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Abstract

This paper presents a new method of simulating elec-
troencephalogram (EEG) signals induced by a particular
form of newborn seizure. The technique utilises time–
frequency signal synthesis. The simulation is based on
a nonstationary multicomponent waveform with piecewise
linear frequency modulation (LFM). The time–dependent
spectral magnitude of the piecewise LFM multicomponent
signal is assigned a slowly oscillating envelope and used
to construct a time–frequency image. The time–frequency
image is used to synthesise a time-domain signal using the
modified short–time Fourier transform (MSTFT) magnitude
method. The simulated seizures are varied according to sev-
eral parameters outlined in the literature to provide a large
database of EEG seizures. A comparison of the spectro-
grams of simulated and real seizure results in an average,
two–dimensional correlation coefficient of 0.8 (N=5).

1. Introduction

Electroencephalography (EEG) is the study of the elec-
trical activity of the brain using measurements taken from
scalp electrodes. It is an important tool in the study of cen-
tral nervous system (CNS) function, particularly in the new-
born. Unlike adult EEG, the signal structure of newborn
EEG has high prognostic and diagnostic capability, [1]. In
the newborn, EEG is primarily used to identify the exis-
tence of seizure. In this instance, the EEG plays a critical
role as clinical signs of seizure detection such as muscle
spasms, are not clearly present in the newborn as a result of
ventilation restraints and anti–convulsive medication. The
presence of seizure in newborn EEG indicates neural ab-
normality which may lead to permanent damage or death.

Normal or background EEG consists of low frequency

bursts of activity or irregular random activity. The fre-
quency content of most newborn EEG signals is between
0.4-7.5Hz, [2]. A seizure is defined as an excessive syn-
chronous discharge of neurons within the brain and can last
from 10 seconds to upwards of 20 minutes [3, pp. 664].

A class of newborn EEG seizure has been defined, us-
ing engineering terminology, as containing linear frequency
modulated (LFM) or piecewise LFM signal structures [4].
Seizure may take other forms such as periodic “spiky” be-
haviour, or repetitive bursts of EEG activity which result in
a spectral whitening in the time–frequency domain. How-
ever, the goal of this paper is to simulate seizure that ex-
hibits piecewise LFM signal behaviour.

The need for accurate, 24 hour monitoring of newborn
EEG has encouraged the development of automated sys-
tems to highlight possible periods of interest. Several sig-
nals processing techniques, such as correlation, spectral
analysis, wavelet transform, matching pursuits and time–
frequency distribution based singular value decomposition,
have been developed to detect seizure in the newborn,
[2, 5, 6, 7, 8]. However, limitations in the training and
evaluation data sets have meant that the confidence in the
analysis results is reduced and comparisons between tech-
niques are nonexistent. Specific problems with neurologist
marked EEG data sets include; a defined level of accuracy,
the lack of a publicly available signal database, and the pre-
cise localisation of seizure events. A realistic simulation of
seizure would permit the comparison of current techniques
and provide additional insight into EEG seizure for the next
generation of detection techniques [9].

Currently, two models are available to simulate newborn
EEG seizure. The first technique developed by Roessgen in
[10] is based on some physiological parameters of the brain
and utilises a stationary sawtooth waveform. This technique
was recently extended by Boashash and Mesbah in [4] to
incorporate a single LFM signal. Celka and Colditz have



also developed a piecewise LFM model of seizure based
on a Weiner filter with sawtooth inputs and nonlinear gain,
[9]. The authors outlined a technique to validate their model
based on Kullback–Leibler divergence and Renyi entropies,
[9].

The Roessgen model lacks the incorporation of non-
stationarity, while Boashash’s and Mesbah’s addition only
handles single LFM behaviour, not the piecewise LFM of-
ten seen in seizure. Celka’s and Colditz’s method provides
a quality simulation of seizure but lacks time dependent sig-
nal shape or time–dependent harmonic magnitude variation.
Another difficulty is its inability to simulate the transient,
“spiky”, activities.

This paper uses the generic piecewise LFM seizure pat-
tern outlined in the work of Boashash and Mesbah, [4], to
generate a time–frequency template image which is then
synthesised into a time domain signal using the modified
short–time Fourier transform (MSTFT) magnitude method,
[11].

