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Abstract

Visual tracking of the human body has attracted increas-
ing attention due to the potential to perform high volume
low cost analyses of motions in a wide range of applica-
tions, including sports training, rehabilitation and security.
In this paper we present the development of a visual track-
ing module for a system aimed to be used as an autonomous
instructional aid for amateur golfers. Postural informa-
tion is captured visually and fused with information from
a golf swing analyser mat and both visual and audio feed-
back given based on the golfers mistakes. Results from the
visual tracking module are presented.

1. Introduction

Visual tracking of human movement has attracted much
attention due to the wide variety of applications which could
be performed autonomously however currently need human
interpretation. These applications include sports training,
rehabilitation and security. Autonomous interpretation of
human movement allows a much larger volume of analyses
to be performed at a much reduced cost. Biometric analysis
has already established itself as an effective training tool for
athletes, although most techniques rely on the use of retro–
reflective markers or magnetic sensors to be placed on an
athlete before such analysis can be performed.

The aim of this project is the development of a system
which uses visual cues to obtain a golfers postural infor-
mation, and analyzes this with respect to a learned ideal
motion. This data is then fused with information from a
golf swing analyser mat which detects information about
the club head which is infeasible to detect visually. Com-
pletely automated feedback can then be given based on dif-
ferences between the athletes motions and the technically
correct motion. Golf has been chosen as the sport in focus
due to the limited movement of the player and the presence

of an ideal motion. Smith and Lovell [16] give a more de-
tailed description of the system and the swing analyser mat.
In this paper we focus on the visual tracking module of this
project. We provide some background literature and show
results from the visual tracking module.

2. A Brief Overview of Tracking Algorithms

Algorithms to perform human tracking from multiple
views can be thought of as being in two categories; deter-
ministic and stochastic.

2.1. Deterministic Tracking Algorithms

Deterministic algorithms assume that the human body
position can be uniquely determined at each point in time.
Luck et al. [10, 9] and Small [15] adopt a deterministic ap-
proach where they construct a visual hull using shape from
silhouette methods and fit a body model to it using a physics
based fitting mechanism. Lucket al. [9] achieves tracking
at 9Hz (each frame of video requires.11s to process) using
25mm3 voxels and a 25 degree of freedom (DOF) human
model in this manner. Mikicet al. [13] adopt a similar ap-
proach whereby they again form the visual hull from shape
from silhouette methods however use an extended Kalman
filter to fit the body model. They achieve tracking at 10Hz
using25mm3 voxels and a 23 DOF human model.

The methods described above rely on background sub-
traction methods to produce an accurate volumetric hull. In
the event of motion in the background, or some outdoor set-
tings, background subtraction will not be sufficient to form
an accurate visual hull. In theses cases it is not always pos-
sible to uniquely determine the body position from a practi-
cal feature set. Generally events like background clutter and
occlusion prevent the body position from being uniquely de-
termined at a given time.



2.2. Stochastic Tracking Algorithms

Stochastic algorithms do not rely on the body being
uniquely determined at each point in time. Instead they as-
sign probabilities to possible body positions and seek the
most probable position. The Particle Filter, first used in
visual tracking by Isard and Blake [7], was introduced to
successfully track in the event of multi modal probability
density functions (pdf). Particle Filters approximate a pdf
by sampling from it. Predictions of the object position at the
next time step are based on the probabilities of these sam-
ples (particles). In this way a particle filter can retain multi-
ple hypotheses of the objects position. Deutscheret al. [2]
improved the performance by adding annealing layers to the
algorithm, allowing the pdf to be more extensively sampled
from in regions of interest, generally the high probability
regions. A further improvement was made by Deutscheret
al. [3] by varying the amount of noise added to each particle
during the sampling process, and introducing a crossover
operator similar to that in genetic algorithms.

