
Implementing Direct Volume Visualisation with Spatial
Classification

Daniel Mueller
School of Electrical and Electronic

Systems Engineering, QUT
Brisbane, QLD, Australia

d.mueller@qut.edu.au

Anthony Maeder
e-Health Research Centre,

CSIRO ICT Centre
Brisbane, QLD, Australia
anthony.maeder@csiro.au

Peter O’Shea
School of Electrical and Electronic

Systems Engineering, QUT
Brisbane, QLD, Australia

pj.oshea@qut.edu.au

Abstract
Direct volume rendering (DVR) provides medical users
with insight into datasets by creating a 3-D representation
from a set of 2-D image slices (such as CT or MRI). This
visualisation technique has been used to aid various medi-
cal diagnostic and therapy planning tasks. Volume render-
ing has recently become faster and more affordable with
the advent of 3-D texture-mapping on commodity graphics
hardware. Current implementations of the DVR algorithm
on such hardware allow users to classify sample points
(known as “voxels”) using 2-D transfer functions (func-
tions based on sample intensity and sample intensity gradi-
ent magnitude). However, such 2-D transfer functions in-
herently ignore spatial information. We present a novel
modification to 3-D texture-based volume rendering allow-
ing users to classify fuzzy-segmented, overlapping regions
with independent 2-D transfer functions. This modification
improves direct volume rendering by allowing for more
sophisticated classification using spatial information.

INTRODUCTION
Broadly speaking, visualisation is an iterative process in
which the user undertakes the tasks of exploration, analysis
and presentation [1]. Human pattern recognition processes,
relying on visual sensory input from such visualisations,
provide a means of understanding complex anatomical and
physiological situations. Direct volume rendering is a visu-
alisation technique that is useful in a variety of medical
situations including virtual endoscopy [2], 3-D ultrasound
[3], and surgical planning [4, 5]. Consequently we seek
ways to improve the visualisation of medical datasets using
direct volume rendering.
Volume rendering begins by sampling a continuous object
of interest (such as a human appendage) and forming a
discrete spatial model. The medical domain has various
imaging modalities capable of performing such sampling
including X-ray computed tomography (CT) and magnetic
resonance imaging (MRI). Each discrete sample in the 3-D
model is referred to as a “voxel” (volume element). Classi-
cal medical diagnosis and therapy planning is undertaken
by viewing individual 2-D slices of the sampled data. Vol-
ume rendering allows for further insight by converting the
data model into interactive 2-D photorealistic renditions.
These renditions are formed by modelling each voxel as a
semi-transparent light emitting particle, and observing the

virtual light projected onto an image viewing plane (refer
to Figure 1) [6]. Before projecting each voxel contribution,
a user specified classification function is applied to en-
hance different structures of interest. This function (com-
monly referred to as a “transfer function”) assigns colour
and opacity to each voxel, dependent of various attributes
(for example a 2-D transfer function uses sample intensity
and sample intensity gradient magnitude).
Traditionally, one of the major hurdles associated with vol-
ume rendering was the high computational expense of the
rendering algorithms [7]. The introduction of 3-D texture-
mapping capabilities to commodity graphics hardware has
allowed for a faster and more affordable implementation.
The current implementation uploads a dataset to the graph-
ics processing unit (GPU) which in turn performs the mil-
lions of trilinear-interpolations in a highly parallel nature.
This method allows for the interactive exploration of visu-
alisation parameters including rotation, translation, zoom,
and classification.
The GPU implementation of direct volume rendering cur-
rently only allows for the application of global classifica-
tion functions – users cannot emphasise important spatial
features using these global functions. We present a novel
approach allowing the user to specify spatially independent
2-D transfer functions. Prior to visualisation the user fuzzy-
segments a number of regions, each of which is subse-
quently assigned an independent classification function.
This method allows users to spatially classify and visualise
a volume dataset.

