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Abstract

Mixture models implemented via the expectation-
maximization (EM) algorithm are being increasingly used
in a wide range of problems in statistical pattern recogni-
tion. For many applied problemsin medical and health re-
search, the data collected may exhibit a hierarchical struc-
ture. The independence assumption in the maximum likeli-
hood (ML) learning of mixture models is no longer valid.
Ignoring the correlation between hierarchically structured
data can lead to mideading pattern recognition. In this
paper, we consider the extension of Gaussian mixtures to
incorporate data hierarchies via the linear mixed-effects
model (LMM). Clustered and longitudinal data hierarchy
settingsin medical and biological research are considered.

1. Introduction

Finite mixture models have been widely applied in the
field of unsupervised statistical pattern recognition, where a
pattern is considered as a single entity and is represented by
a finite dimensional vector of features of the pattern [6, 12].
Important applications include a variety of disciplines such
as medicine, computer vision, image analysis, and machine
learning; see for example [13, 15]. A common assumption
in practice is to take the component densities to be Gaussian
given its computational tractability. As detailed in Chapters
2 and 3 of [15], the maximum likelihood (ML) learning of
Gaussian mixtures can be implemented via the expectation-
maximization (EM) algorithm of [2] under the assumption
of independent data.

However, for many applied problems in the context of
medical, health, and biological sciences, the data collected
could exhibit a hierarchical or clustered structure. Such

data hierarchies may be present naturally or may be due to
the experimental design. For example, in medical research,
data on patients are often collected from several participat-
ing hospitals [17]. Data collected from the same hospital
are often interdependent and tend to be more alike in char-
acteristics than data chosen at random from the population
as a whole. Similarly, in biological research, gene expres-
sion ratios are obtained from different tissues (patients) or
there are repeated measurements of gene expression on each
tissue [19, 26]. The latter is an example of longitudinal
designs, where longitudinal data are obtained by a series
of repeated measurements nested within individual subjects
(patients). With these applications, data collected from the
same unit (subject) are correlated and the independence as-
sumption in the ML learning of Gaussian mixtures is no
longer valid. Ignoring the dependence of clustered or lon-
gitudinal data can result in overlooking the importance of
certain cluster or subject effects and lead to spurious or mis-
leading pattern recognition [3].

In this paper, we consider the extension of Gaussian mix-
ture models to incorporate data hierarchies via the linear
mixed-effects model (LMM). With the LMM, cluster or
subject effects are assumed to be random (random effects)
and shared among data collected from the same unit (sub-
ject) [10]. Our contribution is to create a wider applicabil-
ity of mixture model-based pattern recognition for medical
applications with hierarchically structured data. As an il-
lustration for the method, we consider two common data
hierarchy settings in medical and biological research. In
Section 3, we illustrate the analysis of clustered data with a
multi-center clinical trial setting and in Section 4, the clus-
tering of genes with repeated measurements (longitudinal
data) is considered. We also show that efficient learning of
the proposed mixture of LMM can still be achieved by the
ML approach via the EM algorithm.



2. Gaussian Mixtures and Linear Mixed M od-
as

With a Gaussian mixture model, the observed p-
dimensional data y,,...,y, are assumed to have come
from a mixture of an initially specified number g of mul-
tivariate Gaussian densities in some unknown proportions
T1,---, Mg, Which sum to one. That is, each feature vector
is taken to be a realization of the mixture probability density
function,

g
Flys®) = mnd(ys pa, Tn), (1)
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where ¢(x; py,, Xp) denotes the p-dimensional multivari-
ate Gaussian distribution with mean g, and covariance ma-
trix 35. Here the vector ¥ of unknown parameters con-
sists of the mixing proportions 71, ..., m,_;, the elements
of the component means g, and the distinct elements of
the component-covariance matrices X5, (h = 1,...,9).

