecutive frames. Of the remainigg gimylated airway, such as in figure 3, the system can
3 optiong, one represents the twisted pair, qbtained t_’y rF’tf"‘t,ié'gsily identify the airway, and by adjusting the threshold, the
on the views 180 degrees around the baseline, the line joinifgsnce down the airway from the camera can be increased
the center of the camera in the two frames. The other W yecreased accordingly. Tests with real footage from a
are reflections of the true configuration and twisted pajonchoscopy produce show that the system can detect and
Transforming between the twisted pair and the correctiQfesg e the airway when the image is suitable, but fails under

where D is given by

solution can be obtained using the transform certain conditions. A more robust method is still required in
o I 0 order to overcome some issues such as contrast variations
ET | —2013 — 293 — 2033 1 and unusually shaped airways or views. In cases where the

camera is not orthogonal to the cross section, some means for

The reflected views can also be transformed using adjusting the area may be required. This may not be possible

10 0 O with the currently calculated data, and will be the focus of
I o— 01 0 O future work in this area.
710 01 0
000 —1 VI. FUTURE WORK

To choose the correct orientation, it is first assumed that the-l-here is still a great deal that needs to become accomplished
scene lies in front of the camera, then the correct orientaﬁ%fore this system can be used in a clinical setting

is selected based upon the triangulation of a single point. Currently, the distortion produced by the wide-angled lens

of the bronchoscope is not accounted for, and all calculations
V. AREA ESTIMATION are based on the raw, distorted images. A means of correcting
Knowing the circumference or area of the airway is dthis distortion, using additional pre-processing by the com-
obvious benefit for respiratory physicians and surgeons, whoter, will be needed in order to obtain accurate measurement
need to be able to gauge the effectiveness of treatment, anddhta from the system.
extent of disorders within the airway. The current procedure A specific comparison of a number of the various techniques
requires the procedure to be recorded to a miniDV tape usipgposed for both optical flow and camera motion estimation
a standard digital video camera. This is then reviewed afteisaneeded, in order to identify which methods are better suited
procedure using a firewire-enabled computer, and the desifed this particular environment. Challenges such as the low
frames are selected from the tape and imported into Imagedntrast environment, rapid and jerky movements, and the
Here, a simple manual threshold operation is used to segmebstruction of the lens by fluids, tissue or other objects, will
an approximate region of the airway from the image, which @&l impact the performance of the system. The identification of
then flood-filled, and the number of pixels within this regioffieatures to track within the image may also require additional
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Fig. 3.
within a simulated airway. In this case, the threshold has been set to find g
circumference a short distance in front of the camera’s lens.

A sample frame showing the real-time airway area measurem

work, as features lying on contours are not easily trackét!
by the system, since the identified feature points tend fg
float along these contours as they move through the image
sequence. Additional constraints applied to the regions of the
image used to extract motion from, such as the edges of the
image, since the wide angle lens shows more the walls of
the trachea and bronchi than would otherwise be visible, may
assist with the tracking of features within the image sequence.
There is also a number of areas where hardware optimizations
can take place, utilizing both CPU and video card hardware
to increase the performance of this system.

The airway area measurement will also need to be improved.
While the current system provides a fast approximation that
may be correct in normal circumstances, it will perform poorly
in cases where there are deformities or other abnormalities
within the airway. By applying a fast, robust contour-finding
system, a more accurate representation of the airway’'s true
shape can be obtained, and allow them to be compared
between procedures. It also relies on image correction pro-
vided by the calibration system in order to produce accurate
measurements.

VIl. SUMMARY

A system for the measurement of distance, rotation and
airway size was presented. By using optical flow, there is no
need for the modification of medical equipment, nor the need
for external markers or other measuring equipment. While still
in early stages of development, the work to date suggests
that this method is a valid approach to the problem, and with
further work, we believe that the system will be of great value
in a number of different procedures.
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Abstract identify pre-proliferative diabetic retinopathy that is often
already present before diabetes is detected by clinical symp-
Images of the human retina vary considerably in their toms [9].
appearance depending on the skin pigmentation (amount Automated assessment of pre-proliferative diabetic
of melanin) of the subject. Some form of normalisation of retinopathy has been possible for some time using
colour in retinal images is required for automated analy- fluorescein-labelled images [18, 6, 7]. Results for colour
sis of images if good sensitivity and specificity at detect- fundus analysis identifying microaneurysms, exudates and
ing lesions is to be achieved in populations involving di- cotton-wool spots have only been reported more re-
verse races. Here we describe an approach to colour nor- cently [10, 17, 20, 8, 16, 19].
malisation by shade-correction intra-image and histogram g optimise automated processing of colour images one
normalisation inter-image. The colour normalisation is as- has to consider intra-image variation such as ligifusion,
sessed by itsfiect on the automated detection of microa- the presence of abnormalities, variation in fundus reflectiv-
neurysms in retinal images. Itis shown that théWeeBayes ity and fundus thickness and inter-image variation (being
classifier used in microaneurysm detection benefits from thethe result of using dierent cameras, illumination, acqui-
use of features measured over colour normalised images. sition angle and retinal pigmentation). Osareh selected a
retinal image as a reference and histogram specification fol-
lowed by a global and local contrast enhancement step [16].
1 introduction A comparison between methods was recently undertaken by
Goatmaret al.[11], who compared grey world normalisa-
Indigenous populations such as the Australian Aborig- tion, histogram equalisation and histogram specification to
ine, the New Zealand Bbri and the Canadian Inui all have that of a standard image. In their study histogram specifica-
4-5 times the incidence of diabetes compared to the Caudion performed best. The problem with histogram specifi-
casian population resident in these countries [4]. This largecation is that certain lesions are reflected in the shape of the
percentage of the population and their geographical distri- histogram and by reshaping the histogram to that of a stan-
bution necessitate special diabetes screening models to opdard image, which does not necessarily contain the lesion,
timise screening, detection and treatment. One such modethe evidence for the lesion can be masked in the resultant
is to undertake a mobile population screening programmehistogram. An example is that exudates, which have a yel-
of diabetic retinopathy [13]. Although the cost is reduced low appearance and occur only in the occasional retinal im-
when compared to current costs associated with visits to theage, result in a long tail in the histogram of the green plane.
general practitioner for a referral followed by a visit to the This tail is removed if histogram specification to a retinal
ophthalmologist, this endeavour is still prohibitive due to image not containing exudates is used.
the cost and lack of specialists [3, 15]. These shortcomings We anticipate that a form of normalising image colour,
can be addressed by utilising automated procedures (thaboth intra-image and inter-image, that preserves the shape
are easily implemented by diabetes technicians), and whichof individual colour component histograms is likely to bet-
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ter preserve evidence for certain lesions. We therefore pro-
pose a new approach to colour normalisation of colour reti-
nal images, and test it for itdficacy to increase the discrim-
ination in certain features useful for the automated detection
of microaneurysms—a lesion that often occurs as one of the
first signs of diabetic retinopathy.

2 Colour Normalisation

Figure 2. Colour normalised images of Fig-
ure 1.

Cree [19]. Microaneurysms appear as small round red ob-
jects, usually separated from the vasculature, in colour reti-
nal images. The automated microaneurysm detector used
follows a similar process to that established by Spencer
et al. [18] and Creeet al. [5, 6]. Candidates (i.e. ob-
jects that bear some similarity to microaneurysms) are seg-
mented from the green plane of the retinal image by shade-
correcting the green plane, removing the blood vessels, then
match-filtering with a standard microaneurysm template to
detect candidates. This process is not specific enough so a
number of shape and colour features are measured on the
candidates, which are used as inputs to a classifier, to bet-
ter distinguish between the microaneurysms and other seg-
) S o . o mented spurious objects. We ask whether the colour nor-
as is the variation in colour within a single retinal image. malisation process described in this paper provides better

Sm_ce_ we normalise colour_ both_for ntra gnq |n_ter-|mgge features for classification of the candidates, than features
variation, and because the intra-image variation is partially derived without normalisation

due to misillumination of the retina and thus should be cor-

rected for first, we separate the normalisation process into .

two stages, the first for intra-image correction and the sec-4  Testing Methodology
ond to normalise between images.

The well known technique of divisive shade-correctionis  Sixty retinal images of patients with diabetic retinopa-
first applied to each colour plane (in RGB colour space) of thy at 50 field-of-view were obtained from a Topcon fun-
the retinal image to correct for intra-image variation. This is dus camera with a Nikon D1X 6 megapixel digital camera.
achieved by dividing each colour plane of the retinal image The automated microaneurysm detector was run on each of
by the background approximated by gross median filtering the 60 images to the stage of segmenting candidates bear-
of the respective colour plane. ing similarity to microaneurysms. A number of shape and

The histogram of each colour plane of the shade- colour features were measured on each segmented candi-
corrected image is then adjusted to have a specified measlate. The mean, standard deviation and second moment,
and standard deviation within a region-of-interest delineat- about the axis perpendicular to the candidate through the
ing the camera aperture. This process retains the overalcentroid, normalised to area (which we refer to as ‘rota-
shape of the histogram, but shifts the hue (which is roughly tional inertia’) were measured on each colour plane (red,
dominated by the ratio of green to red in retinal images) to green and blue) and on hue (calculated as red/green) using
be consistent between images. The colour normalised im-the original images and using the colour normalised images.
ages for Figure 1 are shown in Figure 2. This gives a total of 24 colour features. In addition a num-
ber of other features, including those based on shape, were
extracted for an overall total of 52 features.

Each candidate was labelled as a microaneurysm or as a
spurious object by an expert in the field. The feature dataset

To test the colour normalisation we examine iffeet formed from the 60 retinal images contained 2623 candi-
on the automated microaneurysm detector of Streeter anddates of which 2222 were marked as spurious objects and

Figure 1. Two retinal images; one of a Cau-
casian and one of a Polynesian.

Two examples of retinal images, one of a Caucasian and
one of a New Zealand Rbri, can be seen in Figure 1. The
difference in colouration between the two is quite noticeable

3 Microaneurysm Detection
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401 as microaneurysms by the expert. The expert identi-concluded:
fied another 14 microaneurysms in the images that were not
segmented by the automated procedure generating the can-
didates. As it is the improvement in classification achieved
with the colour normalisation that is under question, we re- ¢ Therefore the feature set may be considered a parame-
port sensitivities as out of the 401 microaneurysms in the ter of the model

feature dataset. ) _ _ )

Two analyses were used to quantify the improvement ® The evaluatl_on Qf feature _sets W|II be biased in a
due to the use of colour normalisation. Exploratory statis-  favourable direction unless it uses independent data.
tical analysis was applied to the individual features to mea- kohavi suggests a wrapper approach, where the actual clas-
sure class means and standard deviations for each featurgjfier algorithm is used to evaluate the features selected.
Signal-to-noise ratios (SNR) were derived from these mea-  |ncluded in the Weka toolbox is a Wrapper Subset Eval-
sures based on the assumption of a Gaussian probability disyator. This takes as a parameter the name of the classifier
tribution function for each of the two classes, according to  peing used for the discriminant function. The wrapper does

a search in feature space for the set that gives the lowest
(2) error on the given classifier.
1 (02 4+ g2 ) To implement the wrapper process, we took the 60 train-
2 obj ma . . K

ing datasets and applied wrapper subset evaluation to each

wherex represents the mean andthe standard deviation ©ON€ t find the best feature set for each dataset, that is, the
of the two classes when measured over one feature. It igeature set that maximised the classification accuracy us-
to be noted, that with the assumption of underlying Gaus- ing the Nave Bayes _classmer. T_he results of these 60 tri-
sian probability distributions, the SNR is a monotonically &S Were then combined to provide counts for the number

increasing function of the area under the curve of the re- of times each feature was indicated. Following this, all 52
ceiver operating characteristic curve [1]. features were ranked according to how often they were se-