A problem for particle filters is that the higher dimen-
sionality of the configuration space, the more particles re-
quired, and hence the higher the computational cost. Mac-
Cormick and Blake [11] showed that the number of particles
required,N , can be found by

N ≥ Dmin

αd
(1)

whereDmin andα ¿ 1 are constants, andd is the dimen-
sionality of the search space. Deutscheret al. [3] report
successful human tracking at0.07Hz using a29 DOF hu-
man model.

Sminchiescu and Triggs [14] present an alternative ap-
proach to stochastic tracking using the Covariance Scaled
Sampling (CSS) algorithm. CSS propagates a multi-modal
prior, essentially a mixture of Gaussians, and locally opti-
mizes the new estimates such that they correspond to local
minima in the posterior. Minima are sought as optimization
involves minimizing a cost function as opposed to maximiz-
ing a pdf. During propagation, each Gaussian is sampled
from according to the shape of the cost function, allowing
sampling to be biased along the directions of most uncer-
tainty. During optimization several samples may converge
to the same local minima. Sampling in this way reduces
the number of particles required for successful tracking as
samples are better chosen to lie in regions of interest, and
are optimized to reach minimas instead of randomly find-
ing them as with particle filters. This method was primar-
ily developed for monocular tracking, where the cost func-
tion is ill conditioned as approximately one third of joint
variables are unobservable at each time instance. The key
to using this approach is that the cost function is in some
sense smooth, meaning local minima are not clustered to-

gether. To achieve this Sminchiescu and Triggs incorpo-
rate motion boundaries, intensity edge energy, optical flow
and body model priors to form a robust cost function. They
achieve monocular tracking of a30 DOF human model at
0.0056Hz.

When the nature of the application allows for post pro-
cessing of tracking results, a backwards optimization phase
can be added to the stochastic tracking algorithms to im-
prove results. Isard and Blake [8] present a framework for
an output smoothing filter. The smoothing filter can be
thought of as finding the Baum-Welch solution to the best
path through a Hidden Markov Model, where the transi-
tional probabilities are derived from a dynamic model. This
smoothing filter provides a powerful tool when multiple hy-
potheses of the object position are present.

3. Modelling the golfer

Human tracking applications generally use about 30 de-
grees of freedom (DOFs) to model a person. These models
are overly simplified for the task of tracking a human during
a golf swing however. Currently we use 42 DOFs consist-
ing of 3 translational and 39 rotational DOFs as shown in
Figure 1(a). This a high dimensional space for he particle
filter to search through, and the amount of particles hence
computational time needed for the particle filter grows ex-
ponentially with the dimensionality of the space.

Our model model is constructed as a link list, where each
link has a set of rotations and a surface modelled by a trun-
cated elliptical conic, shown in Figure 1(b). A similar ap-
proach was used by Deutscheret al [2] and Goncalveset
al. [5]. Sminchisescuet al [14] uses shape deformable su-
per quadratic ellipsoids to model the surface, and Fuaet
al. [4] uses a summation ofn three dimensional Gaussian
density distribution known as metaballs. We use truncated
elliptical conics as they are computationally cheaper and do
not require any DOFs to model them.

(a) Degrees of Freedom (b) The Model Sur-
face

Figure 1. Modelling the articulated body

Since we have an expectation about the possible postures



a golfer can take during the swing, a principal component
analysis (PCA) could be used to reduce the dimensionality
of the search space. In time this will be done, however cur-
rently only two golf swings have been manually annoted - as
it is a time consuming process. Once tracking results have
been obtained that are representative of all the possible pos-
tures of the golfer it is hoped a PCA can be performed to
reduce the configuration space to around20 dimensions. In
the case of the golf swing, we know the hands must always
be holding the club. This information could also be used to
restrict the search space. Currently any configuration where
the hands are more than a threshold distance apart are given
a zero probability.

3.1. Dynamic Model

Due to the specific nature of the tracking in this case,
a dynamic model can be used to improve the trackers per-
formance. As mentioned above, only two swings have been
manually annoted, each of which consists of55 frames. Us-
ing a second order dynamic model in the42 DOF search
space, we have2 × 42 × 55 = 4620 equations with which
to solve for2 × 422 + 42 = 3570 variables. Due to the
similarity between the two hand annoted swings, the dy-
namic model proved too powerful resulting in a near singu-
lar noise covariance matrix. To over come this, a PCA was
performed to reduce the search space to13 dimensions, giv-
ing a25% variable to equation ratio. This dynamic model
was then transformed back into the original42 dimensional
space, resulting in a practical noise covariance matrix.

