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Abstract

In this paper we present an algorithm for the gen-
eration of the multiple view constraints for arbitrary
configurations of cameras and image features corre-
spondences. Multiple view constraints are an impor-
tant commodity in computer vision since they facilitate
in determining camera locations using only the corre-
spondences between common features observed in sets
of uncalibrated images. We show that by a series of
counting arguments and a systematic application of the
principles of antisymmetric algebra it is possible to gen-
erate arbitrary multiple view constraints in a completely
automated fashion. The algorithm has already been uti-
lized to discover new sets of multiple view constraints
for surfaces.

1. Introduction

Structure From Motion (SFM) is the process of cal-
culating the structure of a scene observed by the mo-
tion of an uncalibrated camera/s simultaneous with the
egomotion of the camera/s and their intrinsic calibra-
tion properties. Calculation of multiple view (a.k.a.
multiview) constraints is a key component of SFM and
is mandatory in order for a 3D/4D reconstruction to be
achieved without apriori knowledge of the scene, cam-
era’s motion or calibration.

A precise understanding of the antisymmetric alge-
bra underlying the multiview constraints is necessary
in order for their utilization. Typically the implemen-
tor of SFM software would reference the exact alge-
bra for these correspondences from resources such as
[4, 1]. The most common multiview constraints are
the 2-view (Fundamental Matrix) and 3-view (Trifo-
cal Tensor) these utilize correspondences between sets
of common points and/or lines observed in all the im-
ages. An example of the trifocal configuration for a
point observed in 3-views is shown in Figure 1.

Figure 1. Trifocal Tensor point transfer.

In this paper we present an algorithm to determine
the precise nature of multiview constraints for arbitrary
combinations of cameras and feature correspondences.
This is not only useful from a practical viewpoint but
also from a theoretical one seeing as new multiview con-
straints can be generated in some instances by changing
the inputs to the process. This approach to generating
multiview constraints has been of central importance in
the discovery and utilization of a new set of multiview
constraints for degree-2 dual surfaces [6].

The development of this approach to determining
multiview constraints relies upon the principles of ten-
sor algebra in the style of [12] utilizing the concept of
the tensor tableaux introduced in [7]. A rudimentary
introduction to some of these concepts is presented in
the proceeding section.

2 Tensor Basics

Tensors are a generalization of the concept of vectors
and matrices. In this sense vectors and matrices are 1
and 2-dimensional instances of a tensor. Tensors are
composed entirely from vector spaces. These vector
spaces can be combined using a range of well defined
operators resulting in differently structured tensors.



2.1 Vector Spaces

We will limit our study of the geometry herein
to projective vector space P

n. An element of an n-
dimensional projective vector space in the tensor no-
tation is denoted as xmAs

i ∈ P
n. The symbol mAs

i is
called an indeterminant and identifies several impor-
tant properties of the vector space. Firstly in order to
better understand the notation we must rewrite xA in
the standard vector form. This is achieved by listing
the elements of the vector space using the indetermi-
nant as the variables of the expression. In this manner
the symbol (x) that adjoins the indeterminant is merely
cosmetic. For example a tensor and the equivalent vec-
tor space can be defined as,

xmAs
i ≡ [mAs

0, mAs
1, . . . , mAs

n]� (1)

where m identifies the multilinearity of the indetermi-
nant, s depicts the degree (or step) of the indetermi-
nant. The last element describing the indeterminant
is i, we most commonly refer to i as the index of the
indeterminant. The index reflects a position within the
vector space described by the indeterminant. We stress
that the labeling of indexes for a given indeterminant
is arbitrary but must remain consistent. The standard
indexing is i ∈ {0 . . . n} for an n-dimensional projective
vector space (lexicographic).

Indeterminants of a regular vector (vertical) space
(Pn) are called contravariant and indeterminants of a
dual (horizontal) vector space ∗

P
n are called covariant.

The conventions of linear algebra refer to contravariant
vector spaces as simply vectors and covariant vector
spaces as covectors. The notation for a dual vector
(covector) space is analogous to that for a regular vec-
tor space,

x∗
mAs

i
≡ [∗mAs

0,
∗
mAs

1, . . . ,
∗
mAs

n] (2)

the only difference is that the vector is transposed. In
the interests of compactness and clarity often we will
abandon the entire set of labels for an indeterminant
via an initial set of assignments.