As a more rigorous test, a cross-validation of training '6ctéd, and the ten most frequent were selected. A new col-
and testing using a Nee Bayes classifier was applied us- lection of 60 training and testing datasets were prepared as

ing the Weka package [21]. The e Bayes algorithm [2] described before, but contained only these 10 features.
assumes that features are independent. Knowing how these 1he results for the 60 |magef] were combw;ed {:;.nd used
features have been derived would lead one to suspect thid® 9enerate an ROC curve. As theiaBayes classifier is
of being a rather flimsy assumption, but the algorithm is complete!y deterministic, there was no variation observed
known to perform surprisingly well in some domains, and over multiple runs, so only one run was necessary to evalu-

is very fast to run [12]. It estimates prior probabilities by ate. )
calculating simple frequencies of the occurrence of each = Subsequently, we prepared a control by taking the same
feature value given each class, then returns a probabilitydatasets' and scrambled the class labels, so that the same

of each class, given an unclassified set of features. Thes&€cOrds were randomly labelled as spurious objects or as

probabilities were used to derive ROC curves in the results M!croaneurysms. we re_peated the;nP@Bayes classifier

section. test as described in the first evaluation above, and prepared
The feature dataset was split up into 60 separate train-a" ROC curve. .

ing data sets containing the candidates for 59 images; each 1° Provide some measure of the benefiffomied by

training set missing out the candidates for each image inS€/€Cting the correct images, we prepared a further 10
turn. In addition 60 testing data sets were made to aCCOm_datasets, where the features selected were chosen at ran-

pany the training data sets by including those candidatesdom' We performed the e Bayes classifier test as de-

that are not in the respective training set. The reason toscri.bed in the first evaluation above, but using these non-

split up the training/testing datasets based on images rathePPtimal feature sets, and reported the results.

than taking a ni&e random selection of candidates is to en-

sure that test datasets actually simulate a truly new imaged Results

for classification. The N&e Bayes classifier was used to

guantify the relative success offidirent feature sets. Table 1 lists the SNRs for the various colour features
Itis well known that using too many features can actually measured over each segmented candidate. Four colour vari-

degrade accuracy of the prediction, so optimising the accu-ables are used, where red, blue and green are from the RGB

racy of such methods involves a choice not only of clas- colour space, and hue is calculated as red/green. The la-

sifier algorithm, but also of the appropriate features. Ko- bel ‘Mean’ refers to the mean colour measured over the ex-

havi [14] has studied the automatic selection of features andtent of the candidate, likewise ‘Std. Dev’ to the standard

e The optimum feature set will depend on the classifier
model chosen

| Xobj — Xmal

SNR =
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Colour Measurement SNR (original) SNR (normalised)
Mean 0.29 0.11
Red Std. Dev. 0.05 0.32
Rot. Inert. 0.24 0.29
Mean 0.06 0.85
Green Std. Dev. 0.67 1.23
Rot. Inert. 0.40 0.94
Mean 0.15 0.02
Blue Std. Dev. 0.16 0.50
Rot. Inert. 0.25 0.25
Mean 0.22 0.44
Hue Std. Dev. 0.01 0.44
Rot. Inert. 0.23 0.27

Table 1. SNR as a measure of discrimination

for the features measured.

deviation and ‘Rot. Inert.’ to the second moment calculated
along the radial direction from the centroid of the candidate
(equivalent to the rotational inertia), divided by the area of

the candidate.

As can be seen in the table, the SNRs calculated over
the colour normalised images are for the most part equal
to or greater than those calculated over the original images.
The two exceptions are for the means over the red and blue
colour planes, for which the colour normalisation has re-

duced the SNR.

Fig. 3 shows the results of the wrapper process on the
original dataset. The vertical axis shows labels for each of
the 12 colour features available measured over the original
images and the colour normalised images. The length of
each bar shows the relative frequency with which that fea-
tures was selected. As there were 60 applications of the
wrapper method, the maximum any feature could be se-
lected was 60 times. One of the features, H-Mean (mean of

the hue) measured over the colour normalised image, was

indeed selected in every application of the wrapper method.
As can be seen in Fig. 3, the colour normalised features
were, in general, preferentially chosen over those calculated
over the original images. It should be noted that for the

above trial the feature database included some shape fea-

tures in addition to the colour features reported herein; for
the purposes of this paper we are only interested in the re-

sults pertaining to the colour features.

The results of the evaluation of the original dataset are
shown in Fig. 4. The area under this ROC curve is indica-
tive of the discriminant ability of the classifier, and in this

case indicates a good performance. The results of the eval-

uation using randomly labelled data are shown in Fig. 5.
In complete contrast, the control shows zero discriminant
ability. The results of the ten evaluations using randomly

selected features are shown in Fig. 6. In this case, the clas-

sifier is capable of making a reasonable performance, but
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Frequency Feature has been Chose

C original
B ormalised

H-Rot Inert
H-Std Dev
H-Mean
B-Rot Inert
B-Std Dev
B-Mean
G-Rot Inert
G-Std Dev
G-Mean
R-Rot Inert
R-Std Dev
R-Mean

Figure 3. Bar graph showing how often a par-
ticular feature was chosen in the forward fea-
ture selection process.
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Figure 4. ROC graph for the classifier using
the 10 best features. The solid line is the fit-
ted ROC curve to the data points (plus signs).
The dotted curve indicates the 95% confi-
dence intervals.



lacks the performance of the feature set chosen by the wrapimages.

per method.
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Figure 5. ROC graph for randomly labelled
data.
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Figure 6. 10 ROC curves for the classifier us-
ing 10 randomly selected features.

6 Discussion

The SNR results (table 1) demonstrate that the colour
normalisation process increases the discrimination in al-
most all of the colour features treated individually. To quan-
tify the relative predictive power of the combined features a
forward selection process was run with aiéaBayes clas-
sifier. This preferentially chose the colour normalised fea-

tures over the features that were measured over the original

Previous studies have tended to focus on histogram
equalisation or histogram specification however we argue
that the distortion that can occur in the histogram with these
methods can mask certain lesions. An example of such a
lesion is exudate, which appears in the green histogram as
a long extended tail. This tail can be masked if histogram
specification is used. We therefore prefer to use colour nor-
malisation that preserves the shape of the histogram.

Our results demonstrate that for detecting microa-
neurysms in colour retinal images, colour normalisation is
beneficial. It is still to be established whether the colour
normalisation process described herein will be beneficial
for such tasks as the automated segmentation of the vas-
culature or of other lesions such as exudate and cotton wool
spots. However, we have demonstrated a reasonable ap-
proach to enable diabetic retinopathy screening for indige-
nous populations.

Acknowledgements: MJC gratefully acknowledges the
financial assistance of the Waikato Medical Research Foun-
dation.
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Abstract

In this paper we examine a new prospect for volumet-
ric image segmentation, the globally minimal surface algo-
rithm, and its application to segmenting anatomical struc-
tures in the brain. Existing minimal surface algorithms typ-
ically use a variational approach and so are prone to be-
coming stuck in local minima. The globally minimal surface
algorithm used here is based on a maximal flow approach
which has been mathematically proven to obtain optimal
segmentations.

We present the application of globally minimal surfaces
to segmenting a number of structures in the brain, as well
as to tracking changes in the shape of the brain in a study
of elderly patients. The results demonstrate that this new
method is able to obtain robust and accurate segmentations
with little user interaction. We conclude that a wide range
of medical segmentation problems may benefit from the ap-
plication of globally minimal surfaces.

1 Introduction

The segmentation of structures in the brain from mag-
netic resonance images is an important early stage in the
quantitative analysis of a range of degenerative brain disor-
ders. This is a challenging problem due to, on the one hand,
the complicated shape of these structures and, on the other
hand, the often poor contrast between tissues in the brain.
As a result a range of segmentation methods have been pro-
posed for this task with varying degrees of success.

Pham et al. [9] presented a complex segmentation
method for reconstructing the cerebral cortex from mag-
netic resonance images. Their method consisted of several
stages including tissue classification, masking of undesir-
able regions of the brain, topology correction and smooth-
ing of the surfaces, and lastly a deformable surface driving

the final result toward the cortex. Unfortunately the tissue
classification suffered somewhat from noise, leading to poor
results in successive stages. In addition the surface smooth-
ing led in some cases to oversmoothing of the final result.

Wang et al. [11] investigated the measurement of volu-
metric changes in brain structures from magnetic resonance
imaging. Their method was based on the classification of
tissue types. This took into account partial volume effects,
leading to a segmentation method with sub-pixel precision.
They presented in [10] a validation of their methodology
on a study of rates of brain atrophy in various stages of
Alzheimer’s, using normal elderly subjects for controls.

Goldenberg et al. [7] proposed a coupled geodesic active
surface model in order to automatically extract the corti-
cal gray matter boundaries in volumetric brain scans. They
also presented an efficient numerical scheme to implement
the coupled active surface model. The resulting segmenta-
tion method was successfully demonstrated on volumetric
magnetic resonance images.

Unfortunately for methods based on the classification of
tissue types such as [9, 11], local image information may
be unreliable due to the presence of noise or irrelevant ob-
jects. This introduces errors into the classification which
must be corrected by later stages. Filtering and geometric
smoothing are common ways to reduce these errors after
the fact however they reduce segmentation precision. Ac-
tive contours and surfaces such as those used in [7] have
been widely applied to image analysis and particularly to
medical image segmentation. They are able to take into ac-
count basic geometric assumptions such as the expectation
of surface regularity. However these methods are known to
be difficult to initialise and often converge to an incorrect
result without manual guidance.

In [3], Appleton et al. presented a novel approach to
medical image segmentation, the globally minimal surface
method. Globally minimal surfaces were proposed by Ap-
pleton and Talbot in [1] as an optimal form of geodesic
active surface. They remove the dependence of geodesic
active surfaces upon their initial configuration, leading to



a reliable and robust segmentation method in practice. A
mathematical proof of their optimality was included in this
paper. A more extensive presentation of globally minimal
surfaces is also given in [2]. Preprints of [2] and [3] may be
obtained from the first author.

In this paper we will present the application of globally
minimal surfaces to the segmentation of anatomical struc-
tures in 3D magnetic resonance images of the brain. Sec-
tion 2 reviews the development of the globally minimal sur-
face method, from the popular geodesic active contour seg-
mentation energy through to a flow-based method which
has been proven to obtain the optimal segmentation surface.
Section 3 explains the practical application of the globally
minimal surface method, including the selection of an ap-
propriate metric as well as the placement of seeds to select
the object to be segmented. Section 4 demonstrates the ap-
plication of globally minimal surfaces to the segmentation
of a number of physiological structures in the brain. In ad-
dition it presents a study into the changes in brain shape and
volume of 8 elderly subjects over a 10 month period.

2 Globally minimal surfaces
2.1 Defining a surface energy for segmentation

Minimal surfaces were proposed for image segmenta-
tion by Caselles et al., initially for two dimensional image
segmentation as geodesic active contours [4], and later in
three or more dimensions [5]. S is the segmentation sur-
face, which is closed as it corresponds to the outline of an
object being segmented. They are smooth closed surfaces
which minimise the following energy function:

E[S] = /S gdS 1)

The metric g is a weighting function over the image do-
main which is obtained from local image information at
each point. As the energy E is to be minimised, the met-
ric should ideally be low on the boundaries of objects and
high elsewhere.

Caselles et al. proposed to minimise this energy using
a variational framework. Beginning with an initial surface,
they evolved this surface by small deformations so as to suc-
cessively lower the surface energy, halting at a local mini-
mum. This surface evolution was implemented using a level
set embedding, the details of which may be found in [4, 5]
and a fast implementation in [6].

