
Robust Fundamental Matrix Determination without Correspondences

Stefan Lehmann,† I. Vaughan L. Clarkson,∗† Andrew P. Bradley,‡ John Williams,† and Peter J. Kootsookos0

‡Cooperative Research Centre for Sensor Signal and Information Processing (CSSIP)
†School of Information Technology and Electrical Engineering

The University of Queensland, 4072 AUSTRALIA
0 UTRC, MS129-15, 411 Silver Lane, CT 06108, USA

(lehmann,v.clarkson,bradley, jwilliams,kootsoop)@itee.uq.edu.au

Abstract

Estimation of the fundamental matrix is key to many
problems in computer vision as it allows recovery of the
epipolar geometry between camera images of the same
scene. The estimation from feature correspondences has
been widely addressed in the literature, particularly in the
presence of outliers. In this paper, we propose a new robust
method to estimate the fundamental matrix from two sets
of features without any correspondence information. The
method operates in the frequency domain and the under-
lying estimation process considers all features simultane-
ously, thus yielding a high robustness with respect to noise
and outliers. In addition, we show that the method is well-
suited to widely separate viewpoints.

1. Introduction
One of the main objectives of computer vision is the re-

covery of structure and motion information from a sequence
of camera images. The determination of the fundamental
matrix plays a key role in this context since it allows the
computation of the underlying epipolar geometry. A variety
of methods have been proposed to compute the fundamen-
tal matrix from point correspondences in stereo images. A
comprehensive overview is given in [4]. However, the iden-
tification of these correspondences remains a fundamental
problem. The sensitivity to noise and outliers of classical
approaches to the estimation of the fundamental matrix is
well-known [12].

The estimation of the fundamental matrix without cor-
respondences remains largely unaddressed in the litera-
ture [3]. Some methods deal with the case of correct
but incomplete correspondence information by extending a
minimum set of features into a complete set covering all
reconstructible features [9]. Alternatively, occluded fea-
tures are artificially generated by projecting computed 3D
feature coordinates onto computed camera positions [10].
However, both of these methods rely on the prior knowl-
edge of a correct set of initial correspondences. Other ap-
proaches tackle the correspondence problem by using geo-
metrical constraints, such as in [5], where geometric rank
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constraints are used to facilitate the optical flow computa-
tion over closely-spaced views. In [3], a method is pro-
posed that relies on the Expectation-Maximization (EM) al-
gorithm to iteratively estimate structure and motion without
correspondences. At each iteration, a new structure from
motion problem is solved for virtual measurements that are
derived from a probability distribution. This probability
distribution is iteratively refined over the set of correspon-
dences. It is acknowledged that results for occlusions or
spurious features have not been demonstrated and that the
EM algorithm can converge to a local minimum.

In this paper, we propose a method to estimate the fun-
damental matrix from two sets of features without the need
for correspondences. The two sets of features are the 2D
orthographic projections of a set of 3D object features from
different viewpoints. Our method deduces motion param-
eters without correspondences by evaluating the frequency
spectra of the 2D feature spaces. The approach is based on
an integral projection model and has previously been ap-
plied to estimating 3D rigid body transformations based on
raw images [7]. Here, we extend this work to feature cor-
respondences. The estimation process considers all features
simultaneously, making the method robust with respect to
noise and outliers.

2. Integral Projection of Sparse Features
2.1. Concept and relationship to parallel projection

We will illustrate the integral projection scheme based
on a set of 2D features that we project into 1D. The integral
projection model determines the 1D projection values by in-
tegrating the 2D feature scene along lines that run parallel
to the view axis. Due to the duality betweenStructure from
Motion andMotion from Structure, recording static scenes
with multiple cameras from different viewpoints is equiv-
alent to recording dynamic scenes with one static camera.
Suppose we have a 2D object that is represented by a num-
ber of 2D feature points in both the original and the trans-
formed position. Integrating along lines that are parallel
to the view axis results in the 1D feature projections. Fig-
ures 1(a) and 1(b) depict this situation for five features. In
these figures, the view axis is thez-axis of the scene co-
ordinate system. The integral projections are denoted by



I(y) andI ′(y) respectively. Let us assume that all 2D fea-
tures are located on the object surface and are in the field
of view of an orthographic camera. Under these assump-
tions, integral projection is identical to parallel projection.