(a) (b)

Figure 1. A voxel can be modelled as a light emitting
particle and projected onto an image plane.
(a) Parallel Projection (b) Perspective Projection.

slice
images

image plane

slice
images

image plane

voxel

viewing ray

eye

RELATED WORK
Traditional transfer functions are applied on the global
level, ignoring the spatial domain for sake of ease. Re-
cently “dual-domain” interaction was introduced whereby
the user probes the spatial domain to aid with the construc-
tion of a global 2-D transfer function [8]. However, this
approach still applies the transfer function in a global fash-
ion to all voxels. A different approach tags each voxel with
an identifier pointing to one of n transfer functions associ-
ated with different regions [6]. Unfortunately this approach
only caters for hard-segmented, non-overlapping regions
and is best suited to pre-classification implementation.
We present a modification to 3-D texture-based volume
rendering overcoming the disadvantages discussed above.
Our proposed approach allows for spatial 2-D classification
using hard- and/or fuzzy-segmented, overlapping regions.

3-D TEXTURE-BASED VOLUME RENDERING
3-D texture-based volume rendering is primarily executed
on the graphics hardware. The data is uploaded to hardware
memory as a set of 2-D slice images via an API (applica-
tion programmers interface) such as OpenGL or Direct3D.
Through the API, a user program outputs view-aligned
polygons which act as an equidistant, rectilinear grid capa-
ble of tri-linearly interpolating the uploaded data at any
viewing angle. The sampling rate determines the distance
between the grid intersection points of this “proxy-
geometry” (see Figure 2). The interpolated view-aligned
image slices (of which elements are referred to as “frag-
ments”) are finally composited into a single 2-D rendition
using the operation defined in Equation (1) [6]. For a typi-
cal dataset of 3256 voxels the rendering algorithm must
perform millions of tri-linear interpolations. By taking ad-
vantage of the parallel architecture of modern GPUs, it is
possible to execute the rendering algorithm at real-time
framerates (≈25 fps).

(a) (b)
Figure 2. A set of parallel view-aligned polygons act
as proxy-geometry with (a) low sampling rate, and (b)
higher sampling rate.

MULTIDIMENSIONAL CLASSIFICATION
Classification transfer functions allow data to be made visi-
ble and hence play a pivotal role in volume rendering. Ba-
sically a transfer function acts as a filter to colour important
information and suppress the visibility of unwanted noise.
Transfer function specification has emerged as an impor-
tant research topic [8, 9].
Multidimensional transfer functions (in particular 2-D
functions) have become a popular choice for volume classi-
fication. Medical datasets typically contain information
pertaining to complex interactions between boundaries of
different materials. A 1-D transfer function is unable to
isolate a voxel belonging to multiple boundaries [8]. A 2-D
transfer function on the other hand, specifies the colour and
opacity of voxels based on sample intensity and sample
intensity gradient magnitude, allowing for the isolation of
more than one boundary. A global 2-D transfer function
can be considered as a lookup table (LUT) which returns
an RGB colour (c) and opacity (α) for the given lookup
values f and 'f as defined in Equation (2) below.

There are two types of classification: (a) pre-interpolation
classification (also referred to as “pre-classification”) in
which the voxel is assigned colour and opacity before the
interpolation operation, and (b) post-interpolation classifi-
cation (also referred to as “post-classification”) in which
the voxel is assigned colour and opacity after the interpola-
tion operation. 3-D texture-based volume rendering can be
implemented with both pre- and post-classification, how-
ever it has been shown that post-classification produces
superior results [6].
Implementing post-classification volume rendering using
3-D textures and graphics hardware requires the use of a
fragment shader program (which can be considered as a
kernel function applied to all interpolated voxels). These
“per-fragment” operations are performed by the GPU as the
final step of the hardware pipeline. The data is uploaded to
the hardware as a 3-D texture. A 3-D texture is a set of
image slices with each pixel consisting of four channels
(RGBA = Red, Green, Blue, Alpha). While labelled
RGBA, these channels are not restricted to colour informa-

() ()()

 samples all from composedcolour final theis
 sampleofopacityandcolourmultiplied-pre theis

sampleofcolourRGB theis
sampleofopacity theis

:where
...

