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Abstract

Maximum Likelihood Estimation (MLE) is widely
utilized in the computer vision literature as a means
of solving parameter estimation problems assuming a
Gaussian noise model for the measurement data. In
order to solve a MLE problem it is necessary to have
knowledge of the true parameters of the Gaussian noise
model. Since this knowledge is unobtainable in practical
setting approximate MLE has become a popular alter-
native. The theory behind the approximate MLE frame-
work is presented and an analysis of the bias character-
istics of the method for noisy data is performed. Sev-
eral experiments are performed to ascertain the opti-
mality of approximate MLE solutions and to determine
whether or not there is a correlation between the degree
and dimension of the algebraic hypersurface and opti-
mality of the error metric.

1. Introduction

Parameter estimation is of central importance to a
wide range of problems in computer vision such as line
fitting, conic fitting and multiview constraint estima-
tion. Parameter estimation is applicable in any situ-
ation where we wish to derive an unknown set of pa-
rameters from noisy measurement data by utilizing a
functional relationship between the measurements (ob-
servations) and the parameters.

In this paper we will develop the basic theory un-
derlying parameter estimation with the assumption
that the measurement data is corrupted by Gaussian
noise. Gaussian parameter estimation has received
much attention in the computer vision literature due to
favourable properties of the Maximum Likelihood Es-
timation (MLE) framework utilizing a Gaussian noise
model for the measurement data, a selective chronology

of the literature in this area can be found in [9, 10, 7].
We focus our attention on the approximate MLE

framework utilizing a Gaussian noise model for the
measurements. We perform a series of experiments on
different estimation problems to determine the efficacy
of this framework in determining approximations to the
true values of the measurements (nuisance parameters)
and more specifically how the accuracy of these approx-
imations varies as the level Gaussian noise applied to
measurements increases in addition to the degree and
dimension of the hypersurface.

This information is of great importance to the imple-
mentor of parameter estimation software since the ob-
jective function minimized for such problems requires
apriori knowledge of the true estimates of the nuisance
parameters and consequentially the unknown parame-
ters themselves.

2 Parameter Estimation

Parameter estimation is the process of calculating a
set of variables (parameters) associated with a mathe-
matical model, given a set of noisy measurements re-
lated to the model. As a form of convention we will
denote the measurement data as a vector x ∈ R

m and
the parameters as a vector θ ∈ R

n. In our discus-
sion we make the distinction between measured values,
approximated values and true values of the measure-
ments and the parameters, for this purpose we will use
the notation x/θ, x̂/θ̂ and x̄/θ̄ respectively.

Assuming a standard measurement model for our
data we have x = x̄+G(µ̄x, σ̄2

xΣ̄x), where x̄ is the true
value of the measurement and G(µ̄x, σ̄2

xΣ̄x) is an in-
dependently distributed Gaussian probability distribu-
tion function (pdf) with mean µ̄x, standard deviation
σ̄x and covariance Σ̄x.



2.1 The Functional & Bilinear Models

In this section we develop two different models for
a parameter estimation problem. The models are re-
ferred to as the functional and bilinear parameter es-
timation frameworks and they cater for two distinct
problem types. Both of these frameworks utilize noisy
measurements (x) (and possibly other known data) to
determine a solution to a set of parameters (θ). Of
interest in some situations is the calculation of the so
called nuisance parameters, these are defined as the
approximate values of the noisy measurement data (ie.
x̂).

In practise we only have access to noisy measure-
ment data (x) from which we wish to approximate the
true value of the parameters (θ̄). This problem is ill-
posed since there is no means of determining the exact
nature of the true noise model (G(µ̄x, σ̄2

xΣ̄x)) affecting
the measurement data. Instead we can only approx-
imate the noise model (G(µ̂x, σ̂2

xΣ̂x)) resulting in the
eventual estimate of the parameters being only an ap-
proximate solution (θ̂).

The functional model for parameter estimation uti-
lizes a mapping between the parameters (θ) and the
measurements (x).

x = f(θ) (1)

We can view the relationship (1) as the basis for a least-
squares estimation problem (either linear or non-linear)
and define the following fundamental relationship be-
tween the noisy measurements and the approximate
parameter values,

x = f(θ̂) + ε (2)

where ε = x − x̂ = G(µ̂x, σ̂2
xΣ̂x) is the approximation

to the additive noise obtained by utilizing the mapping
(1). If the mapping (1) is linear then we can substitute
f(θ̂) for Aθ̂, where A is a constraint matrix resulting
in.

x = Aθ̂ + ε (3)

The other model that we will consider is the bilinear
model for parameter estimation. This assumes that
their exists a mapping f(x) such that it is possible
to form an equation linear in the coefficients of the
parameters,

ε = f(x)θ̂ (4)

in this case ε ≡ x − x̂ = G(µ̂x, σ̂2
xΣ̂x). It is not as ob-

vious how we justify the same derivation of the noise
model for this problem type however we will show in
later sections that the nuisance parameter (x̂) can be
determined in a non-specific fashion satisfactorily. The
bilinear model can also be expressed as a linear map-

ping A ≡ f(x) resulting in an analogous linear form,

ε = Aθ̂ (5)

the constraint matrix (A) in this case is a linear func-
tion of the measurements.