4. Cameras

In this application we use Dragonfly cameras from Point
Grey Research [17] . They synchronously capture640×480
color images at30 frames per second.

Since it is desirable to keep the system as small as pos-
sible, low focal length cameras are needed so the cameras
can be placed as closely as possible to the golfer. This intro-
duces radial distortion which we estimate using a technique
described by Hartely and Zisserman [6], whereby param-
eters are chosen to make real world straight lines straight
in the image. To choose the order of the radial correction
function, Consistent Akaikes Information Criteria (CAIC)
described by Bozdogan [1] is used. The results are shown
in Table 1, with a second order model being used as it has
the smallest CAIC value.

Projection matrices were determined from real world and
image point correspondences, using the DLT algorithm with
non-linear optimization described by Hartley and Zisser-
man.

Model Order L2 Norm Error CAIC Value
0 1695.114 Inf
1 84.9189 101.2427
2 5.4762 26.6286
3 5.3464 31.3275
4 5.2819 36.0917
5 5.2782 40.9165
6 5.2770 45.7441
7 5.2765 50.5722
8 5.2762 55.4005

Table 1. Model Order Selection

5. Results

The tracking results presented here are performed used
the APF algorithm described in Section 2.2. The PAPF
algorithm was not used due to its incompatibility with
the output smoothing filter also described in Section 2.2,
which was applied to our results. The body model was as-
sumed known apriore, however background was assumed
unknown during the tracking. An office environment was
used purely for the convenience of capturing the footage
and calibrating the cameras. The tracker was initialized by
setting the model to an approximate golf address position
and then using an APF to do a quick translational search.

Observational probabilities were determined by casting
measurement lines tangential to the projection of the link
surfaces. Features along the measurement lines were found
by high pass filtering the grey scale values along these lines,
with features being points above a set threshold. Details of
this method are given by MacCormick [12] . The proba-
bilities for each measurement line were combined using a
sum of squared differences approach, as used by Deutscher
et al. [2]. Deutscheret al. [2] uses a different method to de-
termine probabilities, they build an edge map for the image
and assign probabilities based on the proximity of a sampled
point to an edge from the edge map. We did not adopt this
method as we assert the measurement line approach is more
sensitive to low contrast features, such as exist between the
left upper leg and the wall in Figure 2. We do concede how-
ever that our approach generally producing a less smooth
pdf, i.e the pdf contains many more local maxima and so is
more difficult to search.

Self occlusion models were used, with an added con-
straint that should the measurement line pass through an-
other link the same color the measurement line was counted
as occluded. This was done so if, for example, the upper
arm was beside the torso features would not be expected
between the two links.

The edge probabilities were combined with color prob-
abilities by adding their sum of squared differences. The
color probabilities were determined by taking the interior



(a) Frame 1

(b) Frame 15

(c) Frame 33

(d) Frame 52

Figure 2. Results of Tracking at Selected
Frames

most point on each measurement line, and comparing it to a
known distribution of the links color.

Figure 2 shows tracking results at selected frames.
Note the cameras are calibrated to act as mirrors as
it is easier to give feedback in that manor. Each
frame took approximately 25 minutes to process on a P3
833Mhz machine, with a MATLAB implementation of
the APF. A video of the tracking results can be found at
http://www.itee.uq.edu.au/˜ iris/.

6. Conclusions and Future Work

Here we have shown that accurate tracking of the golfer
during a standard golf swing is tractable without the need
for background subtraction. The dynamic model proves a
powerful tool for tracking in the high dimensional space
used to model the golfer. Future work will include learn-
ing the body model from the video sequence, removing the
color probability from the observational model as well as
reducing the time required for tracking.
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