...111

1

i

1210

102010

1

0

1

0

final

ii

i

i

n

n

i

i

j
jifinal

c
icC

iC
i

coverovercovercoverc
ccc

cc

=

=
+−−+−+=

−×=

−

−

=

−

=
∑ ∏

α

α

ααα

α

(1)

{ } ()

222

'

as defined of magnitudegradient theis '

 voxelofintensity data theis
function"transfer " thedenotes

opacity returned theis
colour RGB returned theis

),(location at voxelis
:where

',c,:voxels

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=∇=

=∀

f
y

f
y

f
x

ff

ff

vf
T

c

,zyxv

ffTv

ijk

kjiijk

ijk

α

α

(2)

tion alone. In our case, the dataset is uploaded to the graph-
ics hardware using the Alpha channel for sample intensity
(f) and the Red channel for sample intensity gradient
magnitude ('f). Along with this, a 2-D texture is created
to serve as the actual transfer function lookup table. The x-
axis corresponds to sample intensity and the y-axis to sam-
ple intensity gradient magnitude (refer to Figure 3).

(a) (b)
Figure 3. (a) A 2-D transfer function (excluding the
underlaid histogram) is uploaded to the GPU as a
LUT texture. (b) An example rendition of the engine
dataset using the transfer function in (a).

During the per-fragment operation phase of the graphics
pipeline, the fragment shader interpolates the data and gra-
dient information. This interpolated information is in turn
used as lookup values for the transfer function (uploaded as
a 2-D texture). The returned value from the lookup table is
set as the fragment RGBA colour. The fragments are then
composited together along viewing rays using Equation
(1), as previously discussed. Listing 1 shows the fragment
shader program for such an operation.

SPATIAL CLASSIFICATION
From the discussion so far, it can be seen how to imple-
ment volume rendering with 2-D post-classification using
accelerated graphics hardware. However, this implementa-
tion does not allow for the classification of voxels at spe-
cific spatial locations. Such a capability is desirable for
more sophisticated visualisation.
At first glance a simple solution might be to extend our 2-D
transfer function to include (x, y, z) components, creating a
5-D classification function. While this may provide the
desired functionality, this solution can not currently be im-
plemented on graphics hardware. For a typical dataset of

3256 voxels and 8-bit lookup values, a 5-D transfer function
LUT would require GBbits 262,8110796.88256 125 ≈×≈× of
memory. This far exceeds the 256 MB of memory on cur-
rent graphics cards. Fortunately such an approach is not
required because much of a 5-D transfer function LUT
would contain redundant spatial information. Our solution
proposes to group (x, y, z) entires in a 5-D lookup table
into regions. A 5-D transfer function allows the user to
specify an independent 2-D transfer function for each pos-
sible (x, y, z) coordinate. Using our region-based ap-
proach, users are only required to assign an independent 2-
D transfer function to each segmented region. The memory
requirement for such a system is bitsn 82562 ×× , where n
is the number of regions. This grouping not only signifi-
cantly reduces the memory requirements of the algorithm,
but it is also more intuitive to the user.

Figure 4. (a) A 5-D transfer function has a unique 2-D
LUT for each (x,y,z) coordinate which is superfluous
(b) A region-based TF has a unique 2-D LUT for each
region, which significantly reduces the memory
requirements while not severly effecting functionality.

