Robust Fundamental Matrix Determination without Correspondences
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Abstract constraints are used to facilitate the optical flow computa-
tion over closely-spaced views. In [3], a method is pro-
Estimation of the fundamental matrix is key to many posed that relies on the Expectation-Maximization (EM) al-
problems in computer vision as it allows recovery of the gorithm to iteratively estimate structure and motion without
epipolar geometry between camera images of the samecorrespondences. At each iteration, a new structure from
scene. The estimation from feature correspondences hasnotion problem is solved for virtual measurements that are
been widely addressed in the literature, particularly in the derived from a probability distribution. This probability
presence of outliers. In this paper, we propose a new robustdistribution is iteratively refined over the set of correspon-
method to estimate the fundamental matrix from two setsdences. It is acknowledged that results for occlusions or
of features without any correspondence information. The spurious features have not been demonstrated and that the
method operates in the frequency domain and the under-EM algorithm can converge to a local minimum.
lying estimation process considers all features simultane-  |n this paper, we propose a method to estimate the fun-
ously, thus yielding a high robustness with respect to noisedamental matrix from two sets of features without the need
and outliers. In addition, we show that the method is well- for correspondences. The two sets of features are the 2D

suited to widely separate viewpoints. orthographic projections of a set of 3D object features from
_ different viewpoints. Our method deduces motion param-
1. Introduction eters without correspondences by evaluating the frequency

spectra of the 2D feature spaces. The approach is based on
an integral projection model and has previously been ap-
plied to estimating 3D rigid body transformations based on
raw images [7]. Here, we extend this work to feature cor-
respondences. The estimation process considers all features
simultaneously, making the method robust with respect to
noise and outliers.

One of the main objectives of computer vision is the re-
covery of structure and motion information from a sequence
of camera images. The determination of the fundamental
matrix plays a key role in this context since it allows the
computation of the underlying epipolar geometry. A variety
of methods have been proposed to compute the fundamen
tal matrix from point correspondences in stereo images. A
comprehensive overview is given in [4]. However, the iden- S
tificart)ion of these correspor?dences[rgmains a fundamenta?' Integral Projection of Sparse Features
problem. The sensitivity to noise and outliers of classical 2.1. Concept and relationship to parallel projection
approaches to the estimation of the fundamental matrix is
well-known [12]. We will illustrate the integral projection scheme based

The estimation of the fundamental matrix without cor- on a set of 2D features that we project into 1D. The integral
respondences remains largely unaddressed in the literaprojection model determines the 1D projection values by in-
ture [3]. Some methods deal with the case of correct tegrating the 2D feature scene along lines that run parallel
but incomplete correspondence information by extending ato the view axis. Due to the duality betweStructure from
minimum set of features into a complete set covering all Motion andMotion from Structurerecording static scenes
reconstructible features [9]. Alternatively, occluded fea- with multiple cameras from different viewpoints is equiv-
tures are artificially generated by projecting computed 3D alent to recording dynamic scenes with one static camera.
feature coordinates onto computed camera positions [10].Suppose we have a 2D object that is represented by a num-
However, both of these methods rely on the prior knowl- ber of 2D feature points in both the original and the trans-
edge of a correct set of initial correspondences. Other ap-formed position. Integrating along lines that are parallel
proaches tackle the correspondence problem by using geoto the view axis results in the 1D feature projections. Fig-
metrical constraints, such as in [5], where geometric rank ures 1(a) and 1(b) depict this situation for five features. In

- : _ v these figures, the view axis is theaxis of the scene co-
Universiy o Brieh ot Vancouver BO Vo Los. Canaia e of Electical and Computer Engineerina. e oy rjingte system. The integral projections are denoted by




I(y) andI’(y) respectively. Let us assume that all 2D fea- Thus, the relationship between the Fourier speE¥@, )
tures are located on the object surface and are in the fieldand F5(¢, 7, ¢) is:
of view of an orthographic camera. Under these assump-
tions, integral projection is identical to parallel projection. ,
gral prol parallet pro) Fal&n) = [ faog,2)e 7€) dodyd:
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wreatre—| N 2| 10 reare 2X--- Equation 5 is known as the projection-slice theorem and is
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Lo 2D Feature A | AD Feature commonly used in X-ray tomographic reconstruction [1].