The EM algorithm is a popular tool for iterative ML esti-
mation of mixture models [15]. It has a number of desirable
properties including its simplicity of implementation and
reliable global convergence [14, 16]. Within the EM frame-
work, each y; is conceptualized to have arisen from one of
the g components. We let z4, .. ., zx denote the unobserv-
able component-indicator vectors, where the h-th element
zp; Of z; is taken to be one or zero according as the j-th
feature vector y; does or does not come from the A-th com-
ponent. We put 27 = (27, ..., 2%) where the superscript
T denotes vector transpose. The complete data is then given
by (y, z). On each iteration of the EM algorithm, there are
two steps called the expectation (E) step and the maximiza-
tion (M) step. The E-step involves the computation of the
so-called @Q-function, which is the conditional expectation
of the complete-data log likelihood, given the observed data
y and the current estimate for ¥. The M-step updates the
estimates that maximize the @-function with respect to ¥.
With Gaussian mixtures, the update of ¥ in the M-step ex-
ists in closed form [15], Chapter 3. The E- and M-steps
are alternated repeatedly until convergence. A nice prop-
erty of the EM algorithm is its monotonic increasing of the
log likelihood at each iteration. Starting from an arbitrary
initial estimate for ¥ in the parameter space, convergence
is nearly always to a local maximizer, barring very bad luck
in the choice of the initial starting values [14], Section 1.7.
An outright or hard clustering of the data is obtained by
assigning each y; to the component of the mixture (1) to
which it has the highest posterior probability of belonging,
E(zn; = 1y).

With LMM, cluster or subject effects are assumed to be
random and shared among data collected from the same unit
(subject). Let the vector b denote the random effects that

occur in the data vector . The LMM specifies the mean of
y conditional on the realized b as

E(y|b)=XB+Ub, (2

where elements of 3 are fixed effects (unknown constants)
modeling the mean of y, and b represents the unobserv-
able random effects which have zero mean (E(b) = 0) and
govern the variance-covariance structure of y; see for ex-
ample [10]. In (2), X and U are known design matrices of
the fixed effects and random effects parts, respectively. The
learning of single component LMM via the EM algorithm
has been described in [14], Section 5.9, where the unob-
servable random effects b are treated as missing data in the
framework of the EM algorithm. This approach can be ex-
tended to the present context where a Gaussian mixture of
LMM is to be learned.

With the use of the EM algorithm to learn mixtures of
LMM, the unobservable component indicator variables z
and the random effects b are both treated as missing data in
the EM framework. By assuming that the random effects
are normally distributed, it follows from the normal theory
that the joint distribution of the complete data (y, z, b) is
also a Gaussian mixture. This facilitates the implementa-
tion of the EM algorithm for the learning of mixtures of
LMM, for otherwise the complete-data log likelihood can-
not be evaluated in closed form; see Section 5. In this paper,
we consider both clustered and longitudinal data hierarchy
settings in medical and biological research as follows.

3. Clustered data: A multi-center clinical trial

With a multicenter clinical trial data structure, it is as-
sumed that there are M participating hospitals, and within
each hospital there are n; patients (¢ = 1,..., M) involved
in the study. The total number of observations is, there-
fore, N = Zfil n;. The objectives are to cluster the
patients into subgroups based on the observations of pa-
tient’s outcome y;; along with the patient’s characteristics
zi; (j = 1,...,n;) and to identify risk factors on the out-
come measure. For example, this clinical trial setting can be
adopted to cluster patients into subgroups with different pat-
terns of hospital length of stay [9, 18] or hospital cost [22]
and to assess diagnostic criteria of some diseases [24].

For the analysis of clustered data where patients are
nested within hospitals, it is assumed that the hospital (clus-
ter) effects are random and shared among data collected
from the same hospital through the corresponding linear
predictors. With reference to (2), conditional on its mem-
bership of the h-th component of the Gaussian mixture, the
conditional mean of y;; can be expressed as

finij = @358y, + b 3)



fori=1,...,Mandj =1,...,n;, where 3, is the vector
of coefficients (fixed effects) and b; represents the unob-
servable random effect of the ¢-th hospital on the h-th com-
ponent mean. With (3), the first element of x;; is one to
account for the bias term, and the random effects b; are
taken to be i.i.d. N(0,8y). A positive estimated random ef-
fect by; thus indicates a larger mean for the h-th component
in the ¢-th hospital. Under this formulation, the vector of
unknown parameters ¥ now consists of 7y,...,mg—1, B,
op,andd, (h=1,...,9g), where g; is the h-th component-
variance.

3.1. Learning via the EM algorithm
Let by = (bui,---,bnar). The complete-data log likeli-

hood is given, apart from an additive constant, by

M n;

IOgLC(‘I’) = Zzzzhz] logﬂh(ﬁhz]

i=1 j=1 h=1
g
=>4 [M1og + 6, b b,

where
bri)?}

and zp;; = 1if y;; belongs to the h-th componentor zp;; =
0 if otherwise.

On the (k + 1)-th iteration, the E-step computes the Q-
function which involves the calculation of the following
conditional expectations

Ego (brly),  Ega (b baly).

