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Abstract

A correspondence framework has recently been pro-
posed to unify a wide variety of surface matching algo-
rithms, and provide a consistent structure for establishing
new ones. When an algorithm is implemented using the
framework, it is divided into five stages. A module is created
for each stage of the framework, and that module is placed
in a library (for that stage of the framework). Algorithms
are created by connecting five appropriate modules from the
library. It is envisaged that in the future, algorithms willbe
created by automatically connecting five suitable modules
for their specific surface matching tasks. This paper takes a
step towards this goal, by presenting a metric for assessing
the outcomes of the final stage of the framework. The metric
provides a quantitative value that determines the suitabil-
ity of an algorithm for a specific task. Six algorithms are
presented and their suitability over a range of surfaces is
tested. Results show that the outcome of each experiment
reflects the expected outcome. Thus, the metric is an ap-
propriate tool for algorithm selection. Future directionsat
the end of the paper discuss the concept of using metrics
at the other stages of the framework, so that the automatic
algorithms selection process can be realised.

1 Introduction

A significant body of research is available in the field of
three dimensional (3D) surface correspondence establish-
ment. Correspondence computation is the process of estab-
lishing mappings between two rigid surfaces. It is used to
determine which portions of the two surfaces overlap.

An abundance of algorithms has been developed for
computing the coarse initial mappings between two sur-
faces. However, no single algorithm has prevailed, which
can match any two arbitrary surfaces. This is due to the fact
that algorithms are application specific, as they place re-
strictions on the types of the input surfaces they can match
[10]. When given a particular matching task, a suitable al-

gorithm must be selected (or created) for that task. Until
recently however, research into the 3D surface correspon-
dence problem was hindered by a lack of uniform technol-
ogy, and the absence of a consistent model for comparing
existing approaches and developing new ones.

A correspondence framework for surface matching al-
gorithms has been presented to address these issues [10].
The framework has been derived from the perspective of
rigid surface correspondence, which constitutes a major
subcategory of surface correspondence. It is both a con-
ceptual model and a software design tool, which facilitates
the analysis, comparison, development and implementation
of rigid surface matching algorithms. It is general, unifying
a wide variety of existing algorithms using consistent ter-
minology. It is also flexible, enabling the the synthesis of
powerful new algorithms.

The framework divides the process of correspondence
into five stages. Algorithms are implemented as a series of
five modules, one for each stage of the framework. A future
objective of the framework is to use it for automatic algo-
rithm creation. That is, a method would be used to select
the five best modules (from modules that are available in a
framework library) for a given surface matching task. This
paper takes a step in the direction of automatic algorithm
selection, by presenting a quantitative metric for assessing
the outcomes of the final stage of the framework.

The paper begins by outlining the framework in Sec-
tion 2. Section 2 also presents six algorithms whose compo-
nents already exist within the framework library. The metric
and method for assessing the outcomes of the final stage of
an algorithm are presented in Section 3. The metric is then
used to assess the suitability of each of the six aforemen-
tioned algorithms over a variety of surfaces, in Section 4.
The expected and actual results are compared. Section 5
then discusses future work with regards to completely auto-
matic algorithm selection using the framework library. Fi-
nally, Section 6 summarises the paper with concluding re-
marks.



2 The Correspondence Framework

The correspondence framework is both a conceptual
model and a software design tool for surface matching al-
gorithms. The framework consists of five stages: region
definition, feature extraction, feature representation, local
matching, and global matching [10]. When matching pair-
wise surfaces, the framework is employed as demonstrated
in Figure 1.

As a conceptual model, the framework enables the re-
searcher to analyse each of the five stages of a surface
matching algorithm on its own accord [10]. The stages of
one algorithm are directly comparable to the stages of an-
other. Algorithms are developed by connecting five appro-
priate stages of existing algorithms.

The individual functions of the stages of the framework
are described briefly below. For further information on the
framework and algorithm selection/creation, the reader is
referred to [10]. The first stage of the framework, region
definition is the stage where localised regions are selected
on both input surfaces. Feature extraction is the stage where
intrinsic surface properties are extracted from regions. Fea-
ture Representation is the stage where features extracted
from regions are represented in a way so that they are com-
parable to other feature representations. Local Matching
is the stage where local correspondences are hypothesised
between two surfaces, and grossly erroneous matches are
rejected. Global Matching is the stage where global corre-
spondence and the subsequent coarse initial alignment be-
tween two surfaces are computed.

Four existing algorithms and two new algorithms have
been developed to fit within the framework: Spin-
image Matching (SIM) [6], Geometric Histogram Match-
ing (GHM) [1], Intrinsic Curve Matching (ICM) [7], Ran-
dom Sample Consensus based Data Aligned Rigidity Con-
strained Exhaustive Search (RBD) [4], SIM with RBD
(SIM-RBD) [9], and D2 Signature Matching with RBD
(DSM-RBD) [11]. These algorithms and the types of sur-
faces they are designed to match are highlighted in Table 1.
The following section introduces a quantitative method for
assessing correspondence algorithms, which will be used
to determine whether the expected suitability of each algo-
rithm listed in Table 1 is correct.

