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Abstract

We are working on generating an accurate Statistical
Map of the Knee bones and Cartilages for use as ‘a-priori’
knowledge in segmentation algorithms. The approach we
are presenting to automatically generate 3D Statistical
Shape Models is based on the Point Distribution Model op-
timisation framework of Davies et al [8]. Our scheme uses
a conformal parameterization with an Eigenspace objective
function which is then optimized using a Genetic Algorithm.
The current technique is illustrated by generating an Opti-
mized 3D Statistical Shape Model of the Patella bone and
Non-Optimized Model of the Tibia bone in the knee.

1. Introduction

The impact to the community of health problems asso-
ciated with the knee is increasing relatively to most other
conditions, so that by 2016 it is expected rise from the 10th
to the 8th largest major disease and injury Group [1]. Os-
teoarthritis (OA) is the major contributor to this with 14.6
per cent of Australians suffering from this condition [2].
OA develops when the articular cartilage starts to break
down from trauma, aging or failure of joint repair and main-
tenance mechanisms [11]. It has even been speculated that
some forms of OA are the result of a particular type of
skeletal remolding in response to mechanical stress [14].
The degeneration leads to the articular cartilage becom-
ing thin; rough and eventually wearing away, so that bone
rubs against bone, thus causing inflammation and chronic
pain. As is often the case in medicine the early detection
and treatment of OA can significantly improve patient out-
comes.

In recent years there has been significant interest in the

use of Magnetic Resonance (MR) imaging to obtain high
contrast images of the cartilage, which has lead to several
imaging sequences that are useful for imaging the knee [4].
The potential of MR images as a non-invasive diagnostic
tool for OA has been demonstrated for severe OA [6]. There
are currently two approaches to monitoring OA progression,
cartilage volume and cartilage thickness. The use of Carti-
lage Volume has been shown to correlate with radiographic
OA grades and may be more tolerant to knee positioning
than thickness measurements [19]. However it is suspected
that OA causes regional changes in cartilage structure with
some regions thinning and others thickening. For this rea-
son localized measures of cartilage thickness may provide a
better picture of OA progression [18].

In healthy patients the articular cartilage is on average
2 mm thick with changes over short time scales (6 - 12
months) usually in the sub-millimeter region [18]. Due
to this accurately detecting changes is difficult considering
the resolution and accuracy of MRI and segmentation algo-
rithms. That being said it has been demonstrated that both
registration [17] of the cartilages and the generation of ‘cor-
respondence’ points by modeling the underlying bone [18]
can be used to detect small changes in thickness.

The use of shape analysis techniques on the knee may
provide more illumination on the cause and progression of
OA by illustrating the specific influence of the biomechan-
ics. The primary problem with this approach is that OA is a
degenerative disease, thus the automatic generation of cor-
rect correspondence for the cartilages may become difficult.
The use of the femur, tibia and patella bones as a referen-
tial could help in generating correct correspondence in the
cartilages.

The focus of this work is on creating an automated seg-
mentation system for the major components of the knee
(bones and cartilages). The primary purpose of the system



is the ‘accurate’ and ‘robust’ segmentation of the cartilages
of the knee from MR images. The segmentations can then
be used to aid in the detection, diagnosis and treatment of
OA. Towards this end we are working on a statistical map of
the knee based around 3D Statistical Shape Models. These
are currently generated from a database of normal patients
obtained from 3D SPGR MR scans. The purpose of this sta-
tistical map is to provide statistical constraints on the seg-
mentation algorithms, as well as to provide a basis for anal-
ysis of the knee. This paper presents the current method-
ology used to generate 3D Statistical Models of two of the
bones in the knee (Tibia and Patella).

2. Subjects and Imaging

This work is based around a Knee Database provided by
Boston Hospital and consists of 24 normal adults who were
scanned using 1.5 and 3 T G.E. MR scanners with a fat sup-
pressed 3D SPGR MR sequence. The sequence parameters
were TE = 5 or 7 msec, TR = 60 msec and a flip angle
of 40o. The FOV was 120×120 and the acquisition matrix
was 512×512 and 256×256. These were reconstructed to
images with dimension of 0.23x0.23 or 0.46x0.46 and slice
thickness of 1.5mm. These images were then interactively
segmented by experts.