The conditional expectations in (4) are directly obtainable
as follows:
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which is the current estimated posterior probability that y;;
belongs to the h-th component,
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The M-step provides the updated estimate ¥ *+") that
maximizes the Q-function with respect to W. It follows that
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3.2. A simulation study

For illustrative purposes, we here simulate some data
sets of clustered data with a multicenter clinical trial data
structure. It is assumed that there are M = 10 hospi-
tals and within each hospital there are n; = 100 patients
(j=1,...,M). Eacha; (i=1,...,10; j = 1,...,100)
is a three-dimensional vector where the first element is
one. A continuous bivariate vector is generated indepen-
dently from the N (0, I,) distribution to form the elements
of a;;, where I, denotes a two dimensional identity ma-
trix. Realizations of Z are generated in which an out-
come y;; has a probability of 75, of belonging to the h-th
component (h = 1,...,g). Suppose that the h-th compo-
nent is determined, an outcome y;; is then generated from
a Gaussian ¢(yij, phij, o3), With by; generated indepen-
dently from the N (0, 8y,) distribution. In the simulation ex-
periment, we consider a two-component (¢ = 2) Gaussian
mixture and assume 7; = w5 = 0.5, 87 = (1.0,0.5,0.5),
and B2 = (-1.0,-0.5,0.5). Two different sets of param-
eter values of (07,02,6;,62) are considered in the study.
We repeat 10 independent simulation experiments for each



set to assess the generalization performance of the proposed
method. The results are presented in Table 1. For compar-
ison, we also include the results obtained from a Gaussian
mixture model with the independence assumption. It can
be seen from Table 1 that the proposed mixture of LMM
shows improvement in clustering the data. In addition, it is
observed that the biases in the estimators of ¢} and o2 are
large when the dependence of clustered data is ignored in
the Gaussian mixture (independent data) model.

Table 1. Simulated results for the clustered
data structure.

parameters method error rate

02 =03=1.0 mixture of LMM 19.6%

0, =6-=1.0 Gaussian mixture 26.0%
(independent data)

0?2 =05=0.5 mixture of LMM 14.7%

6, =606-=1.0 Gaussian mixture 21.9%

(independent data)

4. Clustering of Geneswith Repeated M easure-
ments

In this section, we consider the clustering of genes on the
basis of the genes expression-profile vector of tissue sam-
ples. As detailed in Chapter 5 of [13], the clustering of
genes can be usefully employed to form a smaller number of
subgroups of genes. Each subgroup of genes is represented
by a single vector (a “metagene”) for the subsequent clus-
tering of the tissue samples. Another aim of clustering the
genes might be to find clusters of genes that are potentially
coregulated in order to search for common motifs in up-
stream regions of the genes in each cluster [23] and that are
powerful predictor of disease outcome [7]. In recent time,
gene expression microarray experiments are being carried
out with replication for capturing either biological (biolog-
ical replicates) or technical (technical replicates) variabil-
ity in expression levels to improve the quality of inferences
made from experimental studies [19, 21]. The importance
of replication has been demonstrated by Lee et al. [8].

For a gene expression microarray experiment with re-
peated measurements, we are given, say for each i-th gene
(i = 1,...,M), a feature vector y; = (y%,...,y5)7,
where v is the number of distinct tissues (patients) and

(G=1,...,v)

contains the n;; replications on the ¢-th gene from the j-th
tissue. With reference to (2), it is assumed that the random
effects are shared among the repeated measurements of ex-
pression on the same gene from the same biological source.

Yij = Wit Yigni;) "

Conditional on its membership of the h-th component of the
Gaussian mixture, the conditional mean of y;;, is expressed
as

Hhijr = Brj + bnij (12)

fori=1,...,M,j=1,...,v,andr = 1,...,n;;, where
bnsj represents the unobservable random effect of the i-th
gene from the j-th tissue on the h-th component mean and is
taken to be i.i.d. N (0, 8p;). Under this formulation, the vec-
tor of unknown parameters ¥ now consists of 7y, ..., mg_1,
,th,a,zlj,andehj (h=1,...,9;5=1,...,0).