3 Assessing the Quality of Global
Correspondences

The general method for assessing the accuracy of a
global correspondence (mapping) between two surfaces is
performed as follows. First, the global correspondence is
established. The mapping is then used to compute the reg-
istration parameters, which align both surfaces in a common

Algorithm Expected Suitability

SIM a wide variety of surfaces, except those that
exhibit symmetry about an axis of rotation

GHM surfaces with a smooth topological
variations and a significant amount of
mutual overlap

ICM smooth surfaces with relatively high
resolution and significant topology

RBD a wide variety of surfaces, particularly
featureless pairs with significant
overlapping segments

SIM-RBD a wide variety of surfaces, more robust
against symmetry than SIM

DSM-RBD a wide variety of surfaces, particularly
featureless surface pairs with fewer
overlapping segments than RBD can
handle

Table 1. Six correspondence algorithms, and
the surface types they are designed to match.

coordinate frame. For rigid surfaces, the registration para-
meters are a rotationR and a translationT. The accuracy of
the alignment is then assessed by determining the proximity
between the overlapping segments of the surfaces.

There are two important factors in registration assess-
ment. The first is the establishment of Extrinsic Point Cor-
respondences (EPCs) between surfaces, and the second is
the selection of the metric that is used to measure the prox-
imity of the overlapping segments of two surfaces. Both
these factors are discussed in the following subsections,
where the most generic metric is selected to test the six al-
gorithms that were presented in Section 2.

3.1 Extrinsic Point Correspondence
Establishment

Given two surfacesX andY , EPC establishment implies
specifying a mapping between a point onX and one onY ,
where the points are close to one another. Some common
restrictions that determine whether or not an EPC is valid
are [12]:

• the distance between the points must be below a preset
threshold; and

• the angle between the surface normals of the two
points must be below a preset threshold.
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Figure 1. The correspondence framework

In addition to this, only thep% of closest correspondences
may be used. The remaining(100−p)% are discarded to re-
move the possibilities of matching non-overlapping points.
Also, only non-boundary points (on surfaces meshes) can
be used as EPCs, to reduce boundary errors.

In some algorithms, one pointX may only match with
a single point onY (for example [7]). However, generally
more correspondences are used (for example [2, 13]). The
method presented in this paper is the latter, as it is a more
generic approach to EPC establishment.

3.2 Measuring the Proximity of Two
Surfaces

Given a set of EPCs, that adhere to the aforementioned
restrictions, a metric is required that quantifies the proxim-
ity of two surfaces. This section lists a few metrics, and
selects the most commonly used one to measure the perfor-
mance of global correspondences.

Given a set of EPCS, some common metrics are:

• counting the Number of Point (NP) correspondences
in the set [4];

• accumulating the Surface Area (SA) of the immediate
neighbourhoods surrounding the EPCs [1]; and

• computing the Mutual Information (MI) between the
surfaces using the EPCs [13].

The metric that is used in this paper is NP. NP is gener-
ally more robust than SA and MI for the following reasons.
For MI, a greater number of EPCs need to be established
than for NP. NP selects only the best EPCs, and is thus a
more robust metric. SA is very sensitive to surface resolu-
tion, whereas NP can be applied to a greater variety of data.
In the next section NP is used to test the performance of the
six algorithms presented in Section 2.

4 Results

The objective of this paper is to provide a quantitative
metric that can be used to assess the suitability of an algo-
rithm for a particular surface type. This section presents six

different surface pairs, which are matched using the algo-
rithms presented in Section 2. The surfaces are compared in
terms of acquisition, topology, and degree of overlap. The
results of matching each surface pair using each algorithm
are then presented, and the actual versus expected outcomes
for each algorithm are discussed.

4.1 Test Data

The test pairs used in the experiment are presented in
Figure 2. Note that the surfaces are highly subsampled ver-
sions of the original data, so that the robustness of the algo-
rithms can be examined. The registered surfaces column of
Figure 2 demonstrates that a perfect alignment between two
low resolution surfaces is not possible. Thus, the relative
heights of the two surfaces are shown. The surface segment
(light for X and dark forY ) closest to the reader is high-
lighted. A summary of the mode of acquisition, degree of
overlap, and topology of the surfaces is presented below.

TheSCENEsurface pair was captured using a mobile unit
equipped with a structured light sensor [14]. The surfaces
are displayed as triangular meshes, containing over 2500
vertices each. The data is typical of an indoor scene, con-
taining sharp edges and planar facets.