Minimal surfaces have proven to be popular in med-
ical image segmentation where the objects under anal-
ysis tend to be smooth but may have widely varying
shapes. Unfortunately the local minimisation proposed by
Caselles et al. and in common use provides no guarantee
on the quality of the final segmentation. This is because

Figure 1. An example of the minimal surface
— maximal flow duality in a two dimensional
image. Arrows depict the flow F while the
minimal surface S forms a bottleneck for the
flow. The source s is a small region inside
the object of interest while the sink ¢t is the
boundary of the image.

the energy described by Equation 1 is highly non-convex,
containing many local minima which may trap the evolving
surface. As a result minimal surfaces often require substan-
tial user interaction in order to obtain good segmentations,
which limits their practical application.

2.2 A maximum-flow formulation

In [1], Appleton and Talbot proposed a novel minimisa-
tion method for this problem. They observed that the min-
imisation of Equation 1 is dual to the maximisation of the
following flow system:

e Conservation of flow: divF = 0.
e Capacity constraint: |F| < g.

Here E' is a vector field representing the velocity of an ideal
fluid at every point in the image domain. Flow proceeds
from one or more sources s inside the object of interest to-
ward one or more sinks ¢ outside of the object of interest.
This is depicted in Figure 1. The speed of the flow is lim-
ited at each point by the metric g. As the flow is increased
it is restricted by the metric, until a bottleneck forms which
prevents any additional flow between the source and sink.
Once this occurs the flow is maximal and the bottleneck is
the globally minimal surface. This dual form of the mini-
mal surface problem is convex, so that the maximisation of
the net flow is very simple to achieve. For additional details



regarding the maximum flow formulation and its numerical
implementation, we refer the reader to [2].

3 Segmentation using globally minimal sur-
faces

In this section we show how to apply the globally min-
imal surface framework to image segmentation. This pro-
cess consists of two parts: firstly the design of a suitable
metric whose minimal surfaces will form good segmenta-
tion contours, and secondly the placement of internal and
external seeds to select the objects to be segmented. Exam-
ples are presented at the end of this section.

3.1 Metric selection

As we seek to minimise the surface energy given in
Equation 1, it is important that the metric g have low val-
ues on the boundary of the object to be segmented and
relatively high values elsewhere. Object boundaries often
exhibit an abrupt change in image intensity or in higher
level features such as colour and texture. Therefore, in [4]
Caselles et al. proposed the following image-based metric:

1
1T VG, <0 €

Here I is the image, G, « is the operation of convolution by
a Gaussian of scale ¢, and |V - | computes the magnitude of
the image gradient. € is an additional parameter controlling
the smoothness of the minimal surface. This was originally
proposed for scalar images but may be extended to colour
images or to texture analysis by extending the definition of
the gradient operator |V - | appropriately.

g 2

3.2 Seed placement

The globally minimal surface method requires the selec-
tion of both internal and external seeds. These seeds con-
strain the minimal surface to include some regions of the
image and to exclude others. Typically the external seed is
simply the boundary of the image while the internal seed is
a small region inside the object to be segmented. However
in complex segmentation problems we may place additional
internal or external seeds to guide the segmentation surface
where the correct object boundaries are ambiguous.

For 3D data it may be somewhat more complicated to
place these seeds. To facilitate the segmentation of volu-
metric data we have designed a simple graphical user inter-
face. This allows a user to navigate through a 3D dataset
by viewing 2D slices. In addition it allows the placement
of polyhedral seeds inside and outside of the object of in-
terest. This user interface is described in more detail in [3]
and may be downloaded for evaluation from [8].

3.3 Examples

Figure 2 depicts the segmentation of a cell in a histologi-
cal section. Here it is only necessary to use a single internal
seed to select this object. Note that despite the large amount
of background clutter in the image, the globally minimal
surface forms a good segmentation.

Figure 3 depicts the segmentation of an x-ray image of
a clavicle. This is a more complex segmentation problem
as several bones and a large screw have overlapped in the
projection to film. As a result in this example it is neces-
sary to use a number of internal seeds, guiding the globally
minimal surface to include each part of the clavicle.

Figure 2. The segmentation of a cell in a his-
tological section using a single internal seed.

4 Reaults

In this section we present the use of globally minimal
surfaces to segment three structures in the brain: the lat-
eral ventricles, the corpus callosum, and the hippocampi.
Data consists of volumetric (3D) T1-weighted magnetic res-
onance images of the head. These segmentations are pre-
sented in order of increasing difficulty to demonstrate the
new segmentation method over a range of problems. We
then present the application of globally minimal surfaces in
a study to track the changes in volume and shape of the
brain in elderly subjects. This analysis may be used to
quantify the progress of degenerative brain disorders such
as Alzheimer’s. Segmentations were performed on T1-
weighted magnetic resonance images.

4.1 Segmenting cortical structures

The first and simplest segmentation is that of the lateral
ventricles, depicted in Figure 4. This segmentation is rela-
tively straightforward due to the simple shape of the ventri-
cles as well as a clear intensity gradient on their boundary.
A single internal seed was placed inside each of the two
ventricles, while the external seed was simply the boundary
of the volume.



Figure 3. Segmentation of an x-ray image of a clavicle.

gradient metric, and the resulting segmentation.

Depicted in order: the original image, a

=lolx

Figure 4. Segmentations of the lateral ventricles from a T1-weighted MRI dataset. Left: A 2D slice of
the segmentation surface. Remainder: Different 3D views overlayed on the original data.

The second segmentation is a medial portion of the cor-
pus callosum, depicted in Figure 5. The segmentation of the
corpus callosum is more challenging than the segmentation
of the lateral ventricles, as the boundary of the corpus cal-
losum is obscured as the slices advance in a saggital aspect
from the mid-plane of the brain. This segmentation required
only a single internal seed, with the external seed being the
boundary of the volume as before.

The third and most complex segmentation is that of the
hippocampi, depicted in Figure 6. In this case the external
seeds were bounding boxes for each hippocampus, while
the internal seeds were line-like polyhedra following the
centre lines of the hippocampi. The contrast in this segmen-
tation is poorer due to the presence of some cerebro-spinal
fluid (CSF) and white matter in adjacent to the hippocampi.

4.2 Tracking changes in shape

Due to degenerative diseases or simply as a consequence
of aging a patient’s brain may change shape over time. Lo-
cating and quantifying these changes may assist in the early
diagnosis of degenerative diseases.

MRI datasets were taken from a large cohort in a compar-
ative study into Alzheimer’s disease and normal aging [11].
Eight data sets from eight elderly control subjects were
used. Datasets consisted of two volumetric scans acquired
from the same subject with 10 months separation. Each pair
of datasets was co-registered prior to segmentation using a
Euclidean (rigid body) transform. Following segmentation
we may track changes in the shape of the brain according to
the offset distance between the two snapshots.

Table 1 presents the differences in volume as well as the
similarity index [12] of each subject’s brain over the period
of the study.

Figure 7 shows the changes to the brain in the 6th sub-
ject, who exhibited the greatest change in shape. Depicted
are corresponding 2D slices which show that the most sig-
nificant changes have taken place at the base of the brain.
A surface offset map is also given showing areas of con-
traction (blue) and expansion (yellow). This analysis may
be useful for locating particular areas of the brain which are
atropying due to disease or expanding due to tumour growth
for example.



Figure 5. Segmentation of the corpus callosum from a T1-weighted MRI dataset. Left: A 2D slice of
the segmentation surface. Remainder: Different 3D views overlayed on the original data.

Figure 6. Segmentations of the hippocampi from a T1-weighted MRI dataset. Left: A 2D slice of the
segmentation surface. Remainder: Different 3D views overlayed on the original data.

5 Conclusion

We have presented a new method for the segmentation
of anatomical structures in the brain from magnetic reso-
nance images. This method is based on the computation of
a globally minimal surface according to a metric and a set
of seeds. The metric is derived from the image data while
the internal and external seeds select the object to be seg-
mented and may also be used to fine-tune a segmentation.
The globally minimal surface algorithm based on a maximal
flow formulation is more robust than previous variational
approaches such as level sets. Results have been presented
demonstrating the application of this new method to seg-
menting a number of structures in the brain as well as to
tracking changes in brain shape in elderly subjects. Based
on these results, we suggest that globally minimal surfaces
may be useful for a broad range of medical segmentation
applications.

References

(1]

(2]

(3]

[4]

B. Appleton and H. Talbot. Globally optimal surfaces
by continuous maximal flows. In C. Sun, H. Talbot,
S. Ourselin, and T. Adriaansen, editors, Digital Image
Computing: Techniques and Applications, Proc. VIIth
APRS conference, volume 2, pages 987-996, Sydney,
December 2003. CSIRO publishing. Awarded best
student paper prize.

Ben Appleton and Hugues Talbot. Globally minimal
surfaces by continuous maximal flows. IEEE Trans.
on PAMI, 2004. Submitted.

Benjamin C. Appleton, David N. R. McKinnon, and
Deming Wang. Globally minimal surfaces for medical
image segmentation. Medical Image Analysis, 2005.
Submitted.

V. Caselles, R. Kimmel, and G. Sapiro. Geodesic ac-
tive contours. 1JCV, 22(1):61-79, 1997.



<o) |CTE—

File ROI Segmentation Image

W MR

Fie ROl Segmentation Image

(2, 65,92) 1=14

| | t61,0,92) 1=6

=101 ]

Figure 7. Tracking changes in the 6th dataset. Depicted in order: 2D slices of the segmentations at
10 months separation, a 3D view of the initial segmentation, and a surface offset map.

Subject 1 2 3 Z 5 6 7 8 || Mean
%\Vol. diff. | 1.34 042 002 058 200 292 066 019 | 091
Sim.index | 0.986 0983 0985 00989 0984 0981 0989 0.988 || 0.986

Table 1. Tracking changes in brain volume and shape over a 10 month period in 8 subjects. Presented
are the differences in volume in each subject’s brain as well as the similarity index of its shape.

(5]

(6]

[7]

(8]

(9]

[10]

Vicent Caselles, Ron Kimmel, Guillermo Sapiro, and
Catalina Sbhert. Minimal surfaces based object seg-
mentation. IEEE Trans. on PAMI, 19:394-398, 1997.

R. Goldenberg, R. Kimmel, E. Rivlin, and
M. Rudzsky. Fast geodesic active contours. |IEEE
Trans. On Image Processing, 10(10):1467-1475,
2001.

R. Goldenberg, R. Kimmel, and M. Rudzsky. Cortex
segmentation - A fast variational geometric approach.
IEEE Trans. on Medical Imaging, 21(2):1544-1551,
Dec 2002.

D. McKinnon and B. Appleton. CMR: Segmenta-
tion Application, 2004. http://itee.ug.edu.au/ mckin-
non/cmr.

D. L. Pham, X. Han, M. E. Rettmann, C. Xu, D. To-
sun, S. Resnick, and J. L. Prince. New approaches
for measuring changes in the cortical surface using an
automatic reconstruction algorithm. In SPIE Medical
Imaging 2002 Conf., San Diego, CA, Feb 2002.

D. M. Wang, J. B. Chalk, G. de Zubicaray, G. Cowin,
G. J. Galloway, D. Barnes, D. Spooner, D. M. Dod-
drell, and J. Semple. MR image-based measurement
of rates of change in volumes of brain structures Part
I1: Application to a study of Alzheimer’s disease and

[11]

[12]

normal ageing.
2002.

Magn. Reson. Imaging, 20:41-47,

D. M. Wang and D. M. Doddrell. MR image-based
measurement of rates of change in volumes of brain
structures Part I: Method and validation. Magn. Reson.
Imaging, 20:27-40, 2002.