2.2 Tensor Products

The basic tools used to construct the alge-
braic/geometric entities in the tensor notation are
called operators. There are three different types of
operators that we use and for each operator we will
maintain two differing representations. We refer to
these different representations as the tensor form and
the equivalent vector form (Table 1). In Table 1
the symbols νd

n =
(
d+n

d

) − 1, ηk
n =

(
n+1

k

) − 1 and
πd

n =
∏d

i=1(ni + 1)− 1.
The two different forms of the tensor are representa-

tive of the fact that we can always rewrite a tensor ex-
pression as an ordered vector of it’s unique coefficients.
Writing a tensor as a vector of coefficients abandons
any symmetry present in the tensor, resulting in a less
fruitful representation for symbolic derivations since it
limits the way in which a tensor expression can be con-
tracted. The advantages of the vector representation of
a tensor expression arise from a reduction in the redun-
dancy created by the (anti)symmetry of the elements
within a tensor resulting in a more efficient represen-
tation for mappings between vector spaces.

2.3 Tensor Tableaux

Tensor tableaux provide a tool that may be used for
the description of tensor expressions. Tensor tableaux
facilitate study of the precise composition of a tensor
expression that may also be translated directly into an
algorithm to compute a tensor expression from com-
posite parts. In the following examples xA,xB ∈ P

2.
The basic structure of the tensor tableaux is de-

termined from the tensor expression itself. As a first
example we present the tableaux for a Segre product
(a.k.a. outer product) xAyB ≡ zAB resulting in.

A B AB
0 0 00
0 1 01
0 2 02
1 0 10
1 1 11
1 2 12
2 0 20
2 1 21
2 2 22

We can see that the columns on the left of the
tableaux are filled by the indeterminants of the expres-
sion that we wish to formulate and the column on the
right is the result of the expression. The rule for build-
ing a minimal tableaux given an expression is to first
write the result of the expression in the right column,
indexing only the unique non-zero terms. Columns to
the left of the result include the singular indetermi-
nants (or composite terms) that compose each row of
the result. Moving to another example for antisymmet-
ric operations, x[AyB] ≡ z[AB] results in the following
tableaux.

A B AB
0 1 01
0 2 -02
1 2 12

In this example we see that the columns to the left of
the result are the elements of a 2-step antisymmetric
sequence in P

2. The signs in the front of the result



Operator Symbol Tensor Form Vector Form

Segre - xAi...Bj xαd ∈ P
πd

n where xAi ∈ P
ni

Antisymmetric (Step-k) [. . . ] x[Ai...Bj ] xα[k] ∈ P
ηk

n

Symmteric (Degree-d) (. . . ) x(Ai...Aj) xα(d) ∈ P
νd

n

Table 1. Tensor Operators

indeterminants are derived according to the rules for
antisymmetrization given in [7].

From a computational perspective the advantage of
using the tableaux formulation is that the structure
of complex sequences of tensor operations can be pre-
determined and reduced into a minimal sequence of
multiplications and additions with simple array index-
ing. The sequence of terms displayed in each row of
the tableaux are indexed such that they may be used
as pointer offsets into arrays to calculate tensor expres-
sions on a computer.

3 Multiple View Constraints

Multiview constraints can be utilized as a means to
determine a projective estimate of the cameras loca-
tion entirely from feature correspondences between a
set of images. Due to this fact the utilization of multi-
view constraints forms the basis for structure recovery
in SFM applications. Multiview constraints used in
conjunction with robust statistics are critical in identi-
fying and handling incorrectly tracked features in SFM
applications [10, 9, 11, 4].

In the proceeding sections we present the theory re-
lating to the multiview constraints for a set of views.
Firstly, we introduce the concept of the Joint Image
Grassmannian tensor [12]. Following this we outline
an algorithm to calculate arbitrary degree-d multiview
constraints in m-images.

3.1 The Joint Image Grassmannian

The multiview constraints for a given configuration
of cameras and scene features (in general position) can
be formulated via an antisymmetrization of the joint
image projection (JIP) matrix derived from the recon-
struction equations [12, 4]. This method of generating
multiview constraints is consistent with viewing the co-
efficients of the constraints as the Grassmann coordi-
nates of a particular configuration of cameras [12].