3. 3D SSM

The Statistical Shape Model (SSM) proposed by
Cootes [7] can be used to capture and represent the vari-
ation in shape of a set of training examples. So from a set
of training data the typical shape and its most significant
modes of variation are determined. This shape information
can then be used for the segmentation of new image data,
restricting the result to legal shape instances of the object to
be segmented. This adds an inherent robustness that is nec-
essary for automated segmentation algorithms. Of course to
avoid problems in the resulting segmentation process the set
of deformations allowed by the model should reflect what is
trying to be segmented. This is primarily determined by en-
suring there is a sufficiently large training set to cover the
‘real’ variability seen in the object and the accuracy of the
‘correspondence’ on the land marking.

The primary problem in generating 3D SSMs is obtain-
ing correct ‘correspondence’ of the landmarks across the
training set. There are several different approaches that
have been previously used. The most popular approaches
are based around ATLASes [15], Parameterizations, Medial
Representations, and recently optimisation approaches.

ATLAS based approaches involves the creation of an AT-
LAS with a corresponding mesh which is then fitted to the
other datasets. There have been two main approaches to fit-
ting the ATLAS to training datasets, registration [15] [10]

or deformable models [13]. The major drawback to this
approach is that the the correctness of the correspondence
is purely determined by the ‘registration’ or ‘deformable’
model algorithm used.

The parameterized approach solves the ‘correspondence’
problem by mapping the surface of the objects to a spherical
surface. The correspondence is obtained by aligning the
parameter space [5]. The major drawback of this approach
is that generally they are restricted to ‘genus 0’ objects and
the correctness of the correspondence is purely determined
by the mapping and alignment of the parameterization.

The explicit creation of 3D Medial Representation of the
object of interest would be an elegant way of solving the
problem [16] [20]. However only certain anatomical shapes
are suited to Medial Representation as it is usually diffi-
cult to generate a consistent skeleton representation across
all the training sets. This is a major problem and makes it
difficult to create a good representation which has ‘correct’
correspondence across the training dataset.

Davies etal [8] [9] work is similar to the parameterization
work, however it treats the ‘correspondence’ of the land-
marks as an optimisation problem. So for a training set of
surfaces the aim is to find the optimal placement of the land-
marks that minimizes the description length of the whole
set. This approach has been shown to perform better than
approaches like SPHARM [16] and there is no theoretical
reason to suspect that Medial Representations or Registra-
tion approaches should outperform it. The primary problem
with the current approach of Davies is that it is restrictive to
‘genus 0’ surfaces. However, for the components of interest
in the knee they are or can be treated as genus 0 objects.

The primary interest is in using a generic semi-
automated SSM implementation that could be applied
across a wide variety of objects in the knee, some of which
can have a high variability. This is especially true for the
cartilages of the knee. Medial Representations are not re-
ally suitable for the objects of interest and although AT-
LAS based approaches are applicable we instead chose
to use an approach similar to Davies Point Distribution
Model optimisation framework. This was implemented
slightly differently using a conformal parameterization with
an Eigenspace objective function that is optimized using
a Genetic Algorithm. The approach and reasoning behind
these choices will be examined in the following sections.

4. Statistical Shape Modelling of the Knee

The SSM framework of Cootes [7] extends trivially to
3D. The SSM is built from a set of N training shapessi

(i = 1, . . . , N ). Each shapesi has M points sampled on
its surface (si ∈ <3M ). Then using Principal Component



Analysis (PCA) each shape can be written as

si = s̃ + Pbi = s̃ +
∑

k

P kbk
i (1)

wheres̃ is the mean shape andP = pk contains the k eigen-
vectors of the covariance matrix. The corresponding eigen-
values (λk) describe the amount of variation expressed by
each eigenvector. The shape parametersb = bk are used to
control the modes of variation.

However to obtain a valid SSM it is necessary that

• The coordinates are in a common frame of reference.