The ANGEL surfaces were captured by placing an angel
figurine on a turntable, and using a Minolta 700 range scan-
ner to acquire views of the figurine at different rotations [3].
The triangular meshes shown are similar in size, both over
800 vertices each. The surfaces have distinct topologies and
overlap significantly.

TheDINO surface pair was acquired using the same scan-
ner and process as theANGEL pair [3]. The two DINO

meshes vary greatly in size, with the first having 964 and
the second having 667 vertices. Both surfaces have distinct
topologies. However, there is much less mutual overlap be-
tween them than theANGEL pair. The overlap is limited to
the back leg and tail of the dinosaur, and only small patches
on the head and front leg.

The HUB surfaces are mesh representations of synthetic
range images, which were created to test an object recogni-
tion algorithm [5]. The two meshes are similar in size, with
the first and second consisting of 1096 and 1132 vertices
respectively. Although the surfaces have a large percentage
of overlap, they are highly symmetrical about the z-axis,
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Figure 2. Test data: registered surfaces that
have mutual partially overlapping segments.

which makes them difficult to match.

TheBANANA surfaces originate from the same database
as theHUB surfaces [5]. They are also mesh representations
of synthetic range images, with the first and second con-
taining 783 and 851 vertices respectively. The two surfaces
also have a large percentage of overlap, however they lack
distinct topology and varying curvature.

The DUCK surface pair was captured using a turntable,
and a 3D-colour laser scanner [8]. The triangular meshes
contain fewer than 550 vertices each. The only distinct fea-
ture in both surfaces is the sharp upward curve at the neck
of the duck.

4.2 Outcomes

The NP scores achieved by matching each surface pair
shown in Section 4.1 using each of six algorithms discussed
in Section 2 are presented in Table 2. The NP scores are
given as a percentage of the greatest number of possible cor-
respondences that can be computed between two surfaces.
These values are used to compare the actual with the ex-
pected outcome of each algorithm, which is discussed next.

Algorithm
Data SIM GHM ICM RBD SIM- DSM-

RBD RBD
SCENE 84 80 19 74 75 77
ANGEL 85 66 70 67 23 47
DINO 83 20 71 55 50 70
HUB 0 75 34 96 95 70
BANANA 75 0 55 88 82 62
DUCK 86 0 89 85 80 85

Table 2. NP scores (%).

As expected, SIM produced highly accurate global cor-
respondence results. Its only failure occurred on theHUB

data set. This was expected, due to the symmetry of both
HUB surfaces about thez axis. The NP values for SIM
were generally very high (> 75%) in all cases. This im-
plies that a significant degree of overlap was found between
surfaces. SIM performed better than all other algorithms for
the SCENE, ANGEL, andDINO data sets. However, for the
less topologically distinctBANANA data set, RBD and SIM-
RBD produced higher NP values. This is due to the robust-
ness of these algorithms for data with less distinct features.
ICM produced a high, but only slightly better NP value than
SIM for the DUCK surface pair, indicating that both algo-
rithms match local feature representations accurately.

With the exception of theHUB surfaces, GHM produced
poorer results than the SIM algorithm on all accounts. A
high NP value (> 80%) was achieved for theSCENE data
set, and theANGEL andHUB data sets achieved moderately
high NP values (65% <NP< 75%). The NP scores indicate
that GHM is not ideal for computing the correspondence
between surfaces with fewer mutual overlapping segments,
such as theDINO set. This is because only small segments
overlapped in the coarse intial registration. GHM is also
unsuitable for surfaces with few distinct topological varia-
tions, such as theBANANA andDUCK sets. The failure to
achieve NP scores for these surfaces pairs was expected, as
outlined in Table 1.

The only high NP value (> 80%) achieved by ICM
was for theDUCK data set. ICM produced accurate results
for this data due to the data’s smooth changes in curva-
ture, which are required for feature extraction. The algo-



rithm achieved moderately high results (65% <NP< 75%)
for the ANGEL and DINO data, which also exhibited rela-
tively smooth variations in curvature. A moderate NP value
(55% <NP< 65%) was obtained for theBANANA surfaces.
Because of their lack of smooth topology, NP scores of less
than50% were obtained for theSCENEandHUB surfaces.
In summary, ICM performed as expected: better for sur-
faces with smoother curvature variation.

RBD is a recommendable algorithm for surfaces with
few distinct topological features. This was evident in its
very high NP scores (> 85%) for the HUB, BANANA ,
and DUCK surface pairs. Moderately high NP values
(65% <NP< 75%) were also obtained for theSCENEand
ANGEL data sets, further demonstrating the robustness of
the algorithm. RBD achieved a NP score of only55% for
theDINO surface pair. This was expected, as the algorithm
is less likely to produce accurate matching results when
the degree of mutual overlap between surfaces diminishes.
In summary, it is recommended that this algorithm is very
suitable for featureless surface pairs which have significant
overlap.