4.1. The E- and M-steps

Apart from an additive constant, the complete-data log
likelihood is given by
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where zp; = 1 if y, belongs to the h-th componentor z,; =
0 if otherwise. Here, log ¢4; is given by
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and where 1, is a n;;-dimensional vector of ones. On the
(k + 1)-th iteration, the E-step computes
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where V'p,;; is an n;; X m;; component-covariance matrix
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The M-step updates the estimate as follows,

M
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4.2. A real example: Yeast galactose data

The data set has been used to study an integrated ge-
nomic and proteomic analyses of a systemically perturbed
metabolic network [5] and is available from the online ver-
sion of [26]. With the data, there are four replicate hy-
bridizations for each cDNA array experiment. However,
there are about 8% of missing data. A k-nearest neighbour
(k = 12) method has been adopted to impute all the miss-
ing values [26]. In our study, we work on the data set with
missing values and allow the number of replicates n;; to be
different for each gene on each tissue sample. There are
194 genes and 20 tissues. The average number of repli-
cates is 3.7. Our aim here is to cluster the genes based on
the expression profile vector of tissue samples. The clus-
ters so formed are then compared to the four functional cat-
egories available in the Gene Ontology (GO) listings [1].
The adjusted Rand index [4] is adopted to assess the degree
of agreement between our partition and the four functional
categories. The index is defined as

adjusted Rand index = (ncorrect—¢*)/(Ntotar—c*), (20)
where ncorrect 1S the number of correct pairwise classifica-
tions and ny.:q; is the total number of clustered pairs. In
(20), ¢* is a correction factor that adjusts the index so that
its expected value in the case of random partition is zero [4].
It can be seen from (20) that a larger adjusted Rand index
indicates a higher level of agreement. The results are pre-
sented in Table 2. For comparison, we also cluster the genes
on the basis of the mean expression for each tissue. As the

repeated measurements are averaged to form the mean ex-
pression profile, the information on the variability between
replicates is discarded and only the information about the
mean expression level utilized. It is shown in Table 2 that
this approach assumes the independence of data and pro-
duces the clustering of genes that has lower adjusted Rand
index.

Table 2. Adjusted Rand index (yeast galactose
data).

method adjusted Rand index
mixture of LMM 0.759
Gaussian mixture
(independent data) 0.698
5. Discussion

We have described the extension of Gaussian mixture
models to incorporate data hierarchies via the LMM. The
applicability of the proposed method has been demonstrated
in Sections 3 and 4 for the analyses of clustered and lon-
gitudinal data in medical and biological research, respec-
tively. By assuming that the random effects are normally
distributed, the EM algorithm can be adopted to perform
the ML learning of mixture of LMM. Within the EM frame-
work, the unobservable component indicator variables and
the random effects are both treated as missing data. How-
ever, the EM algorithm may converge slowly where there is
too much “missing information” [16], for example, when
the dimension of the random effects is relatively large.
In this case, some variants of the EM algorithm may be
adopted to speed up the convergence; see for example [14],
Section 5.9.

The EM framework developed in Sections 3 and 4 can
be readily applied to calculate the residual maximum like-
lihood (REML) estimate. The REML method can be re-
garded as a method of estimation of the variance compo-
nent 8 by maximizing the restricted log likelihood function,
which is the log likelihood obtained from a specified set of
linearly independent error contrasts [20]. A discussion on
the comparison between ML and REML methods for learn-
ing LMM is given in [10]. In some cases, it is shown that
the REML method provides a less biased estimator for the
variance component, compared to the ML estimation ap-
proach [11].

In the context of pattern recognition, it is typical to
proceed on the basis that any nonnormal features in the
data are due to some underlying group structure. A con-
venient choice for the component-densities is a Gaussian



distribution given its computational tractability. In partic-
ular, the joint distribution of the complete-data also has
the component-densities of a Gaussian. This facilitates the
use of the EM algorithm for learning mixtures of LMM.
The generalization of LMM to the generalized linear mixed
model (GLMM) is essential for the analysis of non-normal
data, for example discrete data. With the GLMM, the den-
sity is not necessarily assumed to be a Gaussian distribution
and the mean is not necessarily taken as a linear combi-
nation of parameters as in (3) and (12). However, in this
case, the complete-data log likelihood within the EM frame-
work cannot be evaluated in closed form and has an integral
with dimension equal to the number of levels of the ran-
dom effects. Several procedures have been proposed in the
literature, which include the methods using analytical ap-
proximation to the likelihood [11, 25] and the Monte Carlo
EM algorithm, among others; see [16]. An example of
EM-based approaches for the analysis of non-normal data
is given in [17], where a two-component survival mixture
model is adjusted for random hospital effects based on the
GLMM method and the REML estimators for the variance
component.
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