The advantage of using direct signal synthesis over other
techniques is its relative simplicity, its ability to handle
spectral distortion and the discontinuities of the piecewise
instantaneous frequency (IF) law. In addition, this tech-
nique can provide a larger variety of seizure waveforms,
within BT product limits (signal richness), [3, pp. 18],
depending on the fundamental time–frequency template or
templates chosen. This modularity has an advantage over
a method such as Celka’s which would require additional
complexity to incorporate other forms of seizure.

The seizures are randomised by selecting parameter
ranges within the limits defined in [4]. Each parame-
ter was assigned according to several user defined beta–
distributions. This artifact free seizure simulator can be
combined with a background EEG generator to provide a
complete newborn EEG simulator.

2. Seizure Simulation

The seizure simulation protocol is outlined is Figure 1.

Initially, the desired seizure length is determined. The
parameters for the seizure are chosen from their specific
sampling distribution. These parameters include the num-
ber of LFMs in the IF law, the slope of the LFMs, the seizure
start frequency, the envelope of each harmonic component
(relative amplitude and frequency), the signal to noise ratio
(SNR) and seizure to background ratio (SBR). The parame-
ter range and parameter sampling distribution are specified
in Table 1. Note, the beta distribution ranges from 0 to 1
so the range is used to correctly scale the sampling distribu-
tion.

The initial IF law is generated from the selected param-
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Figure 1. Block diagram of seizure simulation.

Table 1. Parameter ranges and distribution

parameter range distribution
LFM slope (Hz/sec) -0.07:0.07 Beta(2,4)
LFM number 1:4 Beta(3,3)
LFM envelope amplitude -0.25:0.25 Beta(1,1)
SNR (dB) 3:20 Beta(1,1)
SBR (db) 10:20 Beta(1,1)
seizure start frequency (Hz) 0.5:3.5 Beta(2,4)

eters according to,

f(t) =

N
∑

i=1

aiti + ci, (1)

where,

ti =







0 for t < tilo,
t for tilo ≤ t ≤ tihi,
0 for t > tihi,

(2)

wherefi(t) is the IF law,ai is the slope of theith LFM
monocomponent,ci is a constant to correctly align the
pieces of the IF law,N is the number pieces in the piece-
wise LFM andtilo andtihi are random variables withtihi con-
ditioned ontilo such thattihi > tilo.



The time–frequency image is initially constructed, us-
ing the IF law, with the harmonic relationship of a saw-
tooth waveform (1 at fundamental,1/2 at first harmonic
and1/

√
8 at second harmonic, etc). The magnitude of each

harmonic component is multiplied by a specific, oscillat-
ing, random amplitude envelope that is estimated using cu-
bic spline interpolation (fenvelope(t) << f(t)). The time–
frequency image is smoothed, along the frequency axis, us-
ing a one–dimensional Hamming window that is scaled ac-
cording to the seizure length. The two–dimensional, time–
frequency image is then synthesised into a one-dimensional,
time domain signal using the MSTFT magnitude method as-
suming a sampling frequency of 10Hz.

The MSTFT magnitude method uses an iterative tech-
nique developed by Griffin and Lim, [11], to estimate the
discrete time–domain signalx[n]. The difference between
the desired STFT and the update STFT is minimised in this
procedure. The update equation is as follows,

xi+1[n] =

∑

∞

m=−∞
w[n − m]

∫ 0.5

−0.5
X̂i[n, f)ej2πfm df

∑

∞

m=−∞
w2[n − m]

(3)
where,

X̂i[n, f) = |Y [n, f)| Xi[n, f)

|Xi[n, f)| , (4)

Y [n, f) is the desired STFT,Xi[n, f) is the ith update
STFT,xi[n] is theith update synthesised signal,w[n − m]
is the STFT window,n is discrete time,f is continuous
frequency andm is the discrete time lag. The signal is syn-
thesised with an initialx[n] of white Gaussian noise. In this
case the stopping criteria of the MSTFT magnitude method
is the iteration number (imax = 200). Further details on the
convergence of the algorithm can be found in [11].

This method of signal synthesis was chosen over other
available techniques as the signal synthesis is performed on
a much simpler image than other techniques, which require
the incorporation of cross–terms in the original image, and
no knowledge of the phase is required.

Once the signal is synthesised white Gaussian noise
(sensor error) and residual background EEG can be added
to the signal.