(a) (b)

Figure 1. Integral projection of feature set (a) before and
(b) after transformation

For general object geometries, object faces including their
corresponding features might become obscured or revealed
after the scene transformation. Therefore, the visible object
surfaces before and after the transformation are generally
not only transformed versions but differently shaped. There
will consequently be deviations between applying an inte-
gral projection or a parallel projection to the transformed
scene as Feature 5 in Figure 1(b) illustrates.

2.2. Mathematical Model

In our model, we describe each 3D feature by a Dirac
function at the appropriate feature location. Thus, assuming
N features, our 3D feature space is represented by:

f3(x, y, z) =
N∑

k=1

δ(x− xk, y − yk, z − zk) (1)

where(xk, yk, zk) are the individual feature locations. In-
tegral projection determines the 2D feature projections by
integratingf3(x, y, z) along lines that are running parallel
to the view axis of the camera. Using our integral projection
approach and assuming that thez-axis of our scene coordi-
nate system is aligned with the view axis of the camera, the
corresponding 2D projection data will be

f2(x, y) =
∫

R
f3(x, y, z) dz =

N∑
k=1

δ(x− xk, y − yk) (2)

The Fourier spectra off2(x, y) andf3(x, y, z) can be de-
noted as

F2(ξ, η) =
∫

R2
f2(x, y)e−j(ξx+ηy) dx dy

=
N∑

k=1

e−j(ξxk+ηyk) (3)

F3(ξ, η, ζ) =
∫

R3
f3(x, y, z)e−j(ξx+ηy+ζz) dx dy dz

=
N∑

k=1

e−j(ξxk+ηyk+ζzk) (4)

Thus, the relationship between the Fourier spectraF2(ξ, η)
andF3(ξ, η, ζ) is:

F2(ξ, η) =
∫

R3
f3(x, y, z)e−j(ξx+ηy) dx dy dz

= F3(ξ, η, 0). (5)

Equation 5 is known as the projection-slice theorem and is
commonly used in X-ray tomographic reconstruction [1].
As (5) shows, the spectrum of the projected feature data is
the ξ, η−plane (whereζ = 0) of the corresponding spec-
trum of the 3D feature data. Next, we will discuss what this
relationship means for stereo projections of a 3D feature set.

2.3. Effect on stereo projections

Let us now consider that we have two 2D integral pro-
jections of our 3D feature data from two cameras at differ-
ent viewpoints. However, to simplify the derivations, we
consider the equivalent case of projecting the original and
a transformed set of 3D features onto one camera projec-
tion plane instead by applying the rigid-body transforma-
tion Tscene. We decomposeTscene into a rotation matrixR
and a translation vectorΛ with

Λ = (x0, y0, z0)
T

, (6)

wherex0, y0 and z0 are the translational components of
the scene transformation with respect to thex, y, z coor-
dinate axes of the scene coordinate system. Therefore,
Tscenetransforms each 3D feature pointP = (x, y, z)T into
P ′ = (x′, y′, z′)T according to the following equation:

P ′ = RP + Λ. (7)

We now introduce the vector

∆ = (ξ, η, ζ)T (8)

whereξ, η andζ represent the 3D frequency components of
F3(ξ, η, ζ) in (4). Using the vectors from (6) and (8), the
3D spectrum that corresponds to the transformed scene is

F ′
3(∆) = e−j(ΛT ∆)F3(RT ∆). (9)

According to the projection-slice theorem (5), the 2D spec-
trum F2(ξ, η) is the ζ = 0 plane of the 3D spectrum of
the object. Therefore, the two spectra of the projections be-
fore and after the scene transformation show matching lines
that run through the origin of the coordinate systems of the
spectra. The magnitudes of the two spectra along these lines
will be identical, while the phases will show an offset which
depends upon the translational component of the transfor-
mation. Here we propose a method for detecting matching
lines in the 2D Fourier spectra as this give us valuable infor-
mation on the 3D scene transformationTscenethat has taken
place.