Intensity →

G
ra

di
en

t M
ag

ni
tu

de
 →

//Texture samplers
uniform sampler3D sampler_data;
uniform sampler2D sampler_tf;

//Texture coordinates from vertex shader
varying vec3 data_coord;

//---
//Function: main
//Description: Fragment operation for 2-D
// classification function
//---
void main()
{
 //Use coord to interpolate data & gradient
 vec4 data = texture3D(sampler_data, vec3(data_coord));

 //Setup data & gradient as TF lookup values
 //Data = Alpha channel
 //Gradient = Red channel
 vec2 tf_coords = vec2(data.a, data.r);

 //Look up 2-D transfer function LUT
 vec4 tf_data = texture2D(sampler_tf, tf_coords);

 //Set fragment colour and opacity from lookup value
 gl_FragColor = tf_data;
}
//---

x y z I ||∇I|| RGBA Value

0 0 0 … … …

0 0 0 … … …

… … … … … …

1 0 0 … … …

1 0 0 … … …

Region I ||∇I|| RGBA Value

0 … … …

0 … … …

… … … …

1 … … …

1 … … …

2-D TF for (1,0,0)

 ↓

2-D TF for Region 0

2-D TF for Region 1

 ↓

(a)

(b)

2-D TF for (0,0,0)

Listing 1. The fragment shader program for a 2-D
transfer function (OpenGL Shading Language).

METHOD
The proposed approach was realized on accelerated graph-
ics hardware using a number of additional textures. An
additional four channel (RGBA) 3-D texture was used to
support up to four 8-bit greyscale region masks (one per
channel). These region masks allow users to create fuzzy
regions (white indicates that the associated voxel does not
belong to the region, black indicates that the voxel does
belong to the region, and the grey continuum in between
indicates varying degrees of membership). Figure 6 and
Figure 7 show some example masks. Each region must also
add an extra 2-D texture to store the independent 2-D trans-
fer function. Additional proxy-geometry must also be out-
put to interpolate the new 3-D region texture. Our approach
proposes the novel idea of interweaving slices of both data
and regions together. Figure 5 depicts a comparison of our
proposed approach and the typical approach.
A fragment shader for the proposed algorithm uses the dis-
cussed texture structure to facilitate the spatial classifica-
tion. Both the data/gradient and region 3-D textures are
interpolated by the shader program. Following this, each
region-based transfer function is sampled using the interpo-
lated data/gradient value. This determines the colour and
opacity for the current fragment for each region. Next, the
colour and opacities for each region are weighted by the
associated region mask and combined into a final colour
for the current fragment. This operation is detailed for
opacities in Equation (3) (colour components are treated in
an identical fashion). Finally, the view-aligned, region-
weighted slice images are composited in the normal man-
ner described by Equation (1).

RESULTS AND DISCUSSION
For validation purposes the proposed algorithm was im-
plemented on an ATI Radeon 9800 Pro GPU and Intel Pen-
tium 4 2.8GHz, 1GB RAM PC using OpenGL. This proof-
of-concept implementation was tested using two common
volume rendering datasets with simple box and spherical
regions. Figure 6 and Figure 7 depict renditions using the
traditional and proposed algorithms with two regions.
Visual inspection confirms that classification has only been
performed for the desired region(s). The major strength of
the proposed algorithm is the ability to attach independent
2-D transfer functions to different regions of interest. These
regions can be fuzzy-segmented catering for uncertainty
involved with segmentation. Furthermore, regions may
overlap allowing for complex classification of volume data.

There is however, a trade-off between performance and
functionality, as reflected in Table 1. The proposed algo-
rithm is executed three times slower than the traditional
algorithm. Unfortunately this is expected due to the addi-
tional texture interpolations required for supporting spatial
classification.

(a)

(b)

Figure 5. (a) The typical texture layout for 3-D texture
based volume rendering uses one 2-D transfer func-
tion for the data image slices (b) Our proposed ap-
proach interweaves the data and region 3-D textures,
assigning a unique 2-D transfer function to each
channel of the region texture.

Dataset Algorithm Volume Size Image
Size

Framer-
ate

Engine Traditional 256x256x128 256x256 25 fps
Engine Spatial 256x256x128 256x256 8 fps
Foot Traditional 256x256x256 256x256 9 fps
Foot Spatial 256x256x256 256x256 3 fps

Table 1. A comparison of the framerates between the
traditional and proposed algorithm reveals that the tra-
ditional is approximately 3 times faster. (Framerates
were measured using a sampling rate of 1.5.)