A. P. Zijdenbos, B. M. Dawant, R. A. Margolin, and
A. C. Palmer. Morphologic analysis of white mat-
ter lesions in MR images: method and validation.
IEEE Transactions on Medical Imaging, 13(4):716-
724, December 1994,



Multigrid Methods for Anisotropic Diffusion

Simon Long

Intelligent, Real-time Imaging and Sensing Group
School of Information Technology and Electrical Engineering
The University of Queensland
E-mail: simonl@itee.ug.edu.au

Abstract ations to be performed may form a parameter of the sys-
tem, or the PDEs may contain a reaction term [8] to pre-
Multigrid methods provide a means with which to ac- vent a trivial solution. The latter diffusion-reaction allows a
celerate the solution of many problems derived from multi- more finely tunable process with an analytical solution for a
dimensional linear and nonlinear Partial Differential Equa- given image independant of the initial estimate. Like most
tions. A multigrid approach is applied to anisotropic diffu- pure relaxation methods, it is slow to resolve low-frequency
sion, a process that is useful for image smoothing and edgeartefacts and the rate of convergence decreases sharply with
strengthening. It is demonstrated to improve the response ofimage size.
the diffusion process by smoothing stubborn low-frequency Different discretisations of the same equations have
artefacts. Where traditional relaxation approaches are used yielded implicit schemes that are significantly faster than
to solve large systems of equations on high-resolution im-the original explicit scheme. The Additive Operator Split-
ages, multigrid methods sustain superior rates of conver-ting (AOS) scheme is an order of magnitude faster than the
gence to arbitrary precision and provide a computational explicit formulation [7] but also suffers with image size.
complexity that is linear in the number of pixels of the im- Further adaptation of AOS has embedded the process
age. in a pyramid framework [8]. This acts as a simple multi-
resolution approach to mitigate low-frequency artefacts and
tends to increase greatly the speed of AOS. However,
1. Introduction amending the AOS scheme in this manner is only weakly
justified and a more stringent theory is desirable.

Especially in the context of medical imaging, data is Multi-resolution schemes in general use the efficiency
recorded from increasingly high-resolution sources in mul- of an algorithm acting on a small image, by exploiting the
tiple dimensions. This expansion poses several problemssimilarities between the solutions of the process on a fine
for existing image processing techniques, relating to the grid and a coarse grid. Multigrid approaches fall into this
scalability of the algorithms designed to process this data. Ccategory, and can solve a relaxation process on a linear sys-

Anisotropic diffusion techniques were originally used tem of equations in optimal time complexity [3]. That is, to
for the generation of scale spaces by Perona and Malik [6]reach a solution of desired precision, the cost of a multigrid
and were quickly characterised by their edge strengtheningapproach is linear in the number of pixels in the image.
and image simplification properties [4]. These character- The basic operation of a multigrid scheme involves the
istics make them useful in preprocessing stages for manytransfer of images between fine grids containing many pix-
medical segmentation and edge detection problems. In genels and coarse grids with fewer pixels. On coarser grids the
eral, anisotropic diffusion filters been shown to estimate a solution error is improved at lower frequencies, while on the
piecewise smooth image from a noisy one [2]. finer grids the solution error is improved at the higher fre-

Diffusion in image processing acts much like the phys- quencies. When applied to anisotropic diffusion [1] multi-
ical process of diffusion, causing dispersion of intensity at grid allows effective reduction of low-frequency artefacts at
each point while conserving the average grey level of the a similar rate to high-frequency artefacts, without losing the
image. The process acts iteratively in an explicit discretisa- properties of edge strengthening and region smoothing.
tion of the continuous Partial Differential Equation (PDE), Multigrid methods are suited to improving iterative pro-
relaxing on the estimate at each step to generate a succegesses on multi-dimensional data, especially where the so-
sively smoother and simpler image. The number of iter- lution may be arbitrarily precise. Since their initial devel-
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opment for solving naturally occurring PDEs, multigrid has many iterations, the second eigenvalue will determine the
seen extensions to incorporate nonlinear problems and theate of convergence; its value will tend to increase nonlin-

algebraic abstraction to problems on irregularly shaped net-early towards one as the size of the image increases. This
works, demonstrating the versatility of the methods to solv- would cause, for instance, more than twice the computation

ing many varied forms of problems. for an image with twice as many pixels.
When the stopping time is to be only several iterations it
2. Anisotropic Diffusion is clear that certain components of the error being corrected

by the diffusion process will respond much more quickly
than others, leading to the presence of larger, spurious arte-
facts within the image. Adding a backwards reaction to (3)
can mitigate this problem by providing a non-trivial solu-
tion to the system of equations that can be solved entirely.

As introduced by Perona and Malik [6], anisotropic dif-
fusion in image processing is a discretisation of the family
of continuous partial differential equations that include both
the physical processes of diffusion and the Laplacian.

ou W = (I +7A) uF + B(w — u¥) 4
— =V -(cVu) 1) . o
ot The final term of (4) ensures that the diffusion process
The continuous equation in (1) describes diffusion in does not drift too far from the original image, .
general on a continuous image where the precise na- The AOS method introduced by Weickert uses a different

ture of ¢ determines which of the distinct kinds is to oc- discretisation of (1), wherein the matrix representation of
cur. Anisotropic diffusion is denoted by a tensor-valued the relaxation process is given by the implicit formulation
c that prevents flow across areas of high discontinuity, re-

stricting diffusion from smoothing across discernible object X 1 o
boundaries. In the explicit discretisation employed by We- uftt = m Z (I —=m7A) " u ©)
ickert [7], the effect of: operating on: can be expressed in =1

the following form This yields stability in convergence for all positive time-

stepr, while the explicit method (3) is restricted in With
m gk + g increased values of, Weickert [7] demonstrated a ten-
ufth =uf 7y Y ]2h2 “(uf —uf) (2)  fold speed gain when compared to the explicit formulation.
I=1 jEN (3) l However the cost of every improved bit of precision will
still decrease dramatically as image size increases, making
The system in (2) represents a network in whichithe it ynsuitable for applications of increased precision.
pixel intensity of thekth iterationu; will flow towards a

neighbouring pixel of lower intensity, at a rate weighted
by the average of the two corresponding diffusivity coef-
ficientsg;, g;. HereN(i) denotes the two neighbours of
pixel i along axisl. Essentially, this operation is relaxation
performed onu on a grid of steph; along thel axis. The

3. Applying Multigrid Methods

Although the original multigrid method was first applied
to solve problems involving linear operators in naturally oc-

coefficients ofg will take values between and 1, where curring systems of PDEs, it has since been developed to

a zero value denotes the presence of an edge in the imagé?andle nonlinear systems of equations, such as the class de-
Weickert's formulation ofy is based somewhat on that of scribed above for anisotropic diffusion. Several methods
Caté [4] exist to apply multigrid approaches to nonlinear systems,

such as the Full Approximation Storage method [5]. Other
approaches assume linearity over small time-steps.

il m N ) When performing anisotropic diffusion, letbe the so-
T =T+ 7Y A | uf = (T +7A)u (3)  Iution to the system of diffusion equations
=1

If the right hand side of (2) is expressed in matrix form Av=f (6)
as (3) then each element along the diagonalo#ill be
negative, and will equal the sum of the remaining (positive)  In the case of (3)f is zero, whileA is an operator con-
elements in the row. This indicates that the least eigenvaluetaining the diffusivity coefficients generated farlt is con-
of A will be of zero value, and under the assumption that venient to describe an estimaten terms of the solution
the process converges, the greatest eigenval(e efr A) less an errory — e. Relaxation upon the estimate reduces
will have a value ofl, characteristic of such PDEs. After this error until the stable solution is reached.
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Denoted by, is them-dimensional grid of step size
on which this image is sampled. A coarser gfld, can
be defined by doubling the sampling period along each di-
mension. Multigrid also names thestriction operator(-)
to transfer an image frorfY;, to Q5;, and theprolongation
operator (-);to transfer an image frorfdy;, to ;. The
Galerkin condition specifies that these two (linear) inter-

4. Results

In Section 3, the multigrid framework was presented
with the aim of applying it to anisotropic diffusion. The
nonlinear approach selected assumes linearity during indi-
vidual iterations. The inter-grid transfer operators used are
the traditional upsample and nearest-neighbour interpola-

grid transfer operators should be transposes of each othefion operator and its transpose, the nearest-neighbour blur

by a factor of2™.

The operation ofd on 25, is in fact a reformulation of
the original PDEs on the coarser grid. Equation (7) illus-
trates howA operates on a coarser grid.

A ugp = (A~ (u2n)1)| (7

The residuat, of a solution estimate;, on a gridQ;, is
defined as

Th=f—A u 8
For a relaxation scheme on a gf, multigrid proposes

a similar relaxation scheme for a system of equations (9) on

a coarser grid2o;, and equates the residuals of the two (11).
Most importantly, the solution to the fine grid problem is ex-

and downsample operator [3].

Given the recursive method with which multigrid aug-
ments relaxation at many grid resolutions, each full multi-
grid iteration will naturally have a computational cost
higher than a single iteration of relaxation on the original
image. If a single relaxation operation on the finest grid
of m dimensions is taken as a unit ca@gtax of computa-
tion and the cost of performing a single relaxation iteration
scales linearly with the number of pixels in the image, then
the relative cost’,_ ... Of @ multigrid v-cycle iteration is
approximately

Cy-cycle = 2Celax - (1 +27m 427 Im ) (15)
2C
Cv-cycle = % (16)

actly a solution to the coarse grid problem — once reached in

the fine grid, further relaxation in the coarse grid will cause
no change. The relaxation on the coarser grid effectively
solves a portion of the error in the fine grid problem.

A - ugp = fon 9)

ron = fon — A - uap (10)

fon — A (un)) = (fn — A-un)) (11)
cofon = (Th)l + A- (uh)l (12)

Equations (9)-(12) yield the terms of (7) necessary to
solve as completely as possible far in 5, for some
estimateu;, of the solution in the fine scale. Once some
satisfactory value of,;, has been obtained, the coarse grid
erroresyy, for uy, is

(13)
(14)

ean = (vn)y — (un)| = van — (un)|
up, < up, + (e2n)7

The coarse grid error is then used as in (14) to correct the

fine grid estimate.
Solving forus;, could be done by performing relaxation

on (9). Note however that (9) is a set of equations essen-

tially the same as (6) — the true elegance of multigrid is
that coarse grid correction can be performed hierarchically,
minimising the total relaxation performed on still coarser
grids. Themultigrid v-cycleis one such recursive structure,
its coarse grid correction consisting of brief relaxation be-
fore and after a still coarser grid correction.

Compared to the relaxation iteration, each multigrid iter-
ation is significantly more efficient. Figure 1 compares the
two when operating to solve a linearised diffusion-reaction
problem to convergence as in (4). The progress of each is
measured by comparing the norm of the erfe} in the
solution estimate to the equivalent cost in relaxation oper-
ations performed. The size of the logarithm of this norm
yields the number of digits to which the error is minimised.
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Pure Relaxation
Multigrid V-Cycle

0001 F
0.0001 |
105 |-
1606 -

1e-07 |

Norm of solution error ||e]|
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450

Figure 1. Comparison of cost of convergence
of multigrid and pure relaxation anisotropic
diffusion processes.
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Well and truly before the relaxation operation reaches its
range of linear convergence, it is clear that the multigrid
method has reached a constant number of converged digits
per iteration, and that the rate of convergence for the multi-
grid approach is much faster.

Figure 2 indicates the change in the cost of computation
caused by image size. The major advantage of multigrid
methods is that the cost of convergence is linearly related to
the number of pixels in the image. In this figure is plotted
the progress of multigrid anisotropic diffusion acting on an
image and on a half-size representation of the same image
(one quarter of the total number of pixels). The cost of con-
verging further digits for the small image is one quarter that
for the large image.

(b) Diffused with multigrid
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Y
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te12 | 1 Figure 3. A comparison of anisotropic diffu-
sion techniques acting on (a) a microscope

letd 1 image of Actinocyclus Actinochilus, a diatom

using (b) multigrid, and (c) pure relaxation.
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relaxation method was less effective at smoothing. Fig-

Figure 2. Comparison of cost of convergence ure 4(d) shows that the multigrid method produced fewer
of multigrid anisotropic diffusion on an image spurious edges and blocks.

of two different sizes.