• All points on each surface must correspond in an
anatomically meaningful way.

The first requirement can be achieved in a preprocessing
stage. The second is ensured by using an implementation
of the Point Distribution Model optimisation framework of
Davies et al [8].

The implementation of the Point Distribution Model op-
timisation framework that is used can be broken down into
3 stages.

• Pre-processing: Surface Extraction and Parameteriza-
tion.

• Generation of Initial SSM: created using uniform land
marking of parameter space.

• Optimize SSM: Using a genetic algorithm we optimize
the objective function of SSMs that are generated from
perturbing the uniform land marking via parameters
defined in the genome.

4.1. Pre-processing: Surface Extraction and Pa-
rameterization

The Femoral and Tibia bone are truncated in MRI scans
of the knee. So to treat these as equivalent shapes, the shaft
length is truncated so that it is proportional to the width of
the head. The surfaces of all the bones (Tibia, Femur and
Patella) are then extracted using Marching Cubes. As the
MR images are anisotropic a linear transform is used on
the surfaces to generate an isotropic surface which reduces
the effect of differences in knee alignment. Ideally a better
surface interpolation algorithm should be used to generate
a more anatomically correct surface. The surfaces are then
centroid matched and rescaled so that Root Mean Square
distance of the vertices is 100. The rescaling minimizes the
influences of the size of the shape biasing the optimisation
process.

A Parameterization of a surface is simply a mapping
from the surface to a suitable domain. For this work the
mapping is from a ‘genus 0’ surfaces to a unit sphere which
provides us with a

Figure 1. Overview of Stage 1

Figure 2. A Patella Surface and its Parameter-
ization

• Canonical space to compare and manipulate the train-
ing objects.

• Bijective mapping.

The parameterization method used in this work is a confor-
mal parameterization algorithm of Haker [3]. It does intro-
duce some angular distortion towards the poles, however
it is stable and converges relatively quickly for even the
extremely large meshes generated by the marching cubes
algorithm (for high resolution scans of the femur upwards
of 500K vertices). A second pass optimisation scheme can
be used to improve the properties of the parameterization
(especially area preservation). However for the parameter-
ization of the bones it was not found to be essential. The
primary advantage of ensuring a reasonable level of area
preservation is that it implies that ‘uniform’ sampling of
the parameter space corresponds to uniform sampling of the
surface.

4.2. Initial SSM Generation

Given a training surface and its parameterization a re-
meshed surface can be created by re-sampling (land mark-
ing) parameter space and then inverse mapping the vertices
(land marks) onto the training surface (see Figure 4). For
this work a quasi uniform sampling of the sphere was gen-
erated using a level 5 or 6 decomposition of an octahedron
(1026 or 4098 vertices) whose vertices are then projected
onto the unit sphere. Each vertex can be inverse mapped
back onto the surface using barycentric coordinates. A Spa-
tial Hashing algorithm is used to make the inverse map-



ping efficient and almost independent of the size of the sur-
face [12].

Figure 3. Overview of Stage 2

Figure 4. Patella: left to right Marching Cubes
Surface, uniform sampling of Parameter
Space, and Re-meshed Surface (level 5, 1026
vertices)

This procedure is used on each surface in the training set.
This set of shapes is then used to generate an initial SSM as
outline in section 4. At this stage there is no expectation
that the shapes have correct correspondences.

Figure 5. Case 20: left to rightLand Marks from
inverse mapping quasi uniform sampling of
parameter space. Visualized over Marching
Cubes Surface (level 6, 4098 vertices)

4.3. optimisation of SSM

The initial quasi uniform sampling is optimized using a
genetic algorithm. This is done by perturbing the vertices in
parameter space for each shape and then evaluating the SSM
generated. The perturbation is performed using Cauchy ker-
nels that are placed on the unit sphere. A symmetric theta
transform is then used to perturb the vertices (see equation
2).

f(θ, α,A) =
1

1 + A

[
θ + Aacos

(
(1 + α2) cos(θ)− 2α

1 + α2 − 2α cos (θ)

)]
(2)