2.4. Analysis of the transformation parameters

Let us assume that(ξ, η) and(ξ′, η′) are the correspond-
ing frequency locations along the matching lines of the
spectraF2(ξ, η) and F ′

2(ξ
′, η′) respectively. Equation 5

yields the following relationship

F ′
2(ξ

′, η′) = F ′
3(ξ

′, η′, 0) (10)

and finally with (9)

F ′
2(ξ

′, η′) = ej(ξ′x0+η′y0)F2(ξ, η). (11)

Let us introduce the matching line angle pair(α, α′)
with respect to theξ- andξ′-axes of the frequency spectra
F2(ξ, η) andF ′

2(ξ
′, η′) respectively. The values of the 2D

spectraF2(ξ, η) andF ′
2(ξ

′, η′) along the matching lines can
now be transformed into one-dimensional representations
F1(ρ) andF ′

1(ρ) whereρ denotes a 1D frequency index.
Thus, (11) can be transformed into:

F ′
1(ρ) = ejρ σ F1(ρ) (12)

where we define the displacement,σ, as

σ = x0 cos α′ + y0 sinα′. (13)

Detecting the matching lines in the two 2D spectra therefore
yields two types of information. Firstly, by recovering the
displacementσ we gain information about the translational
componentsx0 andy0. Even thoughx0 andy0 can not be
isolated fromσ, we can reveal information about their rela-
tionship. Secondly, additional information about the scene
transformation is contained in the angle pair(α, α′) itself.

To discuss this in more detail, we will examine how
(α, α′) depend on the rotation of the 3D feature scene. Let
us assume that the scene has been rotated by the anglesθ,φ
andρ around thex-, y- andz axis respectively according to
the following rotation matrix:

R = R(ρ)
z R(φ)

y R(θ)
x

=

( cos φ cos ρ − cos θ sin ρ + sin θ sinφ cos ρ
cos φ sin ρ cos θ cos ρ + sin θ sinφ sin ρ
− sinφ sin θ cos φ

sin θ sin ρ + cos θ sinφ cos ρ
− sin θ cos ρ + cos θ sinφ sin ρ

cos θ cos φ

)
(14)

The rotation matrixR transforms each 3D feature(x, y, z)T

into a corresponding feature(x′, y′, z′)T according to (7).
Equation 9 shows thatR also establishes the transformation
between corresponding frequency indices in the 3D Fourier
spaces of the original and the transformed scene. According
to (5) and (10), the transformation of the frequency pairξ
andη into the corresponding matched frequenciesξ′, η′ is
described by

(ξ′, η′, 0)T = R · (ξ, η, 0)T (15)

This yields a relationship betweenξ andη along the match-
ing line dependent upon the anglesθ, φ andρ. Thus, the
angleα of the matching line can be found. Similarly, the
angleα′ can be determined from

(ξ, η, 0)T = RT · (ξ′, η′, 0)T . (16)

Since the two equations for(α, α′) depend on three rota-
tion anglesθ, φ, ρ, this problem is not invertible in the gen-
eral case. In other words, various sets of 3D rotation angles
yield the same matching line angles(α, α′). However, the
rotation matrixR can be determined from the matching line
angle pair(α, α′) up to an unknown rotation parameterτ as
follows:

R =

(
r11 r12 r13

r21 r22 r23

r31 r32 r33

)
= R α′

z R τ
x R−α

z (17)

whereR α′

z , R−α
z are rotation matrices that rotate around the

z-axis at anglesα′ and (−α) respectively andR τ
x rotates

around thex-axis about an unknown angleτ . Therefore,
assuring that the orientations of the rotations are consistent
with the ones in (14), the parameters ofR specified in (17)
are:

r11 = cos α′ cos α + sinα′ cos τ sinα

r12 = cos α′ sinα − sinα′ cos τ cos α

r13 = sinα′ sin τ

r21 = sinα′ cos α − cos α′ cos τ sinα

r22 = sinα′ sinα + cos α′ cos τ cos α

r23 = − cos α′ sin τ

r31 = − sin τ sinα

r32 = sin τ cos α

r33 = cos τ (18)

3. Estimation of the Fundamental Matrix
3.1. Determination of the Epipolar Lines

In order to derive equations for the epipolar lines, we
need to examine the relationship between two orthographic
projections of a 3D point under variation of the unknown
depth value of this point. This variation of the feature depth
corresponds to a back-projection of a 2D feature point into
the 3D space and results in a line which naturally includes
the original 3D feature. The projection of this line onto
the second projection plane is defined as the epipolar line.
For orthographic projections, all epipolar lines are parallel.
The epipolar geometry for 2D parallel projection stereos has
been studied in [2].