— x As (5) shows, the spectrum of the projected feature data is

the &, n—plane (where, = 0) of the corresponding spec-
@) (b) trum of the 3D feature data. Next, we will discuss what this
relationship means for stereo projections of a 3D feature set.
Figure 1. Integral projection of feature set (a) before and
(b) after transformation 2.3. Effect on stereo projections

For general object geometries, object faces including their  Let us now consider that we have two 2D integral pro-
corresponding features might become obscured or revealegections of our 3D feature data from two cameras at differ-
after the scene transformation. Therefore, the visible objectent viewpoints. However, to simplify the derivations, we
surfaces before and after the transformation are generallyconsider the equivalent case of projecting the original and
not only transformed versions but differently shaped. There a transformed set of 3D features onto one camera projec-
will consequently be deviations between applying an inte- tion plane instead by applying the rigid-body transforma-
gral projection or a parallel projection to the transformed tion Tscene We decompos&yeeneinto a rotation matrixR
scene as Feature 5 in Figure 1(b) illustrates. and a translation vectay with

2.2. Mathematical Model

In our model, we describe each 3D feature by a Dirac
function at the appropriate feature location. Thus, assumingwhere zy, yo and z, are the translational components of
N features, our 3D feature space is represented by: the scene transformation with respect to they, z coor-
dinate axes of the scene coordinate system. Therefore,
Tscenetransforms each 3D feature poiRt= (z,y, z) into

fs(@y,2) = ]; 0@ —wey —ymz—z) (1) P’ = (2,4, 2)T according to the following equation:

A = (20,50, 20)" (6)

N

where(xg, yi, zx) are the individual feature locations. In- P'=RP +A. )
tegral projection determines the 2D feature projections by

integrating fs(x, y, z) along lines that are running parallel \We now introduce the vector
to the view axis of the camera. Using our integral projection

approach and assuming that thexis of our scene coordi- A= (&, g)T (8)
nate system is aligneq Wit_h the view_ axis of the camera, the
corresponding 2D projection data will be where¢, n and( represent the 3D frequency components of

N F5(¢,7n,¢) in (4). Using the vectors from (6) and (8), the
fo(z,y) = / f3(z,y, 2) dz = Z 5z — zy — yi) (2) 3D spectrum that corresponds to the transformed scene is
R k=1

/ _ _—§(ATA) T
The Fourier spectra of»(z,y) and f5(z,y, z) can be de- F3(A) =e™ F3(R™A). ©)

noted as According to the projection-slice theorem (5), the 2D spec-
I _ —ix+nY) go g trum F5(¢,n) is the( = 0 plane of the 3D spectrum of
2(&m) /RQ fal@:y)e v the object. Therefore, the two spectra of the projections be-
N fore and after the scene transformation show matching lines
- Z e~ (Exntny) (3) that run through the origin of the coordinate systems of the
st spectra. The magnitudes of the two spectra along these lines
will be identical, while the phases will show an offset which
F5(&,n,¢) = F3(@,y, 2)e I ETTMHCE) do dy dz depends upon the translational component of the transfor-
R3 mation. Here we propose a method for detecting matching
N _ lines in the 2D Fourier spectra as this give us valuable infor-
= Z eI (Exptnyrt+Car) 4) mation on the 3D scene transformatifipencthat has taken

k=1 place.



2.4. Analysis of the transformation parameters This yields a relationship betweérandn along the match-
ing line dependent upon the angl&sgy andp. Thus, the
Let us assume th&t, n) and(¢’, ') are the correspond-  anglea of the matching line can be found. Similarly, the
ing frequency locations along the matching lines of the anglea’ can be determined from
spectraFy(&,n) and F3(¢',n') respectively. Equation 5

yields the following relationship & n,000 =RT . (¢,1,0)T. (16)
Fi(&n'") = F;5(&,7',0) (10) Since the two equations fde, o’) depend on three rota-

tion angled), ¢, p, this problem is not invertible in the gen-

and finally with (9) eral case. In other words, various sets of 3D rotation angles
yield the same matching line anglgés, o’). However, the

F(¢ ) = e Ewotn'vo) py (£ ). (11) rotation matrixk can be determined from the matching line

angle pair(«, «’) up to an unknown rotation parameteas

Let us introduce the matching line angle pair, o) follows:

with respect to the- and&’-axes of the frequency spectra i

Fy(&,m) and Fj(¢', ') respectively. The values of the 2D 11 T2 713 o o

spectraF, (¢, 1) and F4 (&', ') along the matching lines can = :i :gz :z; =R R, R, (17)

now be transformed into one-dimensional representations
Fy(p) and F{(p) wherep denotes a 1D frequency index.