SIM-RBD was expected to improve the robustness of
the original SIM algorithm where surface symmetry is con-
cerned. The NP score show that SIM-RBD did perform
well on theHUB surface pair. The robustness of the RBD
global matching module eliminated any false positive lo-
cal matches produced by the SIM modules. SIM-RBD also
it provided satisfactory results for surface pairs with fewer
topological variations (BANANA , andDUCK), but was not
as accurate as RBD. TheSCENE result was almost equiva-
lent to the RBD outcome. TheANGEL result was very poor,
indicating that the algorithm is generally not as widely ap-
plicable as either the SIM or RBD.

DSM-RBD was expected to be a superior algorithm than
the RBD for cases where surfaces contain a smaller degree
of mutual overlap. DSM-RBD performed as expected. It
produced a moderately high NP value of70% for theDINO

data set, almost15% higher than the RBD result. Moder-
ate to high results (NP> 60%) were also achieved for the
SCENE, HUB, BANANA , andDUCK surface pairs. The algo-
rithm had difficulty with theANGEL data, most likely due
to the small regions, and non-optimised parameter values
selected. Generally, this algorithm is recommendable for
surfaces with few distinct topological features, and lower
degrees of overlap. It is a solution to the problem that RBD
is not suitable to handle, that is, the case where less mutual
overlap exists between two surfaces.

In summary, it can be stated that each algorithm gener-
ally performed as expected. Therefore, using the NP metric
metric with the specified EPC establishment scheme, is a
suitable means of assessing global correspondences. This
is an important step in the area of automatic correspon-
dence algorithm selection (for given surface matching ap-

plications). The following section discusses using quality
metrics at the other four stages of the framework, such that
concept of complete automatic algorithm selection becomes
conceivable.

5 Future Work

The correspondence framework provides a systematic
approach for developing and implementing surface match-
ing algorithms. This systematic approach gives rise to the
possibility of using the framework to automatically select
application specific algorithms. Given two surfaces, the five
most appropriate modules (one for each stage of the frame-
work) will be selected to compute the correspondences be-
tween the surfaces.

A step towards automatic algorithm selection was made
in Section 4, where a quality metric was used to assess the
final correspondences of each algorithm. Future work in-
cludes specifying evaluation metrics at each stage of the
framework, such that the suitability of a module with re-
spect to a particular surface type can be assessed. An exam-
ple of an evaluation metric is as follows. For region defini-
tion, the metric may include information regarding storage
requirements, size of regions, number of regions, and so on.

The five evaluation metrics would be included in an al-
gorithm that sits outside the framework library. This algo-
rithm would automatically select the five best modules for
the particular task at hand. Examples of possible schemes
are genetic algorithms and neural networks. It would be
imperative to incorporate some learning capability into the
scheme, such that particular modules are automatically se-
lected for specific surface types. Note that the possibilityof
having a tool for automatic algorithm selection is only con-
ceivable now that a systematic model for surface matching
is available. Prior to the development of the correspondence
framework, no such model existed.

6 Conclusion

This paper presented the results six surface matching al-
gorithms that have been encoded within the correspondence
framework. Four restructured and two new algorithms were
tested. The objective of the paper was to demonstrate that
the framework can be used to select algorithms for partic-
ular surface types. Each algorithm was used to match six
surface pairs, and their correspondence results were evalu-
ated by assessing the NP values of the registrations com-
puted from the mappings. It was shown that each of the six
algorithms does indeed favour particular surface types:

• SIM generally performs well across a wide variety of
surfaces, but has difficulty in matching surfaces that
exhibit symmetry about an axis of rotation;



• GHM is generally less accurate than the SIM, and
would be more applicable to match surfaces of higher
resolution, and with more topological variations;

• ICM only performs well on surfaces with smooth cur-
vature variation;

• RBD is ideal for featureless surface pairs with signifi-
cant degrees of overlap;

• SIM-RBD improves the robustness of SIM for surfaces
that exhibit symmetry about an axis of rotation; and

• DSM-RBD is a good algorithm for surface pairs with
fewer features and a smaller degree of mutual overlap
than the RBD algorithm is accustomed to handling.

These results reflect the expect outcomes for each algo-
rithm. Thus, the correspondence framework, in conjunction
with the NP metric, is a suitable tool for selecting applica-
tion specific algorithms.

Using the correspondence framework, future work will
include developing a scheme for automatic algorithm selec-
tion. Section 5 discussed the concept of having a evaluation
metrics at each stage of the framework, such that the best al-
gorithm can be constructed for each particular application.
It must be re-emphasised that automatic algorithm selection
is only conceivable now that the framework, which is a sys-
tematic model for surface matching, has been developed.
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