5. Conclusion

Figure 3 illustrates the efficiency of multigrid at remov-
ing many levels of noise from a solution. The image of the  Multigrid methods are a means to accelerate linear and
diatom was processed with anisotropic diffusion, both by nonlinear relaxation problems derived from PDEs. They
performing three iterations of multigrid, and by using the provide convergence to within a given precision that is lin-
eight iterations purely of relaxation that comprise the same ear in the number of pixels in an image, and can be applied
computational cost by (16). The difference in remaining to systems of equations of any number of dimensions. The
detail between Figures 3(b) and 3(c) is mostly comprised of hierarchical operation on an estimated solution allows for
larger patches of discolouration that pure relaxation failed the correction of many scales of error at once, where tradi-
to diffuse. Simplified in this manner, Figure 3(b) could be tional relaxation methods would perform poorly.
easily processed by a simple segmentation algorithm for de-  Anisotropic diffusion is useful as a preprocessing stage
riving the boundary of the diatom. to higher levels of image processing. It smooths image

As a denoising tool, anisotropic diffusion is generally interiors to accentuate boundaries for segmentation; it re-
considered quite effective. Figure 4(a) presents a clean im-moves spurious detail to improve the response of edge
age of a lung, corrupted in Figure 4(b) by independent anddetection algorithms; it also proves effective at removing
identically distributed additive Gaussian noise of standard noise from images. However, relaxation processes that
deviatione = 0.01. The noisy image was anisotropically implement anisotropic diffusion tend towards leaving low-
diffused using relaxation to give Figure 4(c). As the noise frequency artefacts that are difficult to dissipate without
was diffused, it formed irregularities in the image that the over-processing the image.
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(b) Image with additive
noise,c = 0.01

ALL

(c) Denoised with relaxation

(a) Original image

(d) Denoised with multigrid

Figure 4. Comparing diffusion methods for
denoising; (a) the unaltered image; (b) with
additive Gaussian noise; (c) denoising using
relaxation; (d) denoising using multigrid.

Combining anisotropic diffusion with multigrid meth-
ods greatly diminishes the artefacts introduced, improving
the response of the processing while reducing the compu-
tational cost. Multigrid methods can be broadly applied to
many other PDEs for similarly excellent improvements in
computational efficiency.
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Abstract

The  Electrocardiogram  (ECG), by appropriate
mathematical exploration, can be used to detect a majority
of heart ailments. As a first step of detection of the disease,
the ECG of a medically sound person must be distinguished
from that of a diseased person. In this paper, we discuss a
method to distinguish a normal sinus rhythm ECG from an
arrhythmic ECG. The method involves the study of the
shape of beats. Though there are slight alterations, the
shape of the beats in an ECG sample largely remains the
same. The frequencies that determine the shape of each
beat vary;, however, only by a small amount with the
occurrence of every new beat. Substantial phase coupling
among some frequencies present in the beats of an ECG
sample might be the cause for such a similarity in the shape
of the beats. Though there may be other frequencies that
contribute to the shape of the beat, the contribution of the
phase-coupled frequencies is significant. Such phase-
coupled frequencies of an ECG signal are traced by using
the third order spectrum namely the Bispectrum. The
bispectral frequencies determine the elemental shape of
every beat present in the sample. Having found the
bispectral frequencies present in the sample, the Fourier
series of the replicated individual beat is studied. By
appropriate comparison of the two, the frequency
components present in the beat, which determine the shape
of beat can be known. The properties of such frequencies
can effectively characterize an ECG into rhythmic or
arrhythmic.

Keywords
Beat, Bispectrum, Fourier series, Phase-coupling.

INTRODUCTION

The cardiac function is analogous to a feedback system in
which output is a non-linear function of the input.
Electrocardiogram (ECG) is a graphical representation of
the cardiac function, and hence depicts this constant
adaptation of the heart.

The shape of beats in an ECG differ from one other though
the elemental shape of a beat is preserved in all of them.
This elemental shape is determined by a few frequencies
that show strong phase coupling over a large dataset. The
power spectral analysis can be used to characterize the
frequency components present in an ECG sample.

However, it cannot deliver any information regarding their
phase coupling since it is phase blind in nature.
Consequently, the power spectrum fails to describe the
relationship between the different frequency components of
the spectrum.

Higher order statistics can estimate the statistical coupling
among the frequencies present in a given data [1]. In this
study, we use bispectrum, which is the third order
spectrum, to trace the frequencies that show good
correlation and further study their characteristics.

THEORY OF BISPECTRUM AND BICOHERENCE

Higher-order statistics indicate the expectation of more
than two values of a stochastic process. The third order
statistic, called the third order cumulant, has the following
mathematical form :

cs(tntr)=2{s(t;) s(t;) s(t;+1:)}

Bispectrum is defined as the two dimensional Fourier
Transform of the third order cumulant [2, 4].
+o0 +o0
Gi(m, ;)= 3 X C(ty, to) exp {j (o1 ¥+ 1)}
t=-0 t=-o
oo <7

Thus, the bispectrum is a three dimensional function with
the magnitude of bispectrum plotted against the two
frequencies ®; and ,. It measures the correlation between
three spectral peaks at the frequencies ®;, ®, and (©®;+®,)
and thereby estimates the phase coupling between them. As
it has twelve regions of symmetry, the knowledge of any
one region, for example ®,>0, ®;>wm,, and ®;+w,<7 is
sufficient for its complete description. Strongly coupled
frequencies can be effectively traced using the bispectrum.
Nevertheless, weakly coupled but strong oscillations would
result in the same bispectral value as strongly coupled but
low power oscillations. In order to overcome this problem,
bicoherence function is used. The bicoherence function is
the normalized form of bispectrum with respect to its
power spectrum.
Cs (o, )
B (o, wp) =

| S (@) S (@) S (o1 @) |

where S (®) is the estimated power spectrum of the signal.



For weak correlation between the three spectral peaks,
bicoherence value is low and for strong correlation, it is
high [3].

METHODOLOGY
Motivation

By visual inspection, we notice that the shape of the beats
in an ECG sample is quite similar. However, on closer
observation, it can be noted that there are slight distortions
in the shape of every beat that make it distinctly different
from every other beat of the sample.

In order to study the shape of a single beat in the frequency
domain, we have replicated the shape of the beat infinitely
in the time domain to form a periodic waveform. The
Fourier Series (FS) of such a periodic signal reveals the
frequency components present in it. Thus, the unique shape
of every beat of the sample can be characterized by its
frequency components. However, of all the frequency
components that contribute to the shape of the beat, the
contribution of the phase-coupled frequencies is significant,
with the contribution of the rest being minimal. As the
shape of the beat varies by a small amount with the
occurrence of a new beat, we expect the phase-coupled
frequencies to shift by only a small amount in the
frequency domain. However, of all the frequencies present
in the FS of a beat, we need to trace only the phase-
coupled frequencies. In order to do that, we mathematically
define an elemental shape of the beat for a given sample
(ESB), with the actual shape of every beat being the result
of a small distortion in the ESB. Hence, the frequency
components contributing to the shape of the ESB would be
the frequencies lying close to the phase-coupled
frequencies of every beat in the sample.

The frequency components of ESB can be found out by
using the bicoherence function. The bicoherence reveals the
strongly coupled frequencies of a given sample. Thus, by
computing the bicoherence of an ECG sample, we can
obtain the bispectral frequencies (BF) that contribute to the
shape of the ESB. The bispectral frequencies are now
compared with the FS of a replicated single beat. The
frequencies present in the FS of the replicated beat lying
close to the BF are expected to predominantly contribute to
the shape of the beat. These frequencies are termed as the
shape determining frequencies (SDF). The properties of
SDF are studied to characterize the ECG.

Frequency Detection (FD) procedure

The block diagram of the FD procedure is depicted in
figure 1. The signal is conditioned by DC extraction and
amplitude normalization using a high pass filter (5th order
Butterworth having cutoff frequency of 3Hz). The
bicoherence of data of length 60 — 70 beats is then
computed (FFT length = 512 (Hz)). The output is a three
dimensional quantity with the magnitude of bicoherence
plotted against independent frequency axes ; - o, [Fig.2].

The location of peaks having the maximum amplitude is
observed in the form of (®;,®, ). The bicoherence indicates
that that the peaks occurring at ®;, @,, and (®,+w,) are
correlated to each other. The extent of correlation is shown
by the magnitude of such peaks. The bicoherence is
computed over a large data (overlap = 50,FFT length = 512
(Hz)) to get purely phase-coupled frequencies.

Recorded ECG

v

DC extraction

v
v v

Bispectrum / Window
Bicoherence Individual Beat
Bispectral Fourier series of
frequencies (BF) the replicated beat
(FS)

\ 4

Frequencies actually present in FS
of individual beat near the BF
(SDF) that maintain ASDF

v

Ratio of frequencies in FT at
SDF (RSDF)

Figure 1. Block diagram of the Frequency Detection
procedure

Having obtained the BF, the SDF that show up in an
individual beat are found by the following procedure. A
single beat is isolated from the ECG by using a rectangular
sliding window. The frame size (M) of the sliding window
is set in accordance to the sampling frequency f;, such that
the frame size equals the size of a beat. The signal is
windowed using a non-overlapping rectangular window of
size¢ M samples. The windowed signal is replicated
infinitely in the time domain and its FS is computed. The
frequencies lying close to BF are separated. The amplitudes
of those frequencies are observed over few beats (8 — 10)
and amplitudes of the shape-determining frequencies
(ASDF) are established. Peaks having magnitudes equal to
ASDF and occurring close to BF are separated and termed
as the SDF. The process is repeated for all the beats in the
sample. The ratio of the magnitudes of SDF (RSDF) is
computed and compared.



Implementation

The simulation is done using the Higher-Order Spectral
Analysis toolbox of the MATLAB package. Archives from
the MIT/BIH Arrhythmia database [5] are analyzed, which
contain arrhythmic ECG of length 30 min and sampled at a
sampling frequency of f; = 360 (Hz). Normal ECG is
obtained from MIT-BIH Normal Sinus Rhythm Database
[5]. This data is sampled at f; = 128 (Hz).

RESULTS AND DISCUSSION

The FD procedure is applied to a set of normal and
arrhythmic ECG samples shown in Table 1. The
bicoherence shows maximum amplitude at several
locations in the ®;-®, plane due to symmetry. However,
only one region of symmetry (>0, ®;>w,, and ®;+w,<7)
is considered to obtain the BF. These frequencies are
compared with the FS of the replicated individual beats to
establish the ASDF. The bispectrum is also used to detect
the bispectral frequencies. It is observed that the
bispectrum has the frequencies shown by the bicoherence
along with some additional locations of frequencies in ;-
, plane. However, we have selected the shape determining
frequency components of interest by following the FD
procedure that compares the BF with the frequency
components of the beats. Those final frequency
components obtained using the bispectrum are same as
those obtained using bicoherence. The frequencies of
additional peaks shown by bispectrum, when compared
with the FS of the replicated individual beats, had higher
amplitudes than the expected values. Thus, bicoherence
seems to be a better option as compared to bispectrum.

magnitude of bicoherence

wl (H 2] 00 w2 (H Z]

Figure 2. Bicoherence (magnitude vs. -, plot) of
16420th sample taken with Nyquist frequency = 300 (Hz)

The bicoherence of the sample 16420 is shown in Fig.2 and
the bispectrum of the same sample is shown in Fig.3. In
this particular sample, a sample length of 100 beats has
been taken. The bicoherence plot of the sample shows
several peaks of significant magnitude. But taking
symmetry into consideration, we obtain only one

significant peak of interest. The bispectral frequencies of
that peak are observed to be (563,287). These frequencies
are scaled up by a factor of 10, with this factor being
consistently maintained over the computation of FS of the
replicated individual beats. Figure 4 shows the comparison
of the BF with the FS of a replicated single beat of the
sample. In order to locate the SDF of this beat, the
frequencies present in the FS of the replicated beat lying
close to the BF have to be traced. The SDF of this beat are
found to be 385 and 561. These are the frequencies at
which significant amplitude in the vicinity of the BF
occurs.

w10

wl(Hz) 0o w2H2)

Figure 3. Bispectrum (magnitude vs. o;-, plot) of
16420th sample taken with Nyquist frequency = 512
(Hz)

The amplitudes of the SDF are observed over 8 — 10 beats
and ASDF is estimated. Having obtained the ASDF, the FS
of the replicated signals of different beats of the sample are
calculated. The ratio of the frequencies lying close to the
BF maintaining ASDF is also computed.