Under pure rotations of the feature scene, we find the 2D
projection(x′r, y

′
r)

T of a 3D feature(x, y, z)T from (7) with
Λ being the null vector andR being given by (17) and (18).
Varying the feature depthz yields the epipolar line equation
for pure rotations:

cos(α′) x′r + sin(α′) y′r = cos(α) x + sin(α) y (19)



For general scene transformations, the displacementσ
from (13) has to be added to account for translations. This
results in the equation

cos(α′) x′ + sin(α′) y′ = cos(α) x + sin(α) y + σ (20)

for the epipolar lines of a feature(x, y).

3.2. Derivation of the Fundamental Matrix

The fundamental matrixF is defined by the equation

p′T F p = 0 (21)

for any pair of matching points

p = (u, v, w)T , p′ = (u′, v′, w′)T (22)

in two images [4], where the 2D points are denoted in ho-
mogenous coordinates as

x =
u

w
, y =

v

w
, x′ =

u′

w′ , y′ =
v′

w′ . (23)

Geometrically,F represents a mapping between a point and
its epipolar line. Thus, the fundamental matrix can be re-
garded as the algebraic representation of the epipolar ge-
ometry. In Structure and Motion from stereo views, clas-
sical methods such as the 8-point algorithm [4, 8] use the
following procedure to determineF : First, feature points
are identified in the stereo images. Then, point matches are
established conventionally based on proximity and similar-
ity of their intensity neighbourhood. Finally, the unknown
matrixF is computed from (21).

Having identified feature points, our approach pursues a
different strategy to findF . We first established epipolar
geometry constraints based on the proposed integral projec-
tion scheme. We then use the resulting epipolar line equa-
tion to construct the fundamental matrix. For this, we write
F as

F =

(
F11 F12 F13

F21 F22 F23

F31 F32 F33

)
(24)

Using this notation, the epipolar line equation can be di-
rectly derived from (21) and (22):

(F11 u + F12 v + F13 w)u′ + (F21 u + F22 v + F23 w)v′

+ (F31 u + F32 v + F33 w)w′ = 0 (25)

Without loss of generality, we letw = 1 andw′ = 1 in
which case with (23), (25) becomes

(F11 x + F12 y + F13)x′ + (F21 x + F22 y + F23)y′ =
− F31 x− F32 y − F33 (26)

A comparison of (26) and (20) yields

F11 x + F12 y + F13 = cos(α′) (27)
F21 x + F22 y + F23 = sin(α′) (28)

F31 = − cos α (29)
F32 = − sinα (30)
F33 = −σ (31)

Equations 27 and 28 must be fulfilled for all possible values
of x andy which implies

F11 = F12 = F21 = F22 = 0 (32)

Thus, (27) and (28) become

F13 = cos(α′) (33)
F23 = sin(α′). (34)

It should be noted that there is a remaining a degree of free-
dom in the construction of the fundamental matrix. That
is, since the epipolar line equation in (20) can be multiplied
with an arbitrary scalar on both sides, multiplying the ele-
ments ofF in (29) to (34) with an arbitrary scalar would
still yield a valid fundamental matrix.

4. An Algorithm for Estimating the Funda-
mental Matrix

4.1. Estimation of the parameters

The accurate estimation of(α, α′, σ) is crucial for the ac-
curate determination of the epipolar geometry and the fun-
damental matrix. We have designed an algorithm that re-
lies on a maximum likelihood model to robustly extract the
matching line angles. Letting two vectorsb andc denote the
sampled frequency data along the matching lines in the first
and second spectrum respectively, the maximum likelihood
model leads to the following objective function:

d =
max

∣∣<(F−1 {b · c∗})
∣∣

|b||c|
(35)

whereF−1 denotes the inverse Fourier transformation. An
iterative Levenberg-Marquardt search is then used to find
the maximum of the resulting objective function.