We can generalize the two frameworks (2) and (4) in
most instances by simply utilizing the objective func-
tion (which is a pdf) since ε retains the same definition,

R(x, θ̂) = ε (6)

this represents the relationship between the noisy mea-
surements and the approximate of the parameters with
the noise model. The solution to (6) corresponds with
the parameter vector (θ̂) resulting in ∂R(x,θ̂)

∂θ̂
= 0 and

∂2R(x,θ̂)

∂2θ̂
> 0. A particular approach to parameter

estimation is said to be asymptotically unbiased iff.
limm→∞ E[θ̂] = θ̄. An approach is said to be con-
sistent iff. limm→∞ E[R(x, θ̂)] = 0 and efficient iff.
VAR[θ̂] ≥ F+

m where F is the Fisher information ma-
trix [7].

2.2 MLE for Gaussian Distributions

Maximum Likelihood Estimation (MLE) is a partic-
ular approach to parameter estimation. The goal of
MLE is to increase the likelihood that the estimate of
the parameters (θ̂) is correct assuming the relationship
(6) between the parameters and measurements. The
objective function for MLE is determined as the log of
the objective function (6),

RML(x, θ̂) = logR(x, θ̂) (7)

when dealing with exponentially defined noise models
(such as a Gaussian distribution), it is much easier to
maximize (7) than it is to minimize (6) due to simplifi-
cation of the pdfs by the logarithm. MLE has the prop-
erties of being invariant to reparameterization, asymp-
totically unbiased, consistent and asymptotically effi-
cient in the context stated above. However, a MLE
solution can be heavily biased when the number of mea-
surements (m) is small.

The pdf of (6) simplifies very conveniently when us-
ing MLE with a Gaussian noise model to the following
objective function.

RML(x, θ̂) ≡ 1
2

m∑

i=1

(xi − x̂i)�Σ̂+
xi

(xi − x̂i) (8)

This expression for the objective function is equivalent
to the square of the Mahalanobis distance of ε assum-
ing a covariance matrix Σ̂xi (‖ε‖2

Σ̂x
), in practise this is

simple to compute.



3 Approximate MLE for Gaussian Dis-
tributions

MLE schemes seek to find the value of θ̂ that max-
imizes the pdf (7), which is equivalent to finding the
value of θ̂ that minimizes the Mahalanobis distance (8),

min
θ̂

‖ε‖2
Σ̂x

≡ max
θ̂

RML(x, θ̂) (9)

with the constraint that θ̂ must lie orthogonal to the
null space of the least-squares constraint. We have
already noted that MLE in a practical setting is in-
tractable due to a lack of knowledge of the true noise
distribution. We can however develop an approxima-
tion to the MLE residual (RAML(x, θ̂)) allowing us to
make affective use of the underlying principles.

3.1 Approximate MLE Residual Function

Returning to the fundamental statements of the
MLE framework we can write the residual (8) of (7)
as a Taylor series expansion to give us an alternative
representation.

RAML(x + ∆x, θ̂) ≡ RML(x, θ̂) +
δRML(x, θ̂)

δx
∆x +

· · · + δnRML(x, θ̂)
n!δxn

∆xn + Rn (10)

Where ∆x = x̂−x and n+1 is the number of times that
the function RAML(x, θ̂) is continuously differentiable.
Also Rn is the remainder term which will converge to
zero as n approaches infinity. From this point we can
proceed by developing a residual function for approx-
imate MLE. We start by rewriting (10) with just the
first two terms of the RHS. This has the effect of mak-
ing a first-order approximation to the proper MLE.

RAML(x+∆x, θ̂) ≈ RML(x, θ̂)+
δRML(x, θ̂)

δx
∆x (11)

Making the substitution RML(x, θ̂) = ε and identifying
Jε
x = δε

δx as the Jacobian of the residual function with
respect to the measurements we have.

Jε
x∆x = −ε (12)

We wish to solve for ∆x subject to the equation above,
the standard method to solve problems of this type is
Lagrange multipliers [6]. After an application of La-
grange multipliers we find that the first-order approx-
imation of ∆x is,

∆x = x̂ − x ≈ −Σ̂xJε
x
�(Jε

xΣ̂xJε
x
�)

+
ε (13)

making this equation negative and applying the Maha-
lanobis distance we find,

RAML(x, θ̂) ≡ ‖x− x̂‖2
Σ̂x

≈ ε�(Jε
xΣ̂xJε

x
�)+ε (14)

which is the approximate to the proper MLE residual
function (8).