The step-(n+1) antisymmetrization of independent
vector spaces xiβ ∈ P

n is x[0β ···xnβ] = 0. By definition
we can also state that a step-(k + 1) antisymmetriza-
tion of a n-dimensional projective vector space forms a
k-dimensional projective subspace for an abstract pro-
jective vector space P

n [2]. This manner of forming

subspaces allows us to determine Grassmann tensors
characterizing the span of projective vector spaces that
are invariant (up to scale) to changes in the projective
basis.

Applying this concept to the problem of determining
the multiview constraints for a given set of cameras,
we find that it is possible to form a Grassmann tensor
from a selection of independent row vectors from the
JIP matrix. This special Grassmann tensor is referred
to as the Joint Image Grassmannian (JIG) tensor in
the multiple view geometry literature [12],

I[A...B] ≡ P[A
[a0
· · ·PB]

a3] (3)

where xa ∈ P
3 and xA,xB ∈ P

2, resulting a 3-
dimensional projective subspace spanning P

3. The se-
lection of the image indeterminants A . . . B from the
rows of the JIP matrix determines which images the
resulting multiview constraint will represent.

The choice of rows for linear features obeys the sim-
ple rule that for an image to be included in the multi-
view constraint, it must be represented by at least one
row, and less than 3 rows. This leads to well known
set of matching tensors for points (Table 2) and also
explains why there is at most 4-view multiview con-
straints for linear features in P

3. In order to make
the expressions for the multiview constraints in Table
2 succinct, we assign xA,xB,xC ,xD ∈ P

2 to be coor-
dinates in images 1 to 4. The number of DOF in the

Views Constraint

2 I[A1A2B1B2]xA0xB0 = 0

3 I[A1A2B1C1]xA0xB0xC0 = 0[B2C2]

4 I[A1B1C1D1]xA0xB0xC0xD0 = 0[A2B2C0D0]

Table 2. Linear Multiview Constraints for
Points

multiview constraints for m-views is given as follows
[12],

DOFm
mc = 11m− 15 (4)

since each camera has (3 × 4 − 1 =)11 DOF modulo
the (4 × 4 − 1 =)15 DOF for an arbitrary projective
transform in P

3. In the next section we will expand
upon these concepts in order to derive an algorithm
for manufacturing generalized multiview constraints.



3.2 Manufacturing Multiview Constraints

In order to utilize multiview constraints to solve for
the relative orientation between a set of cameras, it
is necessary to be able to reformulate the joint image
feature vector associated with these cameras into the
appropriate set of multiview constraints. The most
general approach for solving for the coefficients of a
multiview tensor is to reshape it’s coefficients into a
vector xα and form the multiview constraints derived
from the joint image features into a matrix Aβ

α that
contracts against the coefficients of the multiview ten-
sor,

Aβ
αxα = 0β (5)

this is always possible.
We now proceed by making some general remarks

about the dimensionality and combinatorics of multi-
view constraints, including the extension to embedded
features of higher degree. This is necessary in order to
develop an algorithm for the construction of the con-
straint matrix Aβ

α. Firstly, the total number of coef-
ficients composing a degree-d matching tensor over m
images is,

Λm,d
mt ≡

m∏
i=1

(
νd
2 + 1
γi

)
− 1 where γi ∈ {γ1, . . . γm}

(6)
where each γi is equal to the number of rows chosen
from image i’s projection matrix. This implies that
the vector of coefficients can be defined as xα ∈ P

Λm,d
mt ,

this is a homogeneous vector since one of the overall
coefficients of the multiview tensor will always be lost
to scaling. By packing the elements in the vector in the
same sequence as they are specified symbolically in the
JIG tensor expression we can arrive at a lexicographic
ordering for the vector.