In the normal database, shape of beats remained
consistently similar though there is a slight amount of
distortion. The SDF were observed to have the same ratio
over all beats of the sample. The ratios are shown in the
Table 1. The ASDF could be estimated since the
amplitudes of the SDF in the corresponding FS of the
replicated beat were found to be nearly equal. On the
contrary, the arrhythmic signals showed a distinctly visible
variation in shape at specific locations of the signal. In spite
of the presence of malady in an arrhythmic ECG, heart tries
to get back to the normal condition. In such an attempt, it
tries to maintain the shape of beat consistently. But it fails
at some locations, where a distinct distortion in shape
occurs. A consistent ratio of SDF could not be obtained
indicating the abnormality present in every beat of the
arrhythmic ECG. However, the approximate value around
which the ratio of SDF existed could be estimated, which is
shown as ARSDF in the Table 1. While there is a distinctly
visible distortion in the shape of beat, the frequencies near
BF do not maintain ASDF as expected. The peaks



maintaining ASDF that exist in the FS of replicated beat for
the beats prior to the distinctly distorted beat are found to
be absent. In the distinctly shape-distorted beat of sample
101, the amplitudes of peaks occurring at SDF are nearly
twice the amplitudes of SDF of the sample. The distorted
beats in the other samples of arrhythmia database show
significantly different amplitudes from ASDF. The ratio of
the average of amplitudes of SDF of the distorted beat to
that of the sample is shown as RDB in Table 1.

00

SOF of the beat

Figure 4. SDF at frequencies 385 and 561 BF (w1,
w2) = (563,387)

CONCLUSIONS

Bispectral analysis using the bicoherence reveals the phase-
coupled frequencies present in an ECG sample. The
comparison of bispectral frequencies with the Fourier series
of replicated single beat of the sample reveals the actual
frequencies that determine the shape of that particular beat.
The ratio of such frequencies remains constant and their
amplitudes remain nearly same in the case of normal ECG.
In an arrhythmic ECG, the amplitudes of the frequencies
vary when the abnormality occurs resulting in the distortion
of shape. The peaks maintaining ASDF that exist in the FS
of replicated beat for the beats prior to the distinctly
distorted beat are found to be absent. The cause for such an
absence might be the entry of a foreign frequency that
disturb the spectrum. The shift of prior existent peak to
some other position and the occupancy of the vacant
position by a peak of different magnitude might have led to
a change in the shape of the beat. This indicates the
presence of disease in an arrhythmic ECG. The frequencies
that the bicoherence displayed are present in the bispectrum
as well. However, bispectrum shows some extra
frequencies that do not contribute to the shape of beat.
Hence, bicoherence proves to be a better option than the
bispectrum. Thus, the Frequency Detection procedure

effectively distinguishes between a normal and an
arrhythmic ECG and hence helps in succssfully
characterizing an abnormal ECG.

Table 1. Result of the frequency detection procedure
when applied on MIT-BIH electrocardiogram database

Normal Sinus Rhythm Database

File Name M RSDF
16265.dat 75 1.128
16272.dat 125 1.019
16273.dat 125 1.012
16420.dat 80 1.457
Arrhythmia Database
File Name M ARSDF RDB
101.dat 300 1.004 2.2
102.dat 250 1.056 1.92
103.dat 300 1.061 1.78
104.dat 300 1.041 2.42
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Abstract

The extraction of a fractal code from an image involves
the partitioning of the image into a set of range blocks.
There is also a corresponding set of domain blocks to
choose from. For each range block, a suitable domain block
is found using some prescribed criterion. The mapping be-
tween the domain and range blocks, which is a contrac-
tive transformation, forms the fractal code for this range
block. The fractal code for the image is a collection of frac-
tal codes for all range blocks. Because domain and range
blocks can be chosen from different part of the image, a
small change in one parts of the image can affect fractal
codes for other parts. In this paper, we define subfractals
which are independent fractal codes for different parts of
the image. This feature of subfractals is useful for new ap-
plications of fractal image codes in pattern recognition, es-
pecially face recognition. This paper introduces an algo-
rithm for extraction of subfractal codes for a gray-scale im-
age.

1 Introduction

The fractal code of an image is a set of contractive map-
ping each of which transforms a domain block to its cor-
responding range block. The distribution of selected do-
main blocks for range blocks in an image depends on the
content of image and the fractal encoding algorithm used
for coding. Some methods use the best matching domain
while some others use the first match. The shapes of do-
main blocks can be square, rectangle, triangle and so on.
The size of domain blocks in the domain pool can also be
fixed or variable. All of these parameters can combine to
make the fractal codes sensitive to small changes in image.
A small variation in a part of the input image may change
the contents of the range and the domain blocks in the frac-
tal encoding process, resulting in a change in transforma-

{v. chandran, s. sri dharan }@ut. edu. au

tion parameters in the same part and other parts which use
the domain blocks of this part. In this paper, we introduce
a new method of fractal image coding to make the fractal
code of each part independent of variations of other parts.

2 Subfractals

Is there any local relationship between range and domain
blocks of an image? It is one of the first questions that
any researcher in this field may ask. Fisher in his book [3]
(chapter 3, page 69-72) tried to show that the correspond-
ing domain block for each range block is random in posi-
tion relative to it. He plotted the distributions of the differ-
ence in the x and y positions of the domains and ranges for
an encoding of 512 x 512 Lena image as well as the the-
oretical distribution of the difference of two randomly se-
lected points as shown in Figures 1 and 2 . In these Figures,
(zr,yr) and (z4,yq) are the range and domain positions.
Fisher calculated the probability distribution of d, and d,, ,
where d and d,, are the differences in « and y coordinations
of two points randomly chosen in the unit square with uni-
form probability, as p(d,) = 1 —|d,| and p(d,) = 1—|d,]|.

In the book, Fisher mentioned ”so even when the points
are chosen randomly, it appears that there is a preference
for local domains. However, this is an artifact .. .there is a
slight preference for local domains, but the effect is small”.
It may be a small effect for fractal compression but it plays
a big role in the fractal recognition. If the relation between
range and domain blocks is random, a small variation in a
part of the image will change the range and domain blocks
in a random area. Also this change may cause a change
in the fractal codes of all the range blocks which are cor-
responding to those domain blocks. It clearly shows that if
the domain blocks’ distribution is random, a small change in
some part of an image will affect the fractal codes of other
parts, and it means that this change will be propagated ran-
domly. On the other hand, as Fisher explained, traditional
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Figure 1. A distribution of the difference in
the z position of the domains (x4) and ranges
(x,) for an encoding of 512 x 512 Lena image,
as well as the theoretical distribution (dashed
line) of the difference of two randomly se-
lected points. Adopted from Fisher[3].
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Figure 2. A distribution of the difference in
the y position of the domains (y,) and ranges
(yaq) for an encoding of 512 x 512 Lena image,
as well as the theoretical distribution (dashed
line) of the difference of two randomly se-
lected points. Adopted from Fisher[3].

fractal image coding methods prefer to choose local domain
blocks for each range block but it will not always happen.
Our experiments have shown that non-constant range blocks
from a given segment tend to use domain blocks from the
same segment. As can be inferred from Fig.1 and Fig.2, for
a sample image like Lena (512 x 512 ) the number of range
blocks which match with domain blocks in their neighbor-
hood with a radius of 60 is significantly higher than a ran-
dom matching between two blocks. This is owing to sim-
ilar properties such as the same texture. This fact makes
some usage of fractal codes for recognition,(for example
[2]) robust to some variations like expression variations on
a face because these kinds of variations cause only small
local changes around lips or eyes that do not affect the en-
tire fractal codes. While the fractal codes of two different
faces (a big change) will affect the block partitioning, range
blocks and domain blocks and the entire code is changed.

To generalize this good property, we propose a new frac-
tal coding method which chooses a domain block for each
range block from the same area as range block. It guaran-
tees that any changes in a area or segment will only effect
the fractal codes related to that area and will not propagate
anywhere else. It means that the fractal codes of different
areas of the image will be independent.

A subfractal is defined to be a set of fractal codes that
map a subset of domain blocks in an image to domain
blocks that cover the several part of the image. These codes
will be calculated to be independent of other codes of the
other parts of the same image.

3 Subfractal Coding

To calculate subfractals for an image we propose this al-
gorithm. We assume here that images are face images from
a standard face database like the Banca face database[4]:

Step O (preprocessing) - For all face images use eye loca-
tions and histogram equalization to form a geometri-
cally and photometrically normalized face image data-
set.

Step 1 - Nominate the subfractal area for each part such as
left and right eyes, nose, lips and the rest of the im-
age manually only for one arbitrary normalized image
of the database. This information will be used for all
other normalized images of the database as well.

Step 2 - For each subfractal, partition the area with non-
overlapping » x r range blocks.

Step 3 - Cover the subfractal area with a sequence of
overlapping domain blocks in k different sizes 2r x
2r, 221 x 2%r, ... 28 x 2%y to form a domain pool for
that area. Also, add the 90°, 180°, 270° rotated version
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of each block to the domain pool. Add the mirrored
imaged version of each member of domain pool to the
pool, as well.

Step 4 - For each range block, find a domain block from
domain pool of the same subfractal area that best cover
the range block. It can be done by minimizing the dis-
tance function E(R, D) :

E(R,D)=|> > (R(i,j) = T(D)(i,))?

i=1 j=1

between range block R and domain block D. The
transformation

T(D) = Flip(F, Rotate(9, Resize(%, D)))

resizes (L € {2,4,...,2%}), rotates (# €
{0,%,Z,3%3) and flips (F € {0 = Noflip,1 =
Horizontal flip}) domain block to match the corre-
sponding range block.

Step 5 - Record geometrical position of the range block
and domain block as well as parameters L, 0, I as ge-
ometrical part of fractal code for the range block.

Step 6 - Calculate luminance parameters o and s and
record them as other part of the code :

(%

s

(5

S =

i=1 j=1
B=>2.( D)’
i=1 j=1
322 1
i=1 j—1
F= 53 S Rii.j)
i=1 j=1

Step 7 - Repeat steps 4-6 for all range blocks in the sub-
fractal area.

Step 8 - Repeat steps 2-7 for all subfractals in the image.

Range blocks

)
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T
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&

Domain blocks flipped )gomaln blocks 90° ﬂlpped
ﬁ'
#

Domain blocks 270° (Ilppeﬂmmam blocks 180° flipped
_-d I |

Figure 3. Range blocks (top left) in four ma-
jor subfractal areas (eyes, nose and lips) and
corresponding domain blocks (bottom rows)
for an arbitrary face image. Top right, a plot
of pixel values vs. pixel numbers for last
matched domain and range block is shown.

Domain blocks rotation=90°

1 —
E
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In figure 3 range blocks in four major subfractals (eyes,
nose and lips) and corresponding domain blocks for an ar-
bitrary face image are shown. A plot of pixel values for last
matched domain and range block is also shown. Examina-
tion of this plot for all the range blocks shows that even with
the restriction of choosing domain blocks from a subfractal
area which is smaller than the image there is enough free-
dom of choice to find a good match for most of the range
blocks. This arises from the overlapping of domain blocks
which increases the number of domain blocks in the domain
pool rapidly and the existence of different transformed ver-
sions of a block in the domain pool. To speed up the cod-
ing process, we can encode constant range blocks with only
their geometrical parameters and their average pixel values.