3. Results and Discussion

The data used in the following results were collected
from the Royal Women’s Hospital Perinatal Intensive Care
Unit in Brisbane, Australia. The data were recorded, using
a sampling frequency of 256Hz and local electrode refer-
encing, by a Medelec machine. The signals were then down
sampled to 10 Hz for further processing.

A typical output of the piecewise LFM, EEG seizure
simulation algorithm is shown in Figure 2. The component
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Figure 2. The seizure synthesis procedure.

IF laws are shown in 2a), the simulated EEG seizure time–
frequency image is shown in 2b) and the synthesised seizure
signal with this time–frequency characteristic is shown in



2c). It can be seen that the simulated EEG seizure exhibits
similar traits of real EEG seizure data as shown in Figure 3.
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Figure 3. A newborn EEG seizure epoch.

For a more quantitative analysis, select segments of real
EEG seizure were analyzed with the intention of extracting
an approximation to the piecewise LFM law and the compo-
nent envelope. These values were then fed into the seizure
simulation algorithm and the time–frequency images were
then correlated to assess the similarity between simulated
and real seizure. The results of this experiment, conducted
on five seizure epochs, are shown in Table 2.

Table 2. The results of the seizure simulation
technique, µ = 0.8, σ2 = 0.03.

trial correlation
1 0.861
2 0.920
3 0.943
4 0.486
5 0.789

An example of the time–frequency output of the exper-
iment is shown in Figure 4. The synthesised seizure is
plotted above the real seizure in Figure 5. The general
shape of the simulated time–frequency image conforms to
the seizure epoch with a correlation coefficient of 0.94. In
the time domain the signal has the general characteristics
required of a simulated signal, [4, 9], notably, nonstationary
frequency content, moderate “spiky” behaviour, asymmet-
ric oscillation and envelope amplitude variation.

The simulated EEG is not exact, but it provides the es-
sential signal structures seen in EEG seizure, particularly
in the time–frequency domain, as outlined in [4]. This is
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Figure 4. Time–frequency domain compari-
son of real and simulated seizure, ρ = 0.94.

shown in the high two–dimensional correlation coefficients
between real and simulated signals. However, not all forms
of seizure fit into this general piecewise LFM pattern of be-
haviour. This can be seen by the low coefficients in trial 4.
This particular form of seizure has a higher relative noise
component, a non–piecewise LFM IF law, more transient
events and contains severe “spiky” behaviour compared to
other seizures. These phenomenon contribute to an effective
whitening of the spectrum which interferes with the simu-
lative capacity of a piecewise LFM model. Nonetheless,
the synthesised seizure still has sections that provide a good



2 4 6 8 10 12 14 16 18 20 22

si
m

ul
at

ed

2 4 6 8 10 12 14 16 18 20 22

time (secs)

re
al

Figure 5. Time–domain comparison of real and simulated seiz ure.

approximation, in addition to poor approximation sections.
This can be seen in Figure 6.

These forms of error can be overcome by using addi-
tional time–frequency templates to cater for transient (time–
dependent spectral whitening), and low SNR and SBR (a
spectral whitening or colouration, of the time–frequency
domain, respectively) effects.

The incorporation of a background model such as that
outlined in [12] and a suitable artifact simulator into this
seizure model can provide a EEG signal simulator that is
capable of providing realistic EEG signals. In the case of
multichannel EEG, where a seizure is not sensed equally at
each electrode, this technique can be expanded by adding a
channel model (stationary or nonstationary), variable am-
plitude background signals, and channel delays. A fully
operational newborn EEG simulator will permit the evalua-
tion of the myriad of signal processing techniques currently
available to the problem of automatic seizure detection in
newborn EEG. Such a system is outlined in Figure 7.
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Figure 6. Simulated and real seizure.
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Figure 7. Complete newborn EEG simulator.

4. Conclusion

A method of neonatal EEG simulation using time–
frequency signal synthesis has been developed. The tech-
nique uses the randomised selection of the piecewise LFM
signal model proposed by Boashash and Mesbah in [4].
Examples of the simulation routine have shown high cor-
relation with select seizure periods(ρ = 0.8, N = 5).
The simulation can also provide approximation of seizures
with moderate “spiky” behaviour. It cannot provide qual-
ity simulation for seizure epochs with low SNR/SBR or
high power transients (non–piecewise LFM data). The ran-
domisation permits the simulation of a large set of possible
seizure. Such a simulation method allows for a consistent
data set to compare several currently available seizure de-
tection techniques.
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