The dimension β is determined by the number of
solutions for a particular multiview constraint given
a particular combination of image features. We rep-
resent the combination of image features as the set
ζi ∈ {ζ1, . . . , ζm} where again m is the number of im-
ages involved in the multiview constraint. The ele-
ments of this set are the DOFi of the various image
features (in P

2) involved in the multiview constraint,
these can be referenced from [7]. The result is an ex-
pression for the total number of solutions for a partic-
ular combination of image features,

DOFif ≡
m∏

i=1

(
νd
2 + 1

ζi − γi

)
(7)

and consequentially xβ ∈ R
DOFif . The fact that ζi −

γi can never be negative in the binomial equation is
coincident with the fact that no multiview constraint

relationship is possible unless the DOFi ≥ γi for each
image i included in multiview tensor. If we are only
interested in the independent solutions to multiview
constraints then we can make a substantial reduction
in the size of DOFif by using only the affine part of
each image feature,

DOFif ≡
m∏

i=1

(
νd
2

ζi − γi

)
(8)

the resulting constraint matrix Aβ
α will contract with

the tensor’s coefficients xα leaving just the independent
solutions in the associated zero vector 0β.

In practise this reduction in the number of solutions
is easy to achieve due to the fact that dependant so-
lutions correspond to entries in the zero vector 0β in-
volving one of the projective scaling coefficients from
the (embedded) image feature in P

νd
2 . By normal con-

vention in the computer vision literature this scaling
coefficient is at the end of the vector and canonically
scaled to 1 for an affine representation. Therefore by
indexing one short of the complete length of each inde-
terminant composing the zero vector of solutions, we
will be left with Aβ

α.
An optimization is available when determining the

constraints corresponding the Λm,d
mt columns in each

row of the constraint matrix. In cases where the num-
ber of solutions DOFif > 1, there will be numerous
zero entries throughout the rows of the constraint ma-
trix Aβ

α. The number of non-zero entries in each row
is precisely,

Υm,d
mt ≡

m∏
i=1

[(νd
2 + 1)− (ζi − γi)] (9)

where Υm,d
mt ≤ Λm,d

mt . This equation accounts for the
fact that when (ζi = γi) the indeterminants corre-
sponding to rows of the iTH image’s camera matrix
in the JIG tensor (3) can be dualized resulting in the
interaction between the coefficients of the multiview
tensor and the image feature for that image being sim-
plified to a standard vector contraction (this is illus-
trated in the examples below).

One last observation is in regard to the DOF of a
combination composed of a multiview tensor and a set
of image features contracting against it. We will refer
to this as the DOF of the multiview constraint,

DOFmc =
m∏

i=1

(ζi − γi + 1) (10)

this equation reflects the DOF provided by one (sin-
gular) set of the image features (ζi) in correspondence
with a matching tensor (γi). The effective measure of



the DOFmc may reduce as further sets of image fea-
tures (ζi) are included in the total set of constraints Aβ

α

used to solve for the multiview tensor. This is the case
for the linear quadrifocal tensor (as was shown in [3, 8])
and is also the case for other higher degree embedded
multiview tensors.

It is now possible to consolidate this information re-
garding a particular multiview constraint combination
into a precise algorithm to formulate the constraint ma-
trix Aβ

α (see Algorithm 1). This algorithm will only
ever need to be run once in order to generate a map
(tensor tableaux) that transforms a given joint image
feature vector into it’s corresponding multiview con-
straint Aβ

α.

Algorithm 1: Manufacturing Multiview Con-
straint Tableaux
Input : The number of images m, the degree-

d, the DOF of the image features ζi ∈
{ζ1, . . . , ζm} and the number of rows
used to generate the multiview tensor
γi ∈ {γ1, . . . γm}

Output: A tensor tableaux corresponding to the
construction of the constraint matrix Aβ

α

([DOFif × Λm,d
mt ])

begin
Determine Υm,d

mt (9) and DOFif (7)
for i← 1 to DOFif do

for j ← 1 to Υm,d
mt do

1. Determine the true index (j′ ←− j)
2. Evaluate the sequence of m image
feature coefficients from the joint
image feature vector corresponding to
Aβi

αj′ by eliminating the
indeterminants associated with 0βi and
xαj′ from the total set available, this
simplifies in the case ζi = γi.
3. Evaluate the sign of Aβi

αj′

end

4 Examples

We now present several examples of the application
of Algorithm 1 to a selection of different multiview con-
straints. These examples have been picked to best illus-
trate the range of problem types to which the algorithm
is applicable. In light of the depiction in equation (5)
of the coefficients of the matching tensor (xα) being
contravariant and the function of the image features
in the constraint matrix (Aβ

α) being covariant we will

utilize the ‘∗’ expression in front of the image feature’s
indeterminants in the tensor tableaux.