Thus, (11) can be transformed into: whereR?', R, are rotation matrices that rotate around the

z-axis at angles’ and (—«) respectively andR rotates

Fl(p) = €77 Fy(p) (12) around thez-axis about an unknown angte Therefore,
assuring that the orientations of the rotations are consistent
where we define the displacement,as with the ones in (14), the parametersitpecified in (17)
are:
= ! ina’. 13
7 = o cosal +yp sina (13) ri1 = cosa’ cosa + sina’ cosTsina
Detecting the matching lines in the two 2D spectra therefore ri2 = cosa’sina —sina’ cosTcos

yields two types of information. Firstly, by recovering the 13
displacement we gain information about the translational

sina/ sin T

sina’ cosa — cos @’ cos T sin o

components:, andy,. Even thoughz, andy, can not be far = 8 o }
isolated fromo, we can reveal information about their rela- T2z = SO/ SINQ+ COSQ COST COS QY
tionship. Secondly, additional information about the scene ro3 = —cosa’sinT
transformation is contained in the angle pait o') itself. ry = —sinTsina
To discuss this in more detail, we will examine how . ]
(v, ') depend on the rotation of the 3D feature scene. Let Ts2 = SIMTCOSQ
us assume that the scene has been rotated by the &ngles T3z = COST (18)

andp around ther-, y- andz axis respectively according to
the following rotation matrix: . . .
9 3. Estimation of the Fundamental Matrix

R = R% R R® 3.1. Determination of the Epipolar Lines

€os ¢ cos p — cosfsin p + sin f sin ¢ cos p In order to derive equations for the epipolar lines, we

= | cos¢sinp cosf cos p + sind sin ¢ sin p need to examine the relationship between two orthographic
—sin¢ sin 6 cos ¢ projections of a 3D point under variation of the unknown

$in 0'sin p + cos fsin ¢ cos p depth value of this point. This variation of the feature depth

~sinf cos p+ cos Bsin G sin p (14) corresponds to a back-projection of a 2D feature point into

080 cos the 3D space and results in a line which naturally includes

the original 3D feature. The projection of this line onto

. . the second projection plane is defined as the epipolar line.
The rotation matrix? transforms each 3D featu(e, y, )" For orthogra%hijc proje(F:)tions, all epipolar lines aFr)epparaIIeI.
into a corresponding feature’, ', 2')" according to (7).  The epipolar geometry for 2D parallel projection stereos has
Equation 9 shows that also establishes the transformation  peen studied in [2].

between corresponding frequency indices in the 3D Fourier  ynder pure rotations of the feature scene, we find the 2D
spaces of the original and the transformed scene. ACCOfd'nQprojection(x’r, y')T of a 3D featurdz, y, z) from (7) with

to (5) and (10), the transformation of the frequency gair A peing the null vector ané& being given by (17) and (18).
andn into the corresponding matched frequendes)’ is  varying the feature depthyields the epipolar line equation
described by for pure rotations:

&, n,0" =R-(&n,0)7 (15) cos(a’) z!. + sin(a’) y. = cos(a) z +sin(a)y  (19)



For general scene transformations, the displacenaent Equations 27 and 28 must be fulfilled for all possible values
from (13) has to be added to account for translations. Thisof x andy which implies
results in the equation

Fi1=Fio=Fy = Fy=0 32
cos(a’) 2" +sin(a’) y' = cos(a) x + sin(a) y + o (20) H B (32)
. . Thus, (27) and (28) become
for the epipolar lines of a featufe;, y).
3.2. Derivation of the Fundamental Matrix Fiz = cos(a) (33)
Fys = sin(a). (34)

The fundamental matri¥’ is defined by the equation
T It should be noted that there is a remaining a degree of free-

p Fp=0 (21) dom in the construction of the fundamental matrix. That
is, since the epipolar line equation in (20) can be multiplied
with an arbitrary scalar on both sides, multiplying the ele-

p=(u,0,w)’, p = v, )T (22) ments of " in (29) to (34) with an arbitrary scalar would
still yield a valid fundamental matrix.

in two images [4], where the 2D points are denoted in ho-
mogenous coordinates as 4. An Algorithm for Estimating the Funda-