4 Analysisof the model

The analysis of the model is given here using get-block
and put-block operators adopted from Davis [1]. Let thm :
SNV — S*, where k < N, be a get-block operator which is
the operator that extract the & x &k block with lower corner at
n,m from the original N x N image,and (T% , )* : % —
3N be put-block operator which inserts a k x k& image block
intoa NV x N zero image, at the location with lower left
corner at n,m. A N x N image z; € SV can be shown as

zp =D (@p)i =3 (T ) (i)
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=Y (@ )G () + Hi} (1)
=1

M M
wp =Y (00 ) HAGHTE (@)} + D (T )" (H)

=1 =1

A(zy) B

(2)
that { Ry, ..., Ry} areacollection of range blocks that par-
tition x; and G; = 3¢ — Q7 is the operator that shrinks

(assuming d; > r;) , translates (k;,1;) — (n;, m;) and ap-
plies a contrast factor s;, while H; is a constant r; x r;
matrix that represents the brightness offset. We can write
D; = FZ:‘;J?, (xf). Thus, the image x5 can be rewritten as
the following approximation:

foAXZ‘f—FB (3)

In this equation A, B are fractal parameters of the image
l‘f.

Because G; is a combination of some geometrical trans-
formation and a brightness scaling, we can show that matrix
A is a product of a contrast matrix ¥ and another matrix A,
that we call the distribution matrix:

A=T x A (4)

The values on the contrast matrix ¥ are the contrast fac-
tors s;, (0 < 's; < 1). The distribution matrix A shows the
relationship between each pixel of a range and correspond-
ing pixels of the domain. So in each column of the matrix,
we have non-zero values only in the rows corresponding to
the domain pixels which effect that range pixel. As the frac-
tal code of an image is not unique, there are many different
possible values for ¥ and A. We can study these general
cases:

Casel - Each range pixel is in relation to only one domain
pixel, each column of A has only one non-zero value
i

0 5 0 0 ... X3
0 S9
MO
A = S3 0 0 % . )
0 0 s, O 0 X 0

This case can only happen when the size of range
blocks is equal to the size of domain blocks and will
not be true for most of fractal image encoding meth-
ods.

Case2 - Each range pixel is in relation to all the pixels of
the image:

o oo
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S2 82 A21 Ao A2n
A= X . . .

Sn Sn Anl An2 Ann

This case can only happen when the range blocks are
derived from the entire image and not only from a por-
tion of the image.

Case 3 - Each range pixel is related to some of the domain
pixels of the image. In this case, each column of dis-
tribution matrix has some zero and some non-zero val-
ues. The subfractal concept is one special subclass of
this case. For subfractals, we choose domain and range
blocks from the same portion of image so the matrixes
A and A are sparse but we can re-arrange them in the
form of diagonal matrixes of subfractals.

We will illustrate this idea with an example: Suppose
image X isa 3 x 3 grayscale image below, with 3 dif-
ferent subfractal areas a, b, and ¢ :

by
as
C2

bo
(e}
as

aq
a2
C1

X =

So z ¢ can be :

If:AXIf+B

ai

ba
a2
as
Qa4
C1
C2
as

Xf =

A=UxA
We define a swapping transformations Y%7 (X) as a
transformation which swap the row(z) and row(j) of
matrix or vector X with each other. In the same way,
we define Y7/,(X) for swapping col(i) and col(j).
Using linear algebra, it can be easily shown that :



Sa11 0 0  Sq12 Sa13 Sa1a O 0
0 Sp11 Sb12 0 0 0 0 0
0 Sp21 Sb22 0 0 0 0 0
Sa21 0 0 5422 Sq23 Saq2a O 0
U= sq31 0 0 8432 8433 Saza O 0
Saa1 0 0  Saa2 Saa3 Saaa O 0
0 0 0 0 0 0 Scl1 Sc12
0 0 0 0 0 0 Sc21 S¢22
Sa51 0 0  Sas2 Sa53 Sasa O 0
Aa11 O 0 Az Aa1z Aqe O 0
0 b1l Api2 0 0 0 0 0
0 A2l Ap22 0 0 0 0 0
Aa21 0 0 Aa22 Aa2z Aga O 0
A= X1 O 0 Aaz2 Aa33 Aaze O 0
Aaa1 0 0 Aaaz Aaaz Agaa O 0
0 0 0 0 0 0 Acll  Ael2
0 0 0 0 0 0 Ae21 Ae22
Aas1 0 0 Aas2 Aas3 Aasa O 0
i) = Yidy (Axa+B) = Yo, (Yol (A)x X3, (x)
and
Y30, (Yo (A)) = T2, (Y02 (W) x Y52 (Tid, (A))
So the form of W and A after this series of transforma-
tion will be
Fp = Ty (Croe (Xl (T (24)))) :
Sp11 Sp12 O 0 0 0 O 0
Sp21  Sp22 0 0 0 0 0 0
0 0 Sall Sal2 Sal3 Sald Salb 0
A 0 0 Sa21 Sa22 Sa23 Sa24 Sa2s 0O
¥ = 0 0 5431 Sa32 Sa33 Sa34 Sa35 O
0 0 Sa41 Sa42 Saa3 Saaa Saas 0
0 0  Sas51 S52  Sa53 Sas4  Sass O
0 0 0 0 0 0 0 Sel1l
0 0 0 0 0 0 0 Se21
b1l Api2 0 0 0 0 0 0
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Matrixes ¥ and A can be divided to independent ma-
trixes W,, ¥y, ¥, and A, Ay, Ac. It is because we
used subfractals and in each subfractal, pixels are only
related to other pixels of its own area. Thus

Xa

)ff— Xb

Xe
¥, 0 O A, 0 O X
= 0 ¥, 0 x| 0 Ay 0 |x| X
0 0 U, 0 0 A Xe

B,

+| By

B.

and finally

X, =V, x A, x X, + B,

Xp =V, x Ay x Xy, + By
X, =V, x A, Xx X + B,

5 Discussion and Conclusion

In this paper, a new concept of subfractal is defined. Sub-
fractals are independent fractal codes of different parts of
an image. Each pixel of these areas is only related to other
pixels of the same area. This property makes subfractals in-
dependent of the changes in other areas which make them
suitable for using as features for recognition applications
such as face recognition. An algorithm for extracting sub-
fractals is proposed. In this algorithm, for each range block,
we try to find a suitable domain block within the same sub-
fractal area. To expand the domain pool for each subfrac-
tal, we used the overlapping partitioning with different size
and also we added 7 different rotated and flipped versions
of each domain block to the pool. In this paper, we also
showed the mathematical basis which makes this subfrac-
tal codes independent of each other. As fractal code of an
image is not unique, we propose the use of subfractals with
the same geometrical parameters as features for applications
such as face recognition.
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Abstract pled and thus noisy. This is caused by the imbalance of the

average footprint size of the laser beam (e.g. 20-30 cm) and
A method for the classification of trees and powerlines in the average point distance (e.g. 1 m) [19].

urban areas by using only dual return (first and last pulse)
medium resolution Airborne Laserscanner (ALS) data is
presented. ALS points with a different first and last pulse
return are initially identified and building detection tech-
nigues are then used to separate buildings from initial ar-
eas of interest. The separation of tree and powerline data
is performed by applying a classification method based on
the theory of Dempster - Shafer for data fusion. Examples
of the classification method are compared against ground
truth for a test site in Sydney, Australia.

1. Introduction

1.1. Motivation and Goals

Research on automated object extraction for 3D city
models has been fuelled in recent years by the increasing
use of geographic information systems (GIS), and the need
for data acquisition and update for GIS. The main focus in  During the early stages of development, ALS was pri-
this context was the detection and reconstruction of build- marily used for topographic mapping of terrain in forested
ings [2], [5], [16] and roads [6]. Some existing methods use areas in order to generate digital terrain models (DTM’s)
multiple data sources in order to achieve comprehensive 3D[1], [2], [10], [16]. As sensor technology has improved,
city models. Recently, the use of 3D point clouds generatedso has the achievable resolution of point clouds from ALS
from airborne laser scanning (ALS) for automatic creation data [9], and methods to extract objects from stand-alone
of 3D city models has been gaining importance. ALS data have emerged. Buildings have been extracted

ALS data have several unique properties. Firstly, laser from ALS data using a variety of methods [2], [15], [16].
points are not selective and as such do not automaticallyRoads have been effectively classified using ALS from an
strike the object required [13]. Secondly, due to the finite urban landscape in [4]. In order to extend the comprehen-
spot size of the laser beam, an imperfection pointed out insiveness of 3D city model creation from stand-alone ALS
[12], there might be more than one echo of the laser. Mod- data, other object classes need to be extracted, too. As both
ern ALS systems are capable of collecting both first pulse trees and powerlines can be easily seen in an unprocessed
(FP) and last pulse (LP) data during one flight, and someimage of the height differences between the surfaces corre-
objects can only be discerned in a FP-LP difference imagesponding to the first and last laser pulses of ALS data (Fig-
(Figure 1). Finally, ALS systems deliver the intensity of the ure 1), a method to effectively classify these object types
returned laser beam, which however is usually undersam-was sought. It is the goal of this paper to

Figure 1. Height differences between pulses
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e Detect trees and powerlines from stand-alone ALS information but location of the trees did not occur with such
data in urban areas with resolution of approximately consistency. Crown volume and diameter were then calcu-
1 point per square metre lated. In [18], single trees and their crown parameters are
extracted from a DSM from ALS data and optical images.
The height difference between first and last pulse data is not
used. An evaluation on a per-tree basis using four different
This paper presents results of a new method to CIaSSifydata sets achieved compoleteness l(J)etween 50_% and 96% and
trees and powerlines in an urban area from ALS data. Sec_corrgctness bgtween =9% and 86%, depending on the data
tion 1.2 provides a review of related research. Section unallty, gspemally on the state of the tree canopies at the
describes the conceptual approach, model assumptions an'ﬂime of f!|ght. e
describes our new method for determining areas covered by A variety of tools have been used for the classification of

trees and powerlines. Results from the sample data set ar@ll‘S F’ats- ﬁa;)SIﬁdr'emote (sjensmg t_?ﬁls Welr]e used Ic? [1] to
discussed in section 3 whilst conclusions and future work classify both buildings and trees. The authors used a veg-
are examined in section 4. etation index called the Normalised Difference (ND), de-

rived from the first and last pulse data DSMs similar to the
1.2. Related Work Normalised Difference Vegetation Index from infrared im-
ages. The ND index basically shows if both a FP and LP
Were recorded in the same pulse and does not distinguish

since their infancy [1.]' Initially, DTM's were derived fro”_‘ between the type of objects that could cause such a return.
the ALS data but this soon progressed into canopy helghtAS identified in [16] and [3] there are many different ob-

gige;ﬁ;r\]/itlgrnonv:cljcgig%gsseis[ii]to model canopy V°|umesject types that could be detected in such a manner, such as
In [10], DTMs were created in forested areas with a sin- powerlines, building edges, and trees.
gle last pulse ALS system. The use of ALS in wooded areass The Classification Method
was considered very beneficial due to the ability of the laser
to penetrate the trees and make contact with the ground2 1. Conceptual Approach and Method Overview
Although it was acknowledged that further filtering and in-
terpolation was required to divide the ALS data into ground  In our method we assume that buildings have previously
and non-ground strikes, it was concluded that the accuracybeen extracted from the ALS data (Figure 4(a)). This is
of the final DTM was comparable to that of DTM'’s gener- achieved by the method described in [16], evaluating cues
ated in open areas with photogrammetry. such as the relative height of the ALS points above a DTM
In [5], multispectral imagery and ALS data are combined and the surface roughness of the DSM created from the ALS
for the extraction of buildings, trees and grass covered ar-data. Having done that, we detect trees and powerlines from
eas. Trees and grass covered areas are easily classified frothe ALS data by merely evaluating the height differences
the multispectral imagery but not easily separated. Simi- between FP and LP data and the ALS intensity values. In
larly, trees and buildings can be separated using the heighFigure 1, all the ALS points in the surveyed region that have
differences between a digital surface model (DSM) and the registered a different first and last pulse return are displayed.
DTM. Both data sources are combined in order to identify Trees, powerlines and building edges can easily be seen in
the three classification types. In [17], classification of land this unprocessed image. Figure 2 shows how the laser beam
cover into four different classes (building, tree, grass land, interacts with trees and building edges.
and bare soil) is achieved by combining ALS data and mul-  Figure 3 gives an overview over the work flow of our
tispectral images. The ALS data is initially preprocessed to method. In our classification model we assume that any dif-
generate a DTM before building detection is performed by ference between FP and LP is caused by either trees, pow-
data fusion based on the theory of Dempster - Shafer [8]. erlines, or building edges. We first exclude all points on
The potential of ALS for the detection of individual trees building edges from further processing, making use of the
has been explored several times, e.g. [7], [14], [18]. Early previously detected buildings. After that, we differentiate
experiments were performed in [7] within forests dominated between powerlines and trees. Trees are characterised by
by coniferous trees within boreal forests . The results var- the fact that there will be many points with a large height
ied and difficulties were encountered in dense young forestdifference between first and last pulse data in a local neigh-
or in groups of deciduous trees. In [14], very high resolu- bourhood. The ALS intensities might be in any range, de-
tion ALS data (10 points/nmi) was used to segment single pending on the tree species and the time of year. Powerlines
trees. Local maxima in a DSM are used as seed points inon the other hand tend to have only few points of a large
the raw ALS data for the tree identification. The heights de- height difference between first and last pulse data in a local
rived from the ALS data where consistent with ground truth neighbourhood. They also have low intensities of return.

e Improve the ability of creating 3D city models from a
single data source, namely ALS data.

