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Abstract

This paper presents a new scheme for hand posture se-
lection and recognition based on statistical classification. It
has applications in telemedicine, virtual reality, computer
games, and sign language studies. The focus is placed on
(1) how to select an appropriate set of postures having a
satisfactory level of discrimination power, and (2) compar-
ison of geometric and moment invariant properties to rec-
ognize hand postures. We have introduced cluster-property
and cluster-features matrices to ease posture selection and
to evaluate different posture characteristics. Simple and fast
decision functions are derived for classification, which ex-
pedite on-line decision making process. Experimental re-
sults confirm the efficacy of the proposed scheme where a
compact set of geometric features yields a recognition rate
of 98.8%.

1. Introduction

Human-machine interface (HMI) has become an essen-
tial part of our technological revolution. It offers both
consumers and providers enormous opportunities for ex-
panded access. However, as with any burgeoning techno-
logical innovation, HMI faces a wide array of possibilities.
More generally, virtual reality, as an artificial creation of
interactive environment resembling real life, is attracting
more attention among researchers. Furthermore, in many
telemedicine applications such as remote patient care and
smart home-based health care devices, patients are remotely
monitored. In such applications, ambient intelligence is in-
tegrated into the monitoring devices such as cameras in or-
der to measure patients’ gestures and postures.

The technology for on-line interaction in all of above ap-
plications over the Internet is maturing due to advances in
communication tools and modern video transcoding exper-
tise. Users usually interact with machines using keyboard,
mouse, joystick, trackball, or wired glove. Most of these

are special devices that, by and large, are designed to suit
computer hardware rather than human user. Nevertheless,
humans use gestures in daily life as a means of communi-
cation, for example hand shaking, head nodding, and hand
gestures are widely used in friendly communications. Us-
ing machine vision algorithms, a computer can recognize
the user’s gesture/posture and perform appropriate actions
required in virtual reality environments or in computer and
video games. This paper aims at application of posture-
based interaction in the areas like telemedicine, sign lan-
guage recognition, virtual reality, and computer and video
games.

Although several aspects of directing computers using
human gestures/postures have been studied in the literature
gesture/posture recognition is still an open problem. This
is due to significant challenges inresponse time, reliabil-
ity, economical constrains, andnatural intuitive gesticula-
tion restrictions [9]. The MPEG-4 standard has defined Fa-
cial Animation Parameters to analyze facial expressions and
convert them to some predefined facial actions [6]. Prin-
cipal component analysis has been used for hand posture
recognition [2]. Jianet al. [8] has developed a lip track-
ing system using lip contour analysis and feature extrac-
tion. Similarly, human leg movement has been tracked us-
ing color marks placed on the shoes of the user to determine
the type of leg movement using a first-order Markov model
[3].

A neural network-based computing system has been
used in [14] to extract motion qualities from a live perfor-
mance. The inputs to the system are both 3D motion capture
(where position and orientation sensors collect data from
the whole body of the performer) and 2D video projections.
This system, which has been used in an extended project
at the Center for Human Modeling and Simulation, Univer-
sity of Pennsylvania, provides the capability of automating
both observation and analysis processes. Finally it produces
natural gestures for embodied communicative agents. The
performer wears a black cloth in a dark background to fa-
cilitate hand and face detection tasks.



Davis and Shah [4] have developed a method for rec-
ognizing hand gestures applying a model-based approach.
Here, a finite state machine is employed to model four qual-
itatively distinct phases of a generic gesture. Binary marked
gloves are exploited to track fingertips. Gestures are broken
to postures and represented as a list of vectors and are then
matched to some stored vectors using table lookup.

Invariant moments have been widely used for ges-
ture/posture detection. Nget al. [11] have proposed a
system for automatic detection and recognition of human
head gestures/postures. It combines invariant moments and
hidden Markov model (HMM) for feature extraction and
recognition tasks, respectively. The best advantage of this
approach is that it can operate in a relatively complex back-
ground. However, the computational requirements arising
from the invariant moments extraction and HMM’s appli-
cation render the approach inappropriate for real-time ap-
plications where several gestures/postures are involved. As
a result, the system can only recognize ”YES”, ”NO”, and
”PO” head gestures.

In some circumstances it is necessary to ignore motion
path analysis of the gestures for fast processing. This kind
of analysis is referred to asposture analysis. In this paper
we propose a new discipline on how to depict a set of appro-
priate hand postures for applications aiming at visual-based
interface. This is to find simple but robust postures which
could be easily recognized and have distinguishing features.
This study addresses two aspects of posture recognition for
human-machine interface. First, which postures are more
recognizable, and second how to extract features which in-
corporate both recognition power and speed requirements in
such applications. Towards these goals, we have developed
a novel methodology based on recognition rates and intro-
duce two matrices:cluster-propertyand cluster-features.
The former is a structure to save single-valued properties of
the postures while the latter is for multiple-valued feature
vectors describing posture images.