The estimation of the displacementσ is based on a Lank-
Reed-Pollon frequency estimator [6]. We derive a vectorr
from the complex frequency vectorsb andc such that

rk =
bk · c∗k
|bk||ck|

. (36)

This leads to the following estimatêσ for the displacement

σ̂ =
arg (

∑
k rk+1 r∗k)

2π∆f
, (37)

where ∆f denotes the frequency resolution along the
matching lines. Potential overruns of the2π range in the
phase of the sum in the numerator of (37) can cause ambi-
guities. However, this can be avoided by choosing a suffi-
ciently small frequency resolution,i.e.

∆f <
1

2(|xmax|+ |ymax|)
(38)

wherexmax and ymax are the maximum allowable scene
translations inx- andy- direction respectively, parameters
which are assumed to be known a priori.



4.2. The overall algorithm

The proposed algorithm involves four basic steps:

1. Given two sets of features that represent the 2D ortho-
graphic projections of a set of 3D features from dif-
ferent viewpoints, find starting values for the match-
ing line angles(α̂s, α̂

′
s). These starting values can be

found by first extracting the discrete frequency vec-
tors bk andck along the matching lines of the spectra
F2(ξ, η) andF2(ξ′, η′) respectively, evaluating the ob-
jective function given in (35) for all vector combina-
tions and choosing the angle pair that corresponds to
the vector pair that maximizes the objective function.

2. Using(α̂s, α̂
′
s) as initial values, perform a Levenberg-

Marquardt search to iteratively approximate the match-
ing line angle pair(αmax, α

′
max) that maximizes the

objective function in (35). Each iteration yields new
estimates(α̂, α̂′). Exit when the search algorithm con-
verges to a solution or a maximum number of iterations
has been reached.

3. Select the frequency resolution according to the con-
straint in (38). Then, extract the discrete frequency
vectors bk and ck along the lines with the angles
(α̂, α̂′) in the spectraF2(ξ, η) andF2(ξ′, η′). Compute
rk using (36) and finally the displacement estimateσ̂
using (37).

4. Using the final estimates(α̂, α̂′, σ̂), either retrieve the
epipolar line that corresponds to a feature location
(x, y) from (20) or compute the elements of the fun-
damental matrixF using (29) to (34).

5. Experimental Results

As test data, we generated a random set ofN 3D features
and projected these features onto a 2D plane using ortho-
graphic projection. We synthetically generated a variable
percentage of random mismatches during this process.

In our first test, we compared two epipolar lines in the
second projection plane that correspond to an arbitrary fea-
ture (x, y) in the first projection plane. The first epipo-
lar line was generated with the proposed algorithm. The
second epipolar line was generated from a conventional,
correspondence-based linear approach [11]. We provided
the conventional method with the correspondence infor-
mation which is hard to obtain in practice [3], therefore
putting the conventional method at an advantage. Fig-
ure 2 shows the 2D features that result from the projec-
tions of thirty 3D features that were randomly generated in
a 2000 × 2000 × 2000 pixel sized cube. The 2D features
that correspond to the 3D features before and after the scene
transformation are depicted by crosses and circles respec-
tively. The solid arrows represent the displacement vectors
of the 2D feature correspondences. We used a relatively
large scene transformation of(φ = 20◦, θ = 45◦) in az-
imuth and elevation and translations of(x0 = 15, y0 = 10).

In addition, we incorporated integer rounding of the 2D fea-
tures to model the effect that, in practice, features are not
known with perfect accuracy. We synthetically generated a
single mismatch by shifting one of the thirty features in the
first 3D feature set into a random position within the 3D fea-
ture cube. This step was performed after the 3D scene trans-
formation and before the feature projection. The dashed ar-
row in Figure 2 shows this mismatch.

The epipolar lines were determined for two arbitrarily
selected features that are marked by squares in Figure 2.
It can be clearly seen from the solid epipolar lines that re-
sults from the proposed integral projection approach are far
more precise than the dashed epipolar lines generated with
the conventional method. The fact that we provided the con-
ventional method with the correspondence information that
was correct apart from minor rounding noise and one sin-
gle mismatch even further corroborates the advantage of the
proposed approach.