/ / mental Matrix
T= Y=o T =0 Y= (23)  4.1. Estimation of the parameters

for any pair of matching points

Geometrically,F' represents a mapping between apointand  The accurate estimation ¢k, o/, o) is crucial for the ac-
its epipolar line. Thus, the fundamental matrix can be re- curate determination of the epipolar geometry and the fun-
garded as the algebraic representation of the epipolar gedamental matrix. We have designed an algorithm that re-
ometry. In Structure and Motion from stereo views, clas- lies on a maximum likelihood model to robustly extract the
sical methods such as the 8-point algorithm [4, 8] use the matching line angles. Letting two vectdrandc denote the
following procedure to determing’: First, feature points  sampled frequency data along the matching lines in the first
are identified in the stereo images. Then, point matches areand second spectrum respectively, the maximum likelihood
established conventionally based on proximity and similar- model leads to the following objective function:
ity of their intensity neighbourhood. Finally, the unknown
matrix F' is computed from (21). max [R(F 1 {b- c*})|

Having identified feature points, our approach pursues a d= ||| (35)

C

different strategy to finde. We first established epipolar
geometry constraints based on the proposed integral projecwhereF~! denotes the inverse Fourier transformation. An
tion scheme. We then use the resulting epipolar line equa-iterative Levenberg-Marquardt search is then used to find
tion to construct the fundamental matrix. For this, we write the maximum of the resulting objective function.

F as The estimation of the displacements based on a Lank-

P Fig Fig Reed-Pollon frequency estimator [6]. We derive a veetor
F=| Ian Iy I (24)  from the complex frequency vectosande such that

Fs51 Fso  Fig

Using this notation, the epipolar line equation can be di- Py = bk - ¢ ' (36)

rectly derived from (21) and (22): o |bel|ex]

(Fiiu+ Fia v+ Fisw)u' + (Fy u+ Fag v + Faos w)v' This leads to the following estimagefor the displacement
+ (F31 u + F32 v+ F33 ’LU)U)/ =0 (25) R arg (Zk Tk+1 T'Z) (37)
o= ——"—""—"—"",
Without loss of generality, we lab = 1 andw’ = 1 in 2y

hich ith (23), (2
which case with (23), (25) becomes where Ay denotes the frequency resolution along the

(Fii 2+ Fioy+ Fi3)a’' + (For  + Fosy + Faz)y/ = matching lines. Potential overruns of the range in the
Py a— Fay— Fys (26) phase of the sum in the numerator of (37) can cause ambi-
31T~ FaaYy — b33 guities. However, this can be avoided by choosing a suffi-

A comparison of (26) and (20) yields ciently small frequency resolutione.
PuatFay+Fs = cos(a) @7) Af < ! 38)
F21$+F22y+F23 = SIH(OZ ) (28) 2(|xmax| + |ymax|)
I3 = —cosa (29) where 2, and ymax are the maximum allowable scene
Fz = —sina (30) translations inz- andy- direction respectively, parameters

Fys = —o (31) which are assumed to be known a priori.



4.2. The overall algorithm In addition, we incorporated integer rounding of the 2D fea-
) ) ) tures to model the effect that, in practice, features are not
The proposed algorithm involves four basic steps: known with perfect accuracy. We synthetically generated a
single mismatch by shifting one of the thirty features in the
1. Given two sets of features that represent the 2D ortho-first 3D feature set into a random position within the 3D fea-
graphic projections of a set of 3D features from dif- ture cube. This step was performed after the 3D scene trans-
ferent viewpoints, find starting values for the match- formation and before the feature projection. The dashed ar-
ing line angleq s, &.,). These starting values can be row in Figure 2 shows this mismatch.
found by first extracting the discrete frequency vec-  The epipolar lines were determined for two arbitrarily
torsb, andc;, along the matching lines of the spectra selected features that are marked by squares in Figure 2.
F5(&,m) andF (€', n') respectively, evaluating the ob- |t can be clearly seen from the solid epipolar lines that re-
jective function given in (35) for all vector combina-  sylts from the proposed integral projection approach are far
tions and choosing the angle pair that corresponds tomore precise than the dashed epipolar lines generated with
the vector pair that maximizes the objective function. the conventional method. The fact that we provided the con-
o, . ventional method with the correspondence information that
2. Using(a,, &) as initial values, perform a Levenberg- a5 correct apart from minor rounding noise and one sin-

Marquardt search to iteratively approximate the match- gje mismatch even further corroborates the advantage of the
ing line angle paifamax, a,,,) that maximizes the proposed approach.