4 Experiments with Error Metrics

Error metrics allow us to determine the approximate
distance between hyperplanes and embedded features,
as well as providing approximate corrections to a hy-
perplane position that is not coincident with an embed-
ded feature. In this section we present the formulae for
the error metrics corresponding to curves in P

2 and P
3

and surfaces in P
3, these are all instances of approxi-

mate MLE [9, 6].
Of greatest interest is the performance of the ap-

proximate MLE framework in determining the error
metrics and the associated corrections in situations in-
volving high levels of noise and configurations that in-
volve singular points on the feature. This information
will be useful in assessing the efficacy of approximate
MLE for practical purposes where we desire the error
metrics to perform gracefully in the presence of large
amounts of error and singular points, a similar analysis
is performed in [10]. The analysis in this case differs
since we wish to quantify the results through many
random trials using embedded features of varying de-
gree and dimension to establish whether or not these
variables play a role in the optimality of the ensuing
estimates.

4.1 Nuisance Parameters and Error Metrics

In [8] the embedded hypersurface representation
for curves and surfaces in P

2 and P
3 was introduced

utilizing tensor algebra. These features can be ex-
pressed by tensor algebra as codimension-1 hypersur-
faces hβ(d)xβ(d)

= 0 using the symmetrization oper-
ator. The coefficients of a hypersurface of degree-d
embedded in P

n will have (generically) either νd
n =(

d+n
d

) − 1 DOF if it is a curve(νd
2 )/surface(νd

3 ) or
ξd
5 =

(
d+5

d

)− (
d−2+5

d−2

)− 1 DOF if it is a Chow polyno-
mial.

We are interested in determining the distance of a
hyperplane xβ ∈ P

n from a hypersurface - where the
hyperplane is not exactly incident with the hypersur-
face - using the bilinear parameter estimation frame-
work (4). The parameters of the model are the co-
efficients of the hypersurface hβ(d) ∈ P

νd
2 and we will

assume those to be fixed, the measurements correspond
with the hyperplane xβ ∈ P

2 lying on or near the hy-
persurface. The noise model (ε) in this case is asso-



ciated with the contraction of the embedded hyper-
plane xβ(d)

with the coefficients of the hypersurface
hβ(d) (this will be 0 for a hyperplane incident with the
hypersurface). With these specializations equation (4)
becomes,

ε = hβ(d)xβ(d)
(15)

where ε is a 1-dimensional Gaussian pdf G(0, σ2
xΣx).

In order to determine an approximation to the nui-
sance parameter (the unperturbed position of the hy-
perplane) x̂β , we utilize equation (13) resulting in,

∆x = x̂ − x ≈ −Σ̂xJε
x
�(Jε

xΣ̂xJε
x
�)

+
ε

allowing the approximation to be calculated as x̂ =
x + ∆x. The corresponding error metric for embed-
ded hypersurfaces in P

n can be defined according to
equation (14).

‖x − x̂‖2
Σ̂x

≈ ε�(Jε
xΣ̂xJε

y
�)

+
ε

An example is shown in Figure 1 of the correction
of a series of points in P

2 to their approximate location
on a conic. The error applied to the points is synthetic
and made to lie normal to the tangent of the conic.
The bias exhibited by this approximate form of cor-
rection is evident in the location of the black crosses
being consistently perturbed from their true location
(the green circles).

Figure 1. A section of a conic with the true
points (o), approximated points (*) and noisy
points (+). The approximations are consis-
tently perturbed from the location of the true
points.

4.2 Curves and Surfaces

Having outlined the general form for the approxi-
mate error metric and nuisance parameters associated
with features of codimension-1, we can now specialize
this formulation for curves in P

2 and P
3 and surfaces.

Definitions of the noise models and the incident hyper-
planes are presented for the different features in Table
1.

The definition of the noise model and accompanying
error metric for a planar curve and a surface are very
similar. Analytically, the major difference between pla-
nar curves and surfaces is the fact that surfaces lie in P

3

and planar curve lie in P
2, both sets of parameters are

of codimension-1 and (generically) have no additional
constraints unless we are estimating a special form of
the hypersurface (eg. a parabola for degree-2).

The case for space curves embedded in a Chow poly-
nomial is somewhat different (see [8]). The coefficients
of the Chow polynomial of a curve are subject to a set
of ancillary constraints generated by a simple relation-
ship between a subset of the polynomials coefficients
[1, 2, 8]. The noise models presented in Table 1 are
geometrically valid iff. the coefficients of Chow poly-
nomial satisfy the ancillary constraints.