() ()
() ()() ()()()

LUTfunction transfer thefrom lueopacity va theis
tureregion tex thefromt mask weighregion theis

: where

...111

1

i

i

001122001100

1

0

1

0

α
ω

αααααα

αωαωα

+−−+−+=

−×= ∏∑
−

=

−

=

wwwwww

i

j
jj

n

i
iiout

(3)

Data

TF Region 1

Regions
TF Region 2

TF Region 3

TF Region 4

Data Global 2-D TF

(a) (b)

(c) (d)

Figure 6. Results using the engine dataset 1.
(a) Region 1: hard-segmented box region
(b) Region 2: fuzzy-segmented spherical region
(c) Rendition without spatial classification
(d) Rendition with spatial classification (using region 1 & 2)

(a) (b)

(c) (d)

Figure 7. Results using the foot dataset 1.
(a) Region 1: hard-segmented box region
(b) Region 2: fuzzy-segmented spherical region
(c) Rendition without spatial classification
(d) Rendition with spatial classification (using region 1 & 2)

1 Available from http://www.volvis.org/

CONCLUSIONS AND FUTURE WORK
We have presented a novel modification to 3-D texture-
based volume rendering capable of performing spatial clas-
sification. Fuzzy-segmented, potentially overlapping re-
gions can be assigned independent 2-D transfer functions.
This approach allows for more sophisticated visualisation
and can achieve interactive framerates. However, real-time
framerates can not be achieved as in traditional GPU im-
plementations due to the increased overheads.
Future work will endeavour to apply the proposed algo-
rithm to clinical data and demonstrate the improved capa-
bilities in diagnosis and therapy planning. To facilitate this
step, more complex segmentation algorithms (such as re-
gion growing or fuzzy C-means) must be integrated into
the framework.

REFERENCES
[1] P. Keller and M. Keller, Visual cues: practical data

visualization. Los Alamitos, CA: IEEE Computer So-
ciety Press, 1993.

[2] J.-W. Hwang, J.-M. Lee, I.-Y. Kim, I.-H. Song, Y.-H.
Lee, and S. Kim, "A PC-based high-quality and inter-
active virtual endoscopy navigating system using 3D
texture based volume rendering," Computer Methods
and Programs in Biomedicine, vol. 71, pp. 77-84,
2003.

[3] C. Kim, J. H. Oh, and H. Park, "Efficient volume visu-
alization of 3D ultrasound images," presented at SPIE
Medical Imaging: Image Display, 1999.

[4] R. A. Robb, "Three-dimensional visualization in medi-
cine and biology," in Handbook of Medical Imaging :
Processing and Analysis, I. N. Bankman, Ed. San
Diego: Academic Press, pp. 685-712, 2000.

[5] F. V. Higuera, N. Sauber, B. Tomandl, C. Nimsky, G.
Greiner, and P. Hastreiter, "Automatic adjustment of
bidimensional transfer functions for direct volume
visualization of intracranial aneurysms," presented at
SPIE Medical Imaging: Visualization, Image-guided
Procedures, and Display, San Diego, 2004.

[6] C. Rezk-Salama, "Volume rendering techniques for
general purpose graphics hardware," PhD dissertation,
Department of Computer Science 9 (Computer Graph-
ics), University Erlangen-Nuremberg, 2001.

[7] P. G. Lacroute, "Fast volume rendering using a shear-
warp factorization of the viewing transformation," PhD
dissertation, Department of Electrical Engineering and
Computer Science, Stanford University, 1995.

[8] J. Kniss, G. Kindlmann, and C. Hansen, "Multidimen-
sional transfer functions for interactive volume render-
ing," IEEE Transactions on Visualization and Com-
puter Graphics, vol. 8, pp. 270-285, 2002.

[9] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W.
Schroeder, L. S. Avila, K. M. Raghu, R. Machiraju,
and J. Lee, "The transfer function bake-off," IEEE
Computer Graphics and Applications, vol. 21, pp. 16-
22, 2001.