4.1 The Fundamental Matrix

The first example of the application of Algorithm
1, is in determining the multiple view constraints for
the Fundament Matrix (2-view) assuming a point-point
correspondence between the images. From Table 2 we
can state the JIG expression for this combination as
I[A1A2B1B2]xA0xB0 = 0. This form of JIG expression
assumes a selection of rows γi ∈ {2, 2} from the JIP.
This selection of rows corresponds with the Λ2,1

mt = 9
according to (6) and since the image features are both
points (ζi ∈ {2, 2}) DOFif = 1 (8).

This is a special case of the algorithm since ζi =
γi ∀i, this means that the indeterminants from both
images associated with the matching tensor (A & B)
can both be dualized resulting in one covariant indeter-
minant for each image that contracts precisely with the
image feature’s indeterminants (∗A & ∗B). The corre-
sponding tensor tableaux for this constraint is given as
follows.

AB ∗A∗B
00 00
01 01
02 02
10 10
11 11
12 12
20 20
21 21
22 22

4.2 The Trifocal Tensor

As a further example of the application of Algorithm
1, we demonstrate it’s utilization in determining the in-
dependent multiview constraints for the Trifocal Ten-
sor (3-view) assuming a point-point-point correspon-
dence between the images (see Figure 1). From Table
2 we can state the JIG expression for this combination
as I[A1A2B1C1]xA0xB0xC0 = 0[B2C2]. This form of JIG
expression assumes a selection of rows γi ∈ {2, 1, 1}
from the JIP - this isn’t the only valid combination of
rows - 2 rows could also be attributed to either the
second or third image.

This selection of rows corresponds with Λ3,1
mt = 27

coefficients according to (6), since all the image fea-
tures are points (ζi ∈ {2, 2, 2}) there exists DOFif = 4
solutions (8). In this case just the first image’s inde-
terminants can dualized and second and third image’s
indeterminants are alternating. The tensor tablueaux
corresponding to the Υ3,1

mt = 12 rows for the first of the
constraints is as follows.



ABC ∗A∗B∗C B2C2

022 011 00
021 -012 00
012 -021 00
011 022 00
122 211 00
121 -212 00
112 -221 00
111 222 00
222 211 00
221 -212 00
212 -221 00
211 222 00

4.3 The Dual Quadric Fundamental Matrix

The 2-view multiview constraint for dual quadrics
was first introduced in [5], the concepts associated with
degree-2 symmetric embedding of the projection ma-
trix are discussed in [7]. In this case the dimension of
the image feature space is ν2

2 +1 = 6 and the dimension
of the scene feature space is ν2

3 + 1 = 10.
The rank of the 2-view JIP matrix for dual quadrics

is only 9 (instead of the full 10) [5]. The 2-view mul-
tiview constraint is composed of a selection of 9 rows
of the available 12 from the degree-2 JIP matrix re-
sulting (for example) γi ∈ {5, 4} therefore Λ2,2

mt = 90.
The image features in this case are the dual apparent
contours of the quadric ζi ∈ {5, 5} thus DOFif = 5
(8). In this case just the first image’s indeterminants
can be dualized and second image’s indeterminants are
alternating. The first 6 of Υ2,2

mt = 30 rows for the first
of these constraints is as follows.

AB ∗A∗B B5

0 10 05 0
0 11 -04 0
0 12 03 0
0 13 -02 0
0 14 01 0
1 10 15 0

5 Discussion

In this paper we have presented an algorithm for the
generation of the multiple view constraints correspond-
ing with arbitrary configurations of image features. We
showed that via an application of the principles of anti-
symmetric algebra it is possible to treat the formation
of constraints in an entirely general fashion.

This algorithm can be incorporated into a toolkit for
multiple view geometry and utilized to generate any
manner of multiview constraint. The application of
this algorithm to new projection operators (and combi-
nations of image-to-scene feature correspondences) can

be used to derive novel configurations of multiview con-
straints. It has already been used successfully in the
generation of the novel multiview constraints presented
in [6].
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