The rest of the paper is organized as follows: next section
explains our approach in detail. Section 3 presents experi-
mental results and finally Section 4 concludes the paper and
poses some new research directions.

2 Hand Posture Analysis

One of the most important aspects of HMI in virtual real-
ity, telemedicine, and computer games, where user commu-
nicates with the program’s engine using his/her hand ges-
tures/postures, is to reasonably select (or design) appro-
priate gestures/postures. This section presents a general
scheme on how to assess several possibilities. To explain
the proposed scheme we utilize a collection of 2080 hand
postures [2, 12], and show how the approach works on this
collection. The procedure can be adopted for other collec-

Figure 1. International sign language hand al-
phabet [2]

tions without any need to change its general structure.

Initially, the collection is grouped into 25-hand alphabet.
The images are 255-level gray scaled generated by a hand
in black sleeve in a dark background. Figure 1 shows rep-
resentative postures and Figure 2 depicts some examples of
the images. Due to varying lighting conditions of the im-
ages within the database using a unique threshold to bina-
rize images is inadequate. Figure 3 shows instances where
a unique threshold cause inappropriate segmentation of the
hand shape. For this, K-mean clustering is employed for
binirization in the pre-processing stage. This successfully
segments hand postures from the background (see Figure 3).

Size normalization using nearest-neighbor interpolation
is applied next. This is to achieve scale invariance property,
which allows different size postures to have similar features.
The bounding box of the region of interest is found first
and then normalized tow × h pixels (64× 64 pixels in our
experiments).

Next, for each segmented-normalized postureg belong-
ing to a posture groupGi, i = 1 . . . I, we extractJ shape
propertiesPj , j = 1 . . . J . Currently, for the hand col-
lection, I is 25 andJ is chosen to be 14 corresponding
to 25 posture clusters and 14 predominant posture prop-
erties respectively. The properties include seven geomet-
ric and seven invariant moment-based functions. Geometric
properties are: area (ar), perimeter (pr), major axis length
(mj), minor axis length (mi), eccentricity (ec), and the ratio
of ar/pr, andmj/mi. The invariant moment-based func-
tions have been widely used in a number of applications
[7, 13, 10]. The first six functions(φ1 − φ6) are invariant
under rotation and the last oneφ7 is both skew and rotation
invariant. They are based on the centrali, j-th moments



Figure 2. Hand posture samples

Figure 3. Instances where lower thresholds
make many unwanted noisy regions (upper
two images) and higher thresholds destroy
the hand region (middle two images), while K-
mean clustering segments hand region prop-
erly (lower two images)

(µij) of a 2D imagef(x, y), which are defined as follows:

µij =
∑

x

∑
y

(x− x̄)i(y − ȳ)jf(x, y) (1)

Then, the invariant moment-based functions are defined
as

φ1 = η20 + η02

φ2 = (η20 + η02)2 + 4η2
11

φ3 = (η30 − 3η12)2 + (3η21 − η03)2

φ4 = (η30 + η12)2 + (η21 + η03)2

φ5 = (η30 − 3η12)(η30 + η12)
· [3(η30 + η12)2 − 3(η21 + η03)2

]

+(3η21 − η03)(η21 + η03)
· [3(η30 + η12)2 − 3(η21 + η03)2

]

φ6 = (η20 − η02)
[
(η30 + η12)2 − (η21 + η03)2

]

+4η11(η30 + η12)(η21 + η03)
φ7 = (3η21 − η03)(η30 + η12)

· [(η30 + η12)2 − 3(η21 + η03)2
]

−(η30 − 3η12)(η21 + η03)
· [3(η30 + η12)2 − 3(η21 + η03)2

]
(2)

whereηij = (µij)/(µγ
00) andγ = (i + j)/2 + 1.

To determine the recognition power of eachGi cluster,
we exploit a classification scheme using the propertiesPj .
Initially; we try to classify 500 randomly selected postures
(20 of each group) into the associated groups. Recogni-
tion ratesRij for i = 1 . . . I andj = 1 . . . J are obtained
and saved in appropriate entries in ancluster-property ma-
trix. The classification is based on Bayesian rule assuming
Gaussian distribution for the hand posture patterns [1, 2]. To
extract a decision function for our classifier, we considerJ
number of 1D probability density functions. Each function
involvesI pattern groups governed by Gaussian densities,
with meansmij and standard deviationσij . Therefore, the
Bayes decision function have the following form [5]:

dij(g) = p(g/Gi)P (Gi) (3)

that is identical as

dij(g) =
1√

2πσij

e

[
− (g−mij)2

2σ2
ij

]
P (Gi) (4)

for i = 1 . . . I andj = 1 . . . J , wherep(g/Gi) is the proba-
bility density function of the posture patterng from cluster
Gi andP (Gi) is the probability of occurrence of the corre-
sponding cluster.