4.3 Experiments

In order to assess the optimality of the approximate
error metric (14), we have performed a series of random
experiments where we compare the approximate values
determined for the nuisance parameters (x̂) with the
true values (x̄) using the pythagorean equality (‖x −
x̄‖2 = ‖x− x̂‖2 +‖x̄− x̂‖2, see [5]). We expect there to
be a bias in the estimates of the nuisance parameters
but we are most interested in the extent of the bias as a
function of the noise applied to the measurements (x)
as well as the degree (d) of the embedding.

The process used to test the nuisance parameters is
to generate random degree-d planar Bezier curves and
degree-d triangular Bezier surfaces and via the process
of approximate implicitization (see [3]) determine the
corresponding implicit equations (cA(d)/Sa(d)). Since
we now possess a parametric and implicit form of the
Bezier we can accurately generate noisy measurements
(x) normal to the curve/surface at regular intervals -
using the deCasteljau algorithm [4] to calculate tan-
gents and then antisymmetric algebra to determine
normals - whilst also retaining the true value of these
points (x̄).

The experiments are structured such that each ran-
dom planar curve and surface is tested at 100 positions
(x̄) along it’s domain with a 1-dimensional zero-mean
Gaussian noise of varying standard deviation (σ) ap-
plied to the true measurement of each point in the
direction of the normal. The results from tests on
100 randomly generated degree-d (d = 2, . . . , 4) pla-
nar curves (Left) and surfaces (Right) are presented in
Figure 3. The values on the vertical axis of Figure 3
are the average of ‖x− x̄‖2 −‖x− x̂‖2 − ‖x̄− x̂‖2 (for
an optimal estimator this value should be ∼ 0 [5]), the
horizontal axis is in terms of the standard deviation



Feature Parameters Measurements Noise Model

Planar Curve cA(d) xA ∈ P
2 ε = cA(d)xA(d)

Surface Sa(d) xa ∈ P
3 ε = Sa(d)xa(d)

Space Curve (1) Cω(d) xω ∈ P
5 ε = Cω(d)xω(d)

Space Curve (2) Cω(d)Pω(d)

A(d) xA ∈ P
2 ε = Pω(d)

A(d)Cω(d)xA(d)

Table 1. Degree-d feature types (hypersurfaces) and their associated noise models in P
2 & P

3

(σ) of the noise applied normal to true measurements.
The results in Figure 3 indicate that as the standard

deviation of the noise is increased, the approximate
MLE of the nuisance parameters becomes increasingly
less reliable. The relationship in these trials between
the optimality of the approximate MLE error metric
and the standard deviation can be observed to be ap-
proximately linear. Interestingly there is no correlation
between the degree of the hypersurface and the opti-
mality of the estimate. The addition of another dimen-
sion in the case of surfaces results in a slightly improved
performance associated with a decrease in the gradient.

Also of interest is the quality of the estimate from
the point to the curve in the presence of a singularity on
the curve. A singular point on a planar curve f(x) ≡
cA(d)xA(d)

is defined as any point x = [x0, x1, x2] upon
the domain of the curve where the partial derivatives
∂f(x)
∂x1

and ∂f(x)
∂x2

both equal 0 (assuming that x0 is the
homogenizing coefficient).

Singular points on plane curves (of degree > 2) can
appear as either cusps, inflexion points or a multiple
point of the curve. Figure 2 demonstrates the degener-
ation of the approximate MLE of a cubic plane curve
in the presence of a singular point (cuspoidal). We
can study the effect of a singular point on the approx-
imate MLE of the nuisance parameters by observing
the behaviour of the approximate MLE error metric
as Jε

x approaches the singular point. An example of
this type of analysis is presented in Figure 4, where
clearly the approximate MLE of the error metric in-
creases as the L2-norm of the gradient approaches 0
(ie. the singularity). This implies that some care can
be taken in practise to discount approximations of the
error from portions of the algebraic hypersurface where
the L2-norm of the gradient approaches 0, this strat-
egy results in more reliable determination of the error
metric.

5 Discussion

We have presented the theory as well as an analy-
sis of the approximate MLE framework using Gaussian
noise models. We showed that the approximate MLE
framework can be applied in a generic fashion to a suite
a range of parameter estimation problem types and can
also be used as an error metric.

Figure 2. A cuspoidal section of a degree-3
curve with the true points (o) and the noisy
points (+) adjusted to lie closer to the curve
via a first-order approximation (*). The accu-
racy of the approximation decreases as the
cusp is approached.

In our analysis we focused upon the determination
of nuisance parameters and through a series of exper-
iments we show that optimality of this framework de-
creases linearly as a function of the Gaussian noise ap-
plied to the measurements. We also established that
there is very little correlation between the degree and
dimension of the hypersurface and optimality of the
estimator. The challenge posed by algebraic singular-
ities in the parameter space was also analyzed and a
simple scheme nominated to identify singularities in a
practical setting.
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