ALS systems have been used in areas covered by tree
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These model assumptions are used to derive several cueall laser points collected, i.68 = {pi, p2, ..., Pn }, Where
for classification which are then combined in a data fusion p1, po, ..., py are the individual ALS points. A poinpy
process based on the theory of Dempster-Shafer [8], [17]. is considered to have different first and last pulses where
AH, > 0andAH, = fzir — lz,. A set of all points
points that have different first and last pulses is described
/ byS: = {pr € S: AH; > 0}.

In a way similar to [20], a band of pixels around each
building outline is created. The width of the band is depen-
dant on the original point spacing. As the resolution of the
test data (1.3 m) is approximately the same as the pixel size
(1 m), a band of width 2 pixels was chosen to form a cor-
ridor on either side of the existing building boundary. ALS
(a) Laser penetrating atree (b) The edge of a building points which lie inside the initial building outline band and
exist inS; can be considered as being situated on the build-
ing edge and as such need to be removed from the set. We
define a new s, where ALS points identified as building

PULSE ALS DATA BUILDING MASK edges have been removed fr@m (Figure 4).
(s) (Figure 4a)
!

LAST PULSE |
STRIKE

N4 TERRAIN

Figure 2. Laser Reflections

> LN TN
= '...lu..,,L -':'m', Myg. :ﬁ

IDENTIFICATION OF ALS LASER \-’!.,W ik 2 . o~
]

STRIKES WITH FF LF DIFFERENCE

LIST OF FP LP
ALS POINTS

(S1)

¥

REMOWVE BUILDING EDGE POINTS
(Figure 4b)

(b) Points on building outlines

Figure 4. Removing building edge points

The ALS points contained 18, are preprocessed to

GENERATE PONT DENSITIES form inputs into a classification method based on the the-
on () ory of Dempster-Shafer. Three images are created in this
e TETETEE SRS preprocessing step, namely a f.|rst pulse !aser intensity im-
SEPARATE POWERLINES AND agelr, an imageA Hgj, containing the height differences
(Section 2.3) between FP and LP, and a local point density imagéhe
ST pixel values of the imagesr and AHr; have to be in-
e terpolated from the intensities and height differences of the
(Figure 5) ALS points. We use an interpolation method based on in-

. N verse distance weighting for that purpose. The imade-
Flgure 3. The c.:las.S|f|cat|on flowchart scribes the ratio of the number of points having different

In this paper, we will give the results of our method ap- first and last pulse heights (thus, from the dateSsgto the
plied to a test data set from Fairfield in Sydney, Australia. total number of ALS strikes within a local area. The value
The data set was initially collected with an approximate of , at any position (k) is described by Equation 1, where

point density of 1 point per 1.3 Both first and last pulse |lpk — p;||2 denotes the Euclidean distance betwggand
and the intensity of the reflected laser beam were recorded,,. and is the radius of the local neighbourhood:

2.2. Classification Cues
~ Hpj €S2 |k — pjll2 < d}|

For the purpose of this paper, we will describe Pk = Hp; €S :|lpk — pjll2 < d}|
any ALS data pointp; as being defined by, =
(U, lyk, Lzi, Lire, fow, fyk, far, i), where the first let- 5 3 geparating Powerlines and Trees
ter describes the pulse, i.é.= last and f = first, and
the second letter describes the pulse 3D coordinate or in- We start this section with an outline of Dempster-Shafer
tensity by eitherz, y, z or i. Let S represent the set of fusion based on [8]. Consider the classification problem

@
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where the input data are to be classified intenutually value exists, a probability mas3; = P;(Ir) ascending
exclusive classeS; € ©. The power set ob is denoted by  with I is assigned to class and1 — P; to classL U O.
2 and contains not only the thiginal classe<”; but also Otherwise © will be assigned a probability mass of 1.0.

all their possible unions (hence calledmbined classgsA The functions for computing the probability masses
propablllty massn(A)_ is gs&gned to every clagsc 2° by (Pam, P,, Pr) are assumed to be equal to a constBnt
an “image” (a classification cue) such tha{0) = 0, 0 < for input parameters < z;. For input parameters > xo,

m(A) < 1, and}’ 4.0 m(A) = 1, where() denotes the  they are assumed to be equal to another congtantvith
empty set. Uncertainty in classification from an individual 0 < P, < P, < 1. Betweenz; andz,, the probability
cue can be modelled by assigning a non-zero probability mass is described by a cubic parabola uging ﬁ and
mass to the union of two or more classgs Thesupport ke {AH,p, I} : Po(z) = P, + (P» — P)(322 — 23°).
Sup(A) of a classA € 2° is defined as the sum of all  p and p, are chosen to be 5% and 95%, respectively, and

masses assigned to Po = 10%. Further, we choose (x1, x2) = (2.5 m, 4.5 m) for
Pam, (X1, x2) = (0%, 70%) forP,, and (x1, x2) = (0, 7.5)
Sup(A) = Z m(B) (2 for P;.
BCA

Dubiety Dub(A) = Sup(A) is the degree to which the ev- 3. Results

idence contradicts a proposition, or supports the comple-

mentary hypothesis ol: A U A = ©. If there arep The overall classification results from our new method
inputs, probability masses;(5;) have to be defined for  are shown in Figure 5. The areas covered by trees are indi-
eachi such thatl < i < pandB; € 2°. The probability  cated by the light green pixels and the powerline classifica-
masses from several inputs can then be combined to comtion by the black pixels.

pute a combined probability mass for each class 2°:

ZBlﬂBg...ﬁBP:A [ngigp m;(B;)]
1- ZBlmBQ..an:@ [H1gigp mi(B;)]

Once the combined probability masseg A) have been
computed, bothSup(A) and Sup(A) can be calculated.
The accepted hypothesi§, € O is determined as the class
obtaining maximum support.

We apply the Dempster - Shafer theory to the data on a
pixel by pixel basis to classify the inputs into one of three
classes, Tre€l(), Powerline () or Other (). As described
in section 2.2, three input cues are used in the classification:

(1) The height differenced Hr;, between FP and LP
distinguish powerlines and trees from other objects, with-
out separating these two classes. We thus assign a proba- ) ] o
bility massPay = Pax(AH) ascending withAH to the Figure 5. The final classification results
combined clas§’ U L and1 — Pa g to classO.

(2) The density image can be used to separate power- 3.1. Accuracy of Tree Detection
lines from trees because trees cover a larger area and thus
there will be more points with FP-LP differences in alocal ~ In order to evaluate the classification algorithm, ground
neighbourhood, but only wher® H > 0. In areas where  truth data for areas covered by trees was obtained by man-
AH = 0, we do not usg, which is modelled by assigning ually digitising trees in an orthophoto of the area. The re-
a probability mass of .0 to ©. WhereAH > 0, we assign  sultant ground truth image is displayed in Figure 6(a). The
a constant small probability ma#%, to classO in orderto  detected trees are shown in figure 6(b).
model the fact that not all points with > 0 will be points In order to assess the quality of the classification, the
on powerlines or trees. We then assign a probability masscompletenesand correctnesof the results are computed.
P, = P,(p) — Po/2 ascending witlp to the classl" and Completeness is the ratio of the correctly extracted records
1—Pop/2— P,toclassL. to the total number of relevant records within the ground

(3) The intensityl » separates trees from powerlines and truth data, whereas correctness is the ratio of the number
other objects, but only in areas where an intensity value hasof relevant records extracted to the total number of relevant
actually been measured by the sensor. Where an intensityand irrelevant records retrieved:

m(A) = 3
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TP

TP+ FN

TP
Correctne _ 4
Meciness o p + FPo )

Completeness-

. " (a) Trees exists alonp) The manuallyc) No trees have
In Equation 4,TP denotes the number of True Positives, the the pipeline in theligitised vegetatioleen detected in the

FN the number of False Negatives (i.e. missing “tree” pix-  orthophoto. ground truth. FP ALS data .
els), and FPO the number of False POsitives (i.e. “tree”
pixels not being classified as trees in the reference data). To Figure 7. Contradictions between ground
assist in the analysis of the results, figure 8 shows the spatial truth and ALS data.
distribution of the TP, FN , FPO and True Negatives (TN)
pixels in yellow, blue, red and white respectively.

In our test, completeness was determined to be 64% and ) )
correctness was 64%. These numbers appear to be too pe&@n this height would not have been detected but would
simistic. As the aerial image and the ALS data were cap- Probably existin the ground truth data.
tured in different epochs, there are many discrepancies be-
tween the ground truth and the ALS data. There are two
major factors that will effect the quality figures quoted as
the data has been collected at different epochs. The first is
obviously the time that has elapsed between the collection
of the two data sets. Vegetation is a dynamic object class as
opposed to buildings and will grow over time. Also, people
cut back trees so the opposite effect is also true. The sec-
ond effect is that seasonal changes can be observed. Trees
that loose their leaves in autumn will have a finer canopy
during this period as compared to spring. An example of
these contradictions between the data sets is shown in Fig-
ure 7. Finally, this comparison gives a balance of the area
covered by trees that is correctly classified. Errors mostly
occur at the tree boundaries. As most trees are relative small
objects, these errors at the tree boundaries might contribute
up to 20% of the area covered by trees. Figure 8. The quality summary map

3.2. Accuracy of Powerline Classification

There was no ground truth data available for the power-
line classification method and it was considered too diffi-
cult to accurately digitise the powerlines in a similar man-
ner to the trees. It was decided that the most effective way
to assess the quality of the powerline classification was to

(a) Manually digitised treefb) Areas covered by trees as a

from the orthophoto. result of our method. compare the classified powerline image visually against the
road network as powerlines generally run parallel to roads.
Figure 6. The results of the tree classification Ground truth for the road network was again obtained by

manually digitising the orthophoto of the area and can be
A visual inspection of Figure 6(b) reveals that there is S€€n in Figure 9(a). The classification results can be seen in
a misclassification along the thick powerlines running from Figure 9(b).
the West to the East of the image. Another limiting factor A visual perusal of both images shows that with the ex-
to the tree detection will be the limitation of the laser as ception of the major powerlines that basically run from the
mentioned in [3]. The failure of the laser to detect a FP west to the east of the image, the overall pattern of the pow-
if AHpr < 4.6m meant that trees with a height of less erline classification matches the road network as expected.
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