Assuming equally likely occurrence of all classes (i.e.,
P (G1) = P (G2) · · · = P (Gi) · · · = P (GI) = 1/I), and
because of the exponential form of the Gaussian density,



which persuade the use of natural logarithm, and since the
logarithm is a monotonically increasing function, the deci-
sion function in Eq. 4 can be modified to a more convenient
form. In other words, based on the aforementioned assump-
tion and facts, we can use the following decision function,
which is less computationally expensive and much faster for
the classification of hand postures:

dij(g) = ln [p(g/Gi)P (Gi)]
= ln p(g/Gi) + ln P (Gi)

(5)

considering Eq. 4, it can be written as

dij(g) = −1
2

ln 2π− ln σij− (g −mij)2

2σ2
ij

+ln P (Gi) (6)

Dropping the constant values− 1
2 ln 2π and ln P (Gi),

which have no effect on numerical order of the decision
function, an expeditious decision function is obtained as

dij(g) = − ln σij − (g −mij)2

2σ2
ij

(7)

for i = 1 . . . I and j = 1 . . . J , wheremij and σij are
the mean and standard deviation of posture groupGi using
propertyPj , andg is the corresponding scalar property of
an unknown posture.

Utilizing the above classification approach we calculate
recognition ratesRij for each single-valued propertyPj and
for each posture groupGi and save them in the crossing
cells of the corresponding rows and columns of the cluster-
property matrix.

Next, to appraise a combinatory analysis and depict an
efficient feature vector to be used for posture recognition,
a set ofK = 18 different combinations of the geometric
properties and invariant moment-based functions is gener-
ated and recognition rates are obtained. Here, since the
properties are multiple-valued, the decision function for the
classification is obtained differently. In the multiple-valued
case, the Gaussian density of the vectors in theith posture
class has the form

p(ξ/Gi) =
1

(2π)n/2|Cik|1/2
e[−

1
2 (ξ−mik)T C−1

ik
(ξ−mik)]

(8)
for k = 1, 2, . . . K, whereξ is the extracted feature vector
of an unknown posture andn is the dimensionality of the
feature vectors,| · | indicates matrix determinant. Note that
each density is specified completely by its mean vectormik

and covariance matrixCik, which are defined as

mik = Eik{ξ} (9)

and
Cik = Eik{(ξ −mik)(ξ −mik)T } (10)

whereEik{·} denotes the expected value of the argument
over the postures of classGi using multiple-valued property
Pk. Approximating the expected valueEik by the average
value of the quantities in question yield an estimate of the
mean vector and covariance matrix as

mik =
1
Ni

∑

ξ∈Gi

ξ (11)

and

Cik =
1
Ni

∑

ξ∈Gi

(ξξT −mikmT
ik) (12)

where Ni is the number of posture vectors from class
Gi and summation is taken over those vectors fork =
1, 2, . . .K.

To obtain a simple decision function for the multiple-
valued case, considering that the logarithm keeps numeri-
cal order of its argument, substituting Eq. 8 indik(ξ) =
ln [p(ξ/Gi)P (Gi)] yields

dik(ξ) = −(n/2) ln 2π − (1/2) ln |Cik|−
(1/2)

[
(ξ −mik)T C−1

ik (ξ −mik)
]−

ln P (Gi)
(13)

Once again, the term−(n/2) ln 2π is the same for all
cases and if all classes are equally likely to occur, then
P (Gi) = 1/I for i = 1, 2, . . . , I that is a constant and
has no effect on the numerical order of the decision func-
tion. Hence, a simple and expeditious decision function is
obtained as

dik(ξ) = − ln |Cik| − (ξ −mik)T C−1
ik (ξ −mik) (14)

for i = 1 . . . I andk = 1 . . . K. Note thatCik values are
independent of the inputξ, which means they can be calcu-
lated off-line and saved in a look-up table. They are fetched
from the look-up table at on-line stage to accelerate decision
making process.

The diagonal elementcrr is the variance of therth el-
ement of the posture vector and the off-diagonal element
crs is the covariance ofxr and xs. When the elements
xr and xs of the feature vector are statistically indepen-
dent, crs = 0. This property has been used to identify
autonomous features and to pick them in the combination
of features in multiple-valued properties. Noteworthily, this
fact renders the multivariate Gaussian density function to
the product of univariate density of each element ofξ vec-
tor when the off-diagonal elements of the covariance matric
Cik are zero. This in turn expedites the generation of the
look-up table.