Figure 6. Case 20: The surfaces generated
from the quasi uniform sampling of parameter
space (level 6, 4098 vertices)

whereα = e−a, a ∈ < is the width of the Cauchy ker-
nel and A is the amplitude. A genetic algorithm is used
to optimize the amplitude of the kernel while the width of
the kernel is kept fixed. This allows the implementation
of a hierarchical optimisation scheme, which for each level
applies finer (localized) perturbations to improve the corre-
spondence of the land marking. This is achieved by gener-
ating more densely spaced kernels at each level of optimi-
sation with a reduced width that is fixed based on the level.
The kernels are placed on the sphere using an octahedron
decomposition with each level of the decomposition corre-
sponding to a level in the optimisation. The width is fixed
per level toa = 2level−2. The perturbed land marks are then
used to generate a new model, which is evaluated using an
objective function F; in this case we usedF =

∑
log(λ+ε)

whereλ is the eigenvalue of the mode.

Figure 7. Overview of Stage 3



5. Results and Discussion

Initial models for the two bones (Tibia and Patella) were
generated using 8 training sets that were chosen based on
the similarity in the ‘size’ of the femur and tibia shafts in
the MRI. These models were generated using a quasi uni-
form land marking of 4098 vertices. Although the parame-
ter spaces are aligned, there is no true correspondence. The
result of this problem is especially evident in the tibia (see
Figure 8). The eigenvalues of the initial statistical shape
model can be seen in Table 5 and the primary mode is shown
in Figure 8.

Figure 8. Mode 0: −
√

3σ , −σ, mean, σ,
√

3σ

Mode Patella (Initial) Tibia (Initial)
1 468858 540341
2 138412 188464
3 86952 137906
4 55534 76362
5 47659 52988
6 33933 37121

Table 1. Eigen-values of primary modes of
variation for initial model of Patella and Tibia

The primary limitation of our optimisation scheme is the
high computational cost of the genetic algorithm based op-
timisation scheme. The main computational cost in this
scheme is the inverse mapping. The use of a spatial hash-
ing algorithm has improved the speed of the inversion by at
least an order of magnitude and it is also less dependent on
the size of the surface mesh. The current limitation is sim-
ply the memory required to store and process sets of very
large meshes. Although reading the meshes into and out
of memory is a possible approach, the preferred solution is
to perform quality re-meshing on the dense surfaces to re-
duce the mesh size while preserving shape information. A
quality re-meshing algorithm is still under development.

In the knee database, the dense surfaces that are gener-
ated have between 25k to 500k vertices. The Patella have
between 25k to 70k vertices, the tibia has 60K to 250K and

femur 150K to 500K. So although the parameterizations and
an initial model can be generated for use in the optimisation
scheme the Patella was the only bone optimized.

Figure 9. Mode 0: −
√

3σ , −σ, σ,
√

3σ

The Patella was trained using 12 arbitrary training
sets from the database and a quasi uniform land marking
consisting of 1026 vertices was used. For the Patella the
optimisation scheme improved the local correspondence
of the land marks compared to the initial model. The
optimisation process improved the compactness of the
models compared to uniform land marking of parameter
space by about 10 per cent.

Mode Patella (Initial) Patella (Optimized)
1 83862.9 81986.6
2 26238.2 25595
3 19816.6 15443.3
4 17836.8 11452.7
5 11281.3 11092.2
6 9759.72 9592.65

Table 2. Eigen-values of primary modes of
variation for the Patella

6. Conclusion

The statistical shape models generated using this optimi-
sation scheme are a reasonable basis for segmentation al-
gorithms. Currently it is necessary to optimize the initial
model, as the correspondence from parameter space is not
sufficient. The current optimisation scheme is only com-
putationally efficient for surface meshes with around 100K
vertices. A quality re-meshing algorithm is under develop-
ment to reduce the large dense surfaces to a more compu-
tationally feasible size which can also be accommodated in
memory. This will be essential when a more complete gen-
eration of the shape statistics of the knee is performed, as
this will require the training of many more datasets. It is
expected that 50 or more training datasets need to be used
to adequately encompass the variability in 3D model gener-
ation.
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