Figure 2. Comparison of epipolar lines

In a second test, we quantitatively examined the per-
formance of our approach with respect to the conventional
method under various percentages of mismatches. Specif-
ically, we generatedN = 100 random features identically
to the first test. Both the original large and a small scene
transformation(φ = 5◦, θ = 2◦, x0 = 7, y0 = 8) were
applied. In both cases, we synthetically generated mis-
matches as a percentage of the total number of features
([0, 2, 4, 6, 8, 10]%).

As a quantitative performance measure, two pairs of
mean square distances (MSDs) were computed. The first
MSD pair was derived from the distances of those corre-
spondences that were only subject to rounding noise,i.e.
correctly corresponding feature points (matched points), to
the estimated epipolar lines. The computation of the sec-
ond MSD pair was based on the distances of the syntheti-
cally generated outliers (mismatched points) to their respec-
tive epipolar lines. For each percentage mismatch, we per-
formed ten independent tests of allMSDs, each time using a
different random set of 3D points. We then averaged these
MSDs to obtain statistically reliable results. This data is



shown in Figures 3(a) and 3(b) for both the large and the
small scene transformations.

(a)

(b)

Figure 3. Mean squared distances for various percentages
of mismatches using (a) large transformation parameters
(φ = 45◦, θ = 20◦, x0 = 15, y0 = 10) and (b) small trans-
formation parameters (φ = 5◦, θ = 2◦, x0 = 7, y0 = 8)

We can make the following observations for both the
large and the small scene transformations: If there are no
outliers in the correspondence data, the linear method shows
slightly smaller matchedMSDsthan the integral projection
approach. However, in the presence of mismatches, which
is typically the case in practice, theMSDsof the matched
points are smaller by several orders of magnitude for the in-
tegral projection than for the linear method. For the linear
approach, theMSDsof the mismatched points are smaller
than theMSDsof the matched points. This highlights the
sensitivity of the linear method to outliers and the robust-
ness of the proposed method. TheMSDsof the mismatched
points reach minima at2% mismatches for the linear ap-
proach. This shows the undesirable effect that if only few

outliers are present, the linear method estimates the epipolar
lines for these mismatched points relatively well. In con-
trast, theMSDsof the mismatches for the integral projec-
tion approach are significantly larger than theMSDsof the
matches. This shows the robustness of the integral projec-
tion approach towards outliers in the correspondence data
for both small and large scene transformations.

6. Conclusions

In this paper, we have proposed an approach to deter-
mine the fundamental matrix from feature points, with-
out any correspondences, that is robust to mismatched
points. This can be seen as a major advantage over classical
correspondence-based approaches, since establishing corre-
spondences is a problematic task and mismatches have a
significant impact on accuracy. Results have been presented
to show that the proposed method is robust in the presence
of outliers in the feature data. In particular, theMSDsof
the integral projection approach for matches are smaller by
several orders of magnitude than the correspondingMSDs
of the linear method when outliers are present.

References

[1] R. N. Bracewell.Two-Dimensional Imaging. Prentice-Hall,
1995.

[2] J.-X. Chai and H.-Y. Shum. Parallel projections for stereo
reconstruction. InIEEE Conf. Computer Vision Pattern
Recognition, volume 2, pages 493–500, June 2000.

[3] F. Dellaert, S. M. Seitz, C. E. Thorpe, and S. Thrun. Struc-
ture from motion without correspondences.IEEE Com-
puter Vision and Pattern Recognition Proceedings, 2:557–
564, June 2000.

[4] R. Hartley and A. Zisserman.Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[5] M. Irani. Multi-frame optical flow estimation using sub-
space constraints. InIEEE International Conference on
Computer Vision (ICCV), pages 626–633, Sept. 1999.

[6] G. W. Lank, I. S. Reed, and G. E. Pollon. A semicoher-
ent detection statistic and doppler estimation statistic.IEEE
Transactions on Aerospace and Electronic Systems, AES-
9(2):151–165, 1973.

[7] S. Lehmann, I. V. L. Clarkson, and P. Kootsookos. An in-
tegral projection approach to 3d rigid body transformations.
In Proceedings of the 38th Asilomar Conference on Signals,
Systems, and Computers (to appear).
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