The recognition ratesRik for i = 1 . . . I andk = 1 . . .K
are calculated utilizing Eq. 14 and saved in appropriate en-
tries in another structure calledcluster-features matrix. This



represents not only the distinguishably of the isolated hand
postures but also the recognition power of different sets of
features to describe postures.

The general paradigm explained above provides a
straightforward method to select distinguishable postures
and has been shown to be effective in experimental results
(next section). More importantly, column-wise summations
in the cluster-propertyand cluster-featuresmatrices indi-
cate the recognition power of the simple properties and
complex features respectively. Row-wise summations ex-
hibit the discrimination power of each posture, which is an
important clue to the selection of postures for the applica-
tion in use.

3 Experimental Results

As stated before, a database of 2080 hand postures is
used for the experiments. The database is publicly avail-
able in [12]. There are 25 sets of postures having number
of members from 40 to 100. In the training stage the statis-
tical model parameters are obtained. These include means
and standard deviations (scalars) for individual properties
and means (vectors) and covariance matrices for combined
features. In the recognition stage 500 randomly selected
postures (20 in each of 25 groups) from the database were
applied and tried to do classification using the approach ex-
plained in Section 2.

For each test posture the singular properties and the fea-
ture vectors are obtained. These are to evaluate a specific
posture based on its geometric properties and feature sets re-
spectively. The recognition rate in each entry in thecluster-
property matrixis the number of correctly classified pos-
tures divided by the number of inputs. For example, if
12 out of 20 number of input postures in the clusterG10

are correctly classified by the decision function given in
Eq. 7 using perimeter property into the same cluster, then
the recognition rate in rowG10, columnpr of the cluster-
property matrixis calculated to be 12/20=60%. In this part,
14 individual properties (7 geometric and 7 invariant-based
functions) are examined for the 25 posture groups. To be
able to compare recognition power of different properties,
an overall recognition rate is obtained for each column of
the matrix by simply averaging the recognition rates in that
column. The overall results show that the top three best sin-
gular properties aremj, mi, andar/pr. The top five best dis-
tinguishable postures, which are explored using row-wise
averaging of the recognition rates in thecluster-property
matrixare depicted in Figure 4.

Next, we tried to classify test postures using 18 combi-
natory feature sets. The recognition rates are obtained using
the decision function in Eq. 14 and the results are saved in
the cluster-features matrix, which currently in our experi-
ments has 18 columns. The rows corresponds to hand pos-

Figure 4. The top best five postures,in row-
wise order, based on the data in the cluster-
property matrix

ture clusters and the columns corresponds to a variety com-
bination of features (feature vectors). The number of entries
in the feature vectors varying from two to seven. There are
a massive number of different combinations but we chose
only those properties which previously showed to have bet-
ter discriminating power. These properties have tentatively
been chosen based on their independent characteristics us-
ing covariance matrices. Thecluster-propertyand cluster-
features matrices are relatively large and space limitation
preclude us to represent them here.

Moment-invariant functions showed lack of efficacy
while different combination of geometric properties ex-
hibit higher recognition rates. The overall recognition
rate of 98.8% is obtained using a five-entry feature vector
{mj,mi, ec, ar, pr}.

4 Conclusion and Further Work

We proposed a novel paradigm to select efficient hand
postures usingcluster-propertyandcluster-features matri-
ces. The former includes recognition rates for different
postures using singular properties and the latter deals with
multiple-valued features. The recognition rates are obtained
utilizing two simplified decision functions. The proposed
approach can be used in telemedicine, virtual reality, video
games and sign languages aiming at visual-based interface.
Moreover, we have examined several features to discrimi-
nate hand postures in a simple, fast, and robust way, which



is necessary in real-time applications. The results explic-
itly show discrimination rank of individual hand postures,
which can be used to reasonably select appropriate postures
in different applications. Moreover, the combination of fea-
tures have been examined and a small feature vector con-
taining only five simple features yields an overall recogni-
tion rate of98.8%.

The proposed approach can be applied on other postures
including limb, head, and whole body postures. Shape fea-
tures extracted from the posture image can be easily eval-
uated for efficacy using the proposed scheme. Moreover,
we intend to employ the proposed approach in immersive
distributed environments, where several users using a dis-
tributed system communicate through their hand or body
gestures/postures. For further improvements, objective cri-
teria for user satisfaction can be defined and a time-based
comparison can be accomplished.
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