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Abstract

A method for the classification of trees and powerlines in
urban areas by using only dual return (first and last pulse)
medium resolution Airborne Laserscanner (ALS) data is
presented. ALS points with a different first and last pulse
return are initially identified and building detection tech-
niques are then used to separate buildings from initial ar-
eas of interest. The separation of tree and powerline data
is performed by applying a classification method based on
the theory of Dempster - Shafer for data fusion. Examples
of the classification method are compared against ground
truth for a test site in Sydney, Australia.

1. Introduction

1.1. Motivation and Goals

Research on automated object extraction for 3D city
models has been fuelled in recent years by the increasing
use of geographic information systems (GIS), and the need
for data acquisition and update for GIS. The main focus in
this context was the detection and reconstruction of build-
ings [2], [5], [16] and roads [6]. Some existing methods use
multiple data sources in order to achieve comprehensive 3D
city models. Recently, the use of 3D point clouds generated
from airborne laser scanning (ALS) for automatic creation
of 3D city models has been gaining importance.

ALS data have several unique properties. Firstly, laser
points are not selective and as such do not automatically
strike the object required [13]. Secondly, due to the finite
spot size of the laser beam, an imperfection pointed out in
[12], there might be more than one echo of the laser. Mod-
ern ALS systems are capable of collecting both first pulse
(FP) and last pulse (LP) data during one flight, and some
objects can only be discerned in a FP-LP difference image
(Figure 1). Finally, ALS systems deliver the intensity of the
returned laser beam, which however is usually undersam-

pled and thus noisy. This is caused by the imbalance of the
average footprint size of the laser beam (e.g. 20-30 cm) and
the average point distance (e.g. 1 m) [19].

Figure 1. Height differences between pulses

During the early stages of development, ALS was pri-
marily used for topographic mapping of terrain in forested
areas in order to generate digital terrain models (DTM’s)
[1], [2], [10], [16]. As sensor technology has improved,
so has the achievable resolution of point clouds from ALS
data [9], and methods to extract objects from stand-alone
ALS data have emerged. Buildings have been extracted
from ALS data using a variety of methods [2], [15], [16].
Roads have been effectively classified using ALS from an
urban landscape in [4]. In order to extend the comprehen-
siveness of 3D city model creation from stand-alone ALS
data, other object classes need to be extracted, too. As both
trees and powerlines can be easily seen in an unprocessed
image of the height differences between the surfaces corre-
sponding to the first and last laser pulses of ALS data (Fig-
ure 1), a method to effectively classify these object types
was sought. It is the goal of this paper to



• Detect trees and powerlines from stand-alone ALS
data in urban areas with resolution of approximately
1 point per square metre

• Improve the ability of creating 3D city models from a
single data source, namely ALS data.

This paper presents results of a new method to classify
trees and powerlines in an urban area from ALS data. Sec-
tion 1.2 provides a review of related research. Section 2
describes the conceptual approach, model assumptions and
describes our new method for determining areas covered by
trees and powerlines. Results from the sample data set are
discussed in section 3 whilst conclusions and future work
are examined in section 4.

1.2. Related Work

ALS systems have been used in areas covered by trees
since their infancy [1]. Initially, DTM’s were derived from
the ALS data but this soon progressed into canopy height
determination which can be used to model canopy volumes
and above ground biomasses [11].

In [10], DTMs were created in forested areas with a sin-
gle last pulse ALS system. The use of ALS in wooded areas
was considered very beneficial due to the ability of the laser
to penetrate the trees and make contact with the ground.
Although it was acknowledged that further filtering and in-
terpolation was required to divide the ALS data into ground
and non-ground strikes, it was concluded that the accuracy
of the final DTM was comparable to that of DTM’s gener-
ated in open areas with photogrammetry.

In [5], multispectral imagery and ALS data are combined
for the extraction of buildings, trees and grass covered ar-
eas. Trees and grass covered areas are easily classified from
the multispectral imagery but not easily separated. Simi-
larly, trees and buildings can be separated using the height
differences between a digital surface model (DSM) and the
DTM. Both data sources are combined in order to identify
the three classification types. In [17], classification of land
cover into four different classes (building, tree, grass land,
and bare soil) is achieved by combining ALS data and mul-
tispectral images. The ALS data is initially preprocessed to
generate a DTM before building detection is performed by
data fusion based on the theory of Dempster - Shafer [8].

The potential of ALS for the detection of individual trees
has been explored several times, e.g. [7], [14], [18]. Early
experiments were performed in [7] within forests dominated
by coniferous trees within boreal forests . The results var-
ied and difficulties were encountered in dense young forest
or in groups of deciduous trees. In [14], very high resolu-
tion ALS data (>10 points/m2) was used to segment single
trees. Local maxima in a DSM are used as seed points in
the raw ALS data for the tree identification. The heights de-
rived from the ALS data where consistent with ground truth

information but location of the trees did not occur with such
consistency. Crown volume and diameter were then calcu-
lated. In [18], single trees and their crown parameters are
extracted from a DSM from ALS data and optical images.
The height difference between first and last pulse data is not
used. An evaluation on a per-tree basis using four different
data sets achieved completeness between 50% and 96% and
correctness between 59% and 86%, depending on the data
quality, especially on the state of the tree canopies at the
time of flight.

A variety of tools have been used for the classification of
ALS data. Basic remote sensing tools were used in [1] to
classify both buildings and trees. The authors used a veg-
etation index called the Normalised Difference (ND), de-
rived from the first and last pulse data DSMs similar to the
Normalised Difference Vegetation Index from infrared im-
ages. The ND index basically shows if both a FP and LP
were recorded in the same pulse and does not distinguish
between the type of objects that could cause such a return.
As identified in [16] and [3] there are many different ob-
ject types that could be detected in such a manner, such as
powerlines, building edges, and trees.

2. The Classification Method

2.1. Conceptual Approach and Method Overview

In our method we assume that buildings have previously
been extracted from the ALS data (Figure 4(a)). This is
achieved by the method described in [16], evaluating cues
such as the relative height of the ALS points above a DTM
and the surface roughness of the DSM created from the ALS
data. Having done that, we detect trees and powerlines from
the ALS data by merely evaluating the height differences
between FP and LP data and the ALS intensity values. In
Figure 1, all the ALS points in the surveyed region that have
registered a different first and last pulse return are displayed.
Trees, powerlines and building edges can easily be seen in
this unprocessed image. Figure 2 shows how the laser beam
interacts with trees and building edges.

Figure 3 gives an overview over the work flow of our
method. In our classification model we assume that any dif-
ference between FP and LP is caused by either trees, pow-
erlines, or building edges. We first exclude all points on
building edges from further processing, making use of the
previously detected buildings. After that, we differentiate
between powerlines and trees. Trees are characterised by
the fact that there will be many points with a large height
difference between first and last pulse data in a local neigh-
bourhood. The ALS intensities might be in any range, de-
pending on the tree species and the time of year. Powerlines
on the other hand tend to have only few points of a large
height difference between first and last pulse data in a local
neighbourhood. They also have low intensities of return.



These model assumptions are used to derive several cues
for classification which are then combined in a data fusion
process based on the theory of Dempster-Shafer [8], [17].

(a) Laser penetrating a tree
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(b) The edge of a building

Figure 2. Laser Reflections

Figure 3. The classification flowchart
In this paper, we will give the results of our method ap-

plied to a test data set from Fairfield in Sydney, Australia.
The data set was initially collected with an approximate
point density of 1 point per 1.3 m2. Both first and last pulse
and the intensity of the reflected laser beam were recorded.

2.2. Classification Cues

For the purpose of this paper, we will describe
any ALS data pointpk as being defined bypk =
(lxk, lyk, lzk, lik, fxk, fyk, fzk, fik), where the first let-
ter describes the pulse, i.e.l = last andf = first, and
the second letter describes the pulse 3D coordinate or in-
tensity by eitherx, y, z or i. Let S represent the set of

all laser points collected, i.e.S = {p1,p2, ...,pN}, where
p1,p2, ...,pN are the individual ALS points. A pointpk

is considered to have different first and last pulses where
∆Hk > 0 and ∆Hk = fzk − lzk. A set of all points
points that have different first and last pulses is described
by S1 = {pk ∈ S : ∆Hk > 0}.

In a way similar to [20], a band of pixels around each
building outline is created. The width of the band is depen-
dant on the original point spacing. As the resolution of the
test data (1.3 m) is approximately the same as the pixel size
(1 m), a band of width 2 pixels was chosen to form a cor-
ridor on either side of the existing building boundary. ALS
points which lie inside the initial building outline band and
exist inS1 can be considered as being situated on the build-
ing edge and as such need to be removed from the set. We
define a new setS2 where ALS points identified as building
edges have been removed fromS1 (Figure 4).

(a) Building Mask (b) Points on building outlines

Figure 4. Removing building edge points

The ALS points contained inS2 are preprocessed to
form inputs into a classification method based on the the-
ory of Dempster-Shafer. Three images are created in this
preprocessing step, namely a first pulse laser intensity im-
ageIF , an image∆HFL containing the height differences
between FP and LP, and a local point density imageρ. The
pixel values of the imagesIF and ∆HFL have to be in-
terpolated from the intensities and height differences of the
ALS points. We use an interpolation method based on in-
verse distance weighting for that purpose. The imageρ de-
scribes the ratio of the number of points having different
first and last pulse heights (thus, from the data setS2) to the
total number of ALS strikes within a local area. The value
of ρ at any position (k) is described by Equation 1, where
||pk − pj ||2 denotes the Euclidean distance betweenpk and
pj andd is the radius of the local neighbourhood:

ρk =
|{pj ∈ S2 : ||pk − pj ||2 < d}|
|{pj ∈ S : ||pk − pj ||2 < d}| (1)

2.3. Separating Powerlines and Trees

We start this section with an outline of Dempster-Shafer
fusion based on [8]. Consider the classification problem



where the input data are to be classified inton mutually
exclusive classesCj ∈ Θ. The power set ofΘ is denoted by
2Θ and contains not only the theoriginal classesCj but also
all their possible unions (hence calledcombined classes). A
probability massm(A) is assigned to every classA ∈ 2Θ by
an “image” (a classification cue) such thatm(∅) = 0, 0 ≤
m(A) ≤ 1, and

∑
A∈2Θ m(A) = 1, where∅ denotes the

empty set. Uncertainty in classification from an individual
cue can be modelled by assigning a non-zero probability
mass to the union of two or more classesCj . Thesupport
Sup(A) of a classA ∈ 2Θ is defined as the sum of all
masses assigned toA:

Sup(A) =
∑

B⊆A

m(B) (2)

DubietyDub(A) = Sup(Ā) is the degree to which the ev-
idence contradicts a proposition, or supports the comple-
mentary hypothesis ofA: A ∪ Ā = Θ. If there arep
inputs, probability massesmi(Bj) have to be defined for
eachi such that1 ≤ i ≤ p andBj ∈ 2Θ. The probability
masses from several inputs can then be combined to com-
pute a combined probability mass for each classA ∈ 2Θ:

m(A) =

∑
B1∩B2...∩Bp=A [

∏
1≤i≤p mi(Bj)]

1−∑
B1∩B2...∩Bp=∅ [

∏
1≤i≤p mi(Bj)]

(3)

Once the combined probability massesm(A) have been
computed, bothSup(A) and Sup(Ā) can be calculated.
The accepted hypothesisCa ∈ Θ is determined as the class
obtaining maximum support.

We apply the Dempster - Shafer theory to the data on a
pixel by pixel basis to classify the inputs into one of three
classes, Tree (T ), Powerline (L) or Other (O). As described
in section 2.2, three input cues are used in the classification:

(1) The height differences∆HFL between FP and LP
distinguish powerlines and trees from other objects, with-
out separating these two classes. We thus assign a proba-
bility massP∆H = P∆H(∆H) ascending with∆H to the
combined classT ∪ L and1− P∆H to classO.

(2) The density imageρ can be used to separate power-
lines from trees because trees cover a larger area and thus
there will be more points with FP-LP differences in a local
neighbourhood, but only where∆H > 0. In areas where
∆H = 0, we do not useρ, which is modelled by assigning
a probability mass of1.0 to Θ. Where∆H > 0, we assign
a constant small probability massPO to classO in order to
model the fact that not all points withρ > 0 will be points
on powerlines or trees. We then assign a probability mass
Pρ = Pρ(ρ) − PO/2 ascending withρ to the classT and
1− PO/2− Pρ to classL.

(3) The intensityIF separates trees from powerlines and
other objects, but only in areas where an intensity value has
actually been measured by the sensor. Where an intensity

value exists, a probability massPI = PI(IF ) ascending
with IF is assigned to classT and1 − PI to classL ∪ O.
Otherwise,Θ will be assigned a probability mass of 1.0.

The functions for computing the probability masses
(P∆H , Pρ, PI ) are assumed to be equal to a constantP1

for input parametersx < x1. For input parametersx > x2,
they are assumed to be equal to another constantP2, with
0 6 P1 < P2 6 1. Betweenx1 andx2, the probability
mass is described by a cubic parabola usingx̄ = x−x1

x2−x1
and

k ∈ {∆H, ρ, I} : Pk(x̄) = P1 + (P2 − P1)(3x̄2 − 2x̄3).
P1 andP2 are chosen to be 5% and 95%, respectively, and
PO = 10%. Further, we choose (x1, x2) = (2.5 m, 4.5 m) for
P∆H , (x1, x2) = (0%, 70%) forPρ, and (x1, x2) = (0, 7.5)
for PI .

3. Results

The overall classification results from our new method
are shown in Figure 5. The areas covered by trees are indi-
cated by the light green pixels and the powerline classifica-
tion by the black pixels.

Figure 5. The final classification results

3.1. Accuracy of Tree Detection

In order to evaluate the classification algorithm, ground
truth data for areas covered by trees was obtained by man-
ually digitising trees in an orthophoto of the area. The re-
sultant ground truth image is displayed in Figure 6(a). The
detected trees are shown in figure 6(b).

In order to assess the quality of the classification, the
completenessandcorrectnessof the results are computed.
Completeness is the ratio of the correctly extracted records
to the total number of relevant records within the ground
truth data, whereas correctness is the ratio of the number
of relevant records extracted to the total number of relevant
and irrelevant records retrieved:



Completeness=
TP

TP + FN

Correctness=
TP

TP + FPO
(4)

In Equation 4,TP denotes the number of True Positives,
FN the number of False Negatives (i.e. missing “tree” pix-
els), and FPO the number of False POsitives (i.e. “tree”
pixels not being classified as trees in the reference data). To
assist in the analysis of the results, figure 8 shows the spatial
distribution of the TP, FN , FPO and True Negatives (TN)
pixels in yellow, blue, red and white respectively.

In our test, completeness was determined to be 64% and
correctness was 64%. These numbers appear to be too pes-
simistic. As the aerial image and the ALS data were cap-
tured in different epochs, there are many discrepancies be-
tween the ground truth and the ALS data. There are two
major factors that will effect the quality figures quoted as
the data has been collected at different epochs. The first is
obviously the time that has elapsed between the collection
of the two data sets. Vegetation is a dynamic object class as
opposed to buildings and will grow over time. Also, people
cut back trees so the opposite effect is also true. The sec-
ond effect is that seasonal changes can be observed. Trees
that loose their leaves in autumn will have a finer canopy
during this period as compared to spring. An example of
these contradictions between the data sets is shown in Fig-
ure 7. Finally, this comparison gives a balance of the area
covered by trees that is correctly classified. Errors mostly
occur at the tree boundaries. As most trees are relative small
objects, these errors at the tree boundaries might contribute
up to 20% of the area covered by trees.

(a) Manually digitised trees
from the orthophoto.

(b) Areas covered by trees as a
result of our method.

Figure 6. The results of the tree classification

A visual inspection of Figure 6(b) reveals that there is
a misclassification along the thick powerlines running from
the West to the East of the image. Another limiting factor
to the tree detection will be the limitation of the laser as
mentioned in [3]. The failure of the laser to detect a FP
if ∆HFL < 4.6m meant that trees with a height of less

(a) Trees exists along
the the pipeline in the
orthophoto.

(b) The manually
digitised vegetation
ground truth.

(c) No trees have
been detected in the
FP ALS data .

Figure 7. Contradictions between ground
truth and ALS data.

than this height would not have been detected but would
probably exist in the ground truth data.

Figure 8. The quality summary map

3.2. Accuracy of Powerline Classification

There was no ground truth data available for the power-
line classification method and it was considered too diffi-
cult to accurately digitise the powerlines in a similar man-
ner to the trees. It was decided that the most effective way
to assess the quality of the powerline classification was to
compare the classified powerline image visually against the
road network as powerlines generally run parallel to roads.
Ground truth for the road network was again obtained by
manually digitising the orthophoto of the area and can be
seen in Figure 9(a). The classification results can be seen in
Figure 9(b).

A visual perusal of both images shows that with the ex-
ception of the major powerlines that basically run from the
west to the east of the image, the overall pattern of the pow-
erline classification matches the road network as expected.



(a) The manually digitised
road network of Fairfield.

(b) The detected powerlines.

Figure 9. The powerline classification results

4. Conclusions and Future Work

The ability to identify trees in an ALS point cloud by
considering the first-pulse/last-pulse differences has been
extended by considering the local point density of the occur-
rence of the these measurements. By using the local point
density and intensity of the first pulse return, separation of
powerlines and trees has been achieved. A visual check of
the results reveals that classification is accomplished with
a certain amount of success. The results of tree classifica-
tion are encouraging, and a formal quantitative analysis was
performed but unfortunately the results are not truly repre-
sentative of the quality of the classification achieved. By
ensuring that ground truth data is captured during the same
epoch as the ALS data and utilising a newer laser with a
smaller “dead spot”, the results obtained from the algorithm
are expected to provide better quality results. The work pre-
sented in this paper is still in progress. Although the results
obtained have been very encouraging, future work should
be concentrated on quantifying the results against ground
truth data that has been captured during the same epoch.
This would give a true indication of the actual performance
of the classification algorithm. Investigation into methods
that will allow vectorisation of the the classified powerlines
should also be performed.
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