objective function in (35). Each iteration yields new

estimategd, &’). Exit when the search algorithm con-

verges to a solution or a maximum number of iterations

has been reached. Too0

3. Select the frequency resolution according to the con-
straint in (38). Then, extract the discrete frequency
vectors b, and ¢, along the lines with the angles
(&, &) inthe spectrd (€, n) andF5 (¢, 7). Compute
r, using (36) and finally the displacement estiméte
using (37).
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5. Experimental Results . _ _ _
Figure 2. Comparison of epipolar lines

As test data, we generated a random sé¥ @D features
and projected these features onto a 2D plane using ortho- In a second test, we quantitatively examined the per-
graphic projection. We synthetically generated a variable formance of our approach with respect to the conventional
percentage of random mismatches during this process. method under various percentages of mismatches. Specif-

In our first test, we compared two epipolar lines in the ically, we generatedv = 100 random features identically
second projection plane that correspond to an arbitrary fea-to the first test. Both the original large and a small scene
ture (z,y) in the first projection plane. The first epipo- transformation(¢ = 5°,0 = 2°, 29 = 7, yo = 8) were
lar line was generated with the proposed algorithm. The applied. In both cases, we synthetically generated mis-
second epipolar line was generated from a conventional,matches as a percentage of the total number of features
correspondence-based linear approach [11]. We provided[0, 2,4, 6,8,10]%).
the conventional method with the correspondence infor- As a quantitative performance measure, two pairs of
mation which is hard to obtain in practice [3], therefore mean square distanceMI$D9 were computed. The first
putting the conventional method at an advantage. Fig-MSD pair was derived from the distances of those corre-
ure 2 shows the 2D features that result from the projec- spondences that were only subject to rounding ndise,
tions of thirty 3D features that were randomly generated in correctly corresponding feature points (matched points), to
a 2000 x 2000 x 2000 pixel sized cube. The 2D features the estimated epipolar lines. The computation of the sec-
that correspond to the 3D features before and after the scenend MSD pair was based on the distances of the syntheti-
transformation are depicted by crosses and circles respeceally generated outliers (mismatched points) to their respec-
tively. The solid arrows represent the displacement vectorstive epipolar lines. For each percentage mismatch, we per-
of the 2D feature correspondences. We used a relativelyformed ten independent tests of IEDs each time using a
large scene transformation ¢p = 20°,0 = 45°) in az- different random set of 3D points. We then averaged these
imuth and elevation and translations(ef, = 15, yo = 10). MSDsto obtain statistically reliable results. This data is



shown in Figures 3(a) and 3(b) for both the large and the outliers are present, the linear method estimates the epipolar

small scene transformations.
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Figure 3. Mean squared distances for various percentages
of mismatches using (a) large transformation parameters
(¢ = 45°,6 = 20°, 2o = 15, yo = 10) and (b) small trans-
formation parametersh(= 5°,0 = 2°, 20 = 7,yo = 8)

We can make the following observations for both the

large and the small scene transformations: If there are no g
outliers in the correspondence data, the linear method shows

slightly smaller matcheSDsthan the integral projection

approach. However, in the presence of mismatches, which[10]

is typically the case in practice, thdSDsof the matched

points are smaller by several orders of magnitude for the in-
tegral projection than for the linear method. For the linear

approach, théViSDsof the mismatched points are smaller
than theMSDsof the matched points. This highlights the

sensitivity of the linear method to outliers and the robust- [12]

ness of the proposed method. TMEDsof the mismatched
points reach minima &% mismatches for the linear ap-

proach. This shows the undesirable effect that if only few

lines for these mismatched points relatively well. In con-
trast, theMSDsof the mismatches for the integral projec-
tion approach are significantly larger than &Dsof the
matches. This shows the robustness of the integral projec-
tion approach towards outliers in the correspondence data
for both small and large scene transformations.

6. Conclusions

In this paper, we have proposed an approach to deter-
mine the fundamental matrix from feature points, with-
out any correspondences, that is robust to mismatched
points. This can be seen as a major advantage over classical
correspondence-based approaches, since establishing corre-
spondences is a problematic task and mismatches have a
significant impact on accuracy. Results have been presented
to show that the proposed method is robust in the presence
of outliers in the feature data. In particular, tMSDs of
the integral projection approach for matches are smaller by
several orders of magnitude than the correspon¥M&ips
of the linear